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Abstract. In this paper we study the following fractional boundary value problem with integro-
differential boundary conditions⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Dα
0+u(t)− f (t,u(t),Dα−1

0+ u(t),D1−α
0+ u(t)) = 0, t ∈ [0,T ], n−1 � α < n,

u( j)(0) = 0, Dα−1
0+ u(T )+

∫ T

0
u(ω)dω +

m−2

∑
i=1

βiu(ξi) = 0, j = 0, ...,n−2,

0 < ξi < ξi+1 < T, βi ∈ [0,∞), i = 1,2, ...,m−2, n ∈ N\{1}, T > 0,

where Dα
0+ ,Dα−1

0+ represent the standard Riemann-Liouville fractional derivative of order α .
The main result includes some interesting fixed point and functional analysis techniques to obtain
claimed existence result.

1. Introduction

In the last two decades, differential equations of fractional order has introduced as
a wonderful branch of fractional calculus that is applicable in sciences such as medicine,
economy, basic sciences, engineering and so on (see the monographes [7], [10]). Also
FDE’s can describes many phenomenons in natural sciences significantly. Therefore
many researchers interested to investigate about various applications of fractional dif-
ferential equations. One of the most popular fields between this variety, is investigation
about existence of positive solutions for boundary value problems of fractional order
([1]-[5], [9], [11]-[15]). Xiankui Zhao and Weigao Ge in [13], investigated the exis-
tence of an unbounded solution for the following fractional boundary value problem⎧⎪⎨

⎪⎩
Dα

0+u(t)+ f (t,u(t)) = 0, t ∈ (0,∞), α ∈ (1,2),

u(0) = 0, lim
t→∞

Dα−1
0+ u(t) = βu(ξ ), 0 < ξ < ∞,

where Dα
0+ denotes the standard Riemann-Liouville fractional derivative of order α .
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Kazem Ghanbari and Yousef Gholami in [3] studied the existence of multiple pos-
itive solutions for the boundary value problem of fractional order

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Dα
0+u(t)+ λa(t) f (t,u(t)) = 0, t ∈ (0,∞), α ∈ (2,3)

u(0)+u
′
(0) = 0, lim

t→∞
Dα−1

0+ u(t) =
m−2

∑
i=1

βiu
′
(ξi),

0 < ξ1 < ξ2 < ... < ξm−2 < ∞, βi ∈ R
+ ∪{0}, i = 1,2, ...,m−2,

where Dα
0+ represent the fractional Riemann-Liouville derivative of order α .

Bashir Ahmad and Sotiris K. Ntouyas in [1], obtained existence of solution for the
following multi strip fractional order boundary value problem

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

cDq
0+x(t) = f (t,x(t)), t ∈ (0,1), m−1 � q < m,m ∈ N�2,

x( j)(0) = 0, x(1) =
n−2

∑
i=1

αi

∫ ηi

ξi

x(s)ds, j = 0, i, ...,m−2,

0 < ξi < ηi < 1, i = 1,2, ...,n−2,

such that cDq
0+ is the Caputo fractional derivative of order q .

Motivated by papers mentioned above, we consider the FBVP:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Dα
0+u(t)− f (t,u(t),Dα−1

0+ u(t),D1−α
0+ u(t)) = 0, t ∈ [0,T ],n−1 � α < n,

u( j)(0) = 0, Dα−1
0+ u(T )+

∫ T

0
u(ω)dω +

m−2

∑
i=1

βiu(ξi) = 0, j = 0, ...,n−2,

0 < ξi < ξi+1 < T, βi ∈ [0,∞), i = 1,2, ...,m−2, n ∈ N\ {1},

(1.1)

that equipped with fractional Riemann-Liouville derivatives Dα
0+ , Dα−1

0+ .
In order to represent some sufficient conditions for existence of positive solutions

for FBVP (1.1), assume that throughout this paper the following necessary condition
hold:

(H ) f : C([0,T ]×R × R ×R,R+) and f (t,0,0,0) dos not vanish identically on
[0,T ] .

2. Preliminaries

We will divide this section to two steps that, in first step we introduce some stan-
dard definitions and lemmas from fractional calculus and in second step, we represent
some arguments and theorems from fixed point theory that will be needed in the next
sections.
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2.1. Step 1. Some Arguments About Fractional Calculus

DEFINITION 1. Assume that u ∈ L1(0,∞) . The fractional Riemann− Liouville
primitive of order α for u is given by

Iα
0+u(t) =

1
Γ(α)

∫ t

0
(t − s)α−1u(s)ds, α > 0.

DEFINITION 2. The fractional Riemann-Liouville derivative of order α for a given
real valued function u on (0,∞) is defined by

Dα
0+u(t) =

1
Γ(n−α)

(
d
dt

)n ∫ t

0
(t− s)n−α−1u(s)ds, α > 0, n = [α]+1,

provided that the right hand side is point-wise defined on (0,∞) .

DEFINITION 3. [7] Let X = (x1,x2, ...,xn)∈R
n, n∈N\{1} . The partial Riemann -

Liouville fractional derivative with respect to k-th variable xk for real valued function
u : R

n → R
+ is defined by

∂ α
0+

∂xk
u(X) =

1
Γ(J−α)

(
∂

∂xk

)J ∫ xk

0
(xk − s)J−α−1u(x1, ...,xk−1,s,xk+1, ...,xn)ds,

where J = [α]+1.

LEMMA 1. [10] Let α > 0 .

(i) If μ > −1 , μ �= α − i with i = 1,2, ..., [α]+1 and t > 0 , then

Dα
0+tμ =

Γ(μ +1)
Γ(μ −α +1)

tμ−α .

(ii) Dα
0+tα−i = 0 , for i = 1,2, ..., [α]+1.

(iii) If t ∈ (0,∞) , u ∈ L1(0,T ) , Iα
0+u ∈C(0,T ) , Dα

0+u ∈C(0,T )∩L(0,T ) , then

Dα
0+Iα

0+u(t) = u(t), Iα
0+Dα

0+u(t) = u(t)+
n

∑
i=1

cit
α−i , ci ∈ R,n = [α]+1.

(iv) Dα
0+u(t) = 0 iff u(t) =

n

∑
i=1

cit
α−i , ci ∈ R, n = [α]+1.

LEMMA 2. Suppose that h ∈ L1[0,T ] . Then the fractional boundary value prob-
lem⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Dα
0+u(t)−h(t) = 0, t ∈ [0,T ],n−1 � α < n,n ∈ N\ {1},

u( j)(0) = 0, Dα−1
0+ u(T )+

∫ T

0
u(ω)dω +

m−2

∑
i=1

βiu(ξi) = 0, j = 0, ...,n−2,

0 < ξi < ξi+1 < T, βi ∈ [0,∞), i = 1,2, ...,m−2,

(2.1)
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has the unique solution as

u(t) =
∫ T

0
K(t,s)h(s)ds, (2.2)

where

K(t,s) = G(t,s)+
1
Δ

m−2

∑
i=1

βit
α−1G(ξi,s)+

tα−1

ΔΓ(α +1)
{Tα +(T − s)α}, (2.3)

such that

G(t,s) =
1

Γ(α)

{
tα−1 +(t− s)α−1; 0 � s � t < T
tα−1 ; 0 � t � s < T

(2.4)

and

Δ = Γ(α)+
Tα

α
+

m−2

∑
i=1

βiξ α−1
i . (2.5)

Proof. Using Lemma 2.4, we can reduce fractional differential equation (2.1) as
follows

u(t) = −c1t
α−1− c2t

α−2− ...− cn−1t
α−n+1 +

∫ t

0

(t− s)α−1

Γ(α)
h(s)ds.

Applying boundary conditions u( j)(0) = 0 for j = 0,1, ...,n−2, with simple calculat-
ing shows that cn−1 = cn−2 = ... = c2 = 0 respectively.

Implementing the last boundary condition

Dα−1
0+ u(T )+

∫ T

0
u(ω)dω +

m−2

∑
i=1

βiu(ξi) = 0,

we conclude that

c1 =
1
Δ

[m−2

∑
i=1

βi

∫ ξi

0

(ξi − s)α−1

Γ(α)
h(s)ds

+
∫ T

0
h(s)ds+

∫ T

0

∫ ω

0

(ω − s)α−1

Γ(α)
h(s)dsdω

]
.

Thus we have

u(t) =
tα−1

Δ

[∫ T

0
h(s)ds+

m−2

∑
i=1

βi

∫ ξi

0

(ξ i − s)α−1

Γ(α)
h(s)ds

+
∫ T

0

∫ ω

0

(ω − s)α−1

Γ(α)
h(s)dsdω

]

+
∫ t

0

(t− s)α−1

Γ(α)
h(s)ds
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=
tα−1

Δ

[∫ T

0
h(s)ds+

m−2

∑
i=1

βi

∫ ξi

0

(ξ i − s)α−1

Γ(α)
h(s)ds

+
∫ T

0

∫ ω

0

(ω − s)α−1

Γ(α)
h(s)dsdω

]

−
∫ T

0

tα−1

Γ(α)
h(s)ds+

∫ T

0
G(t,s)h(s)ds

=
1
Δ

m−2

∑
i=1

βit
α−1

∫ T

0

ξ α−1
i

Γ(α)
h(s)ds+

1
Δ

m−2

∑
i=1

βit
α−1

∫ ξi

0

(ξ i − s)α−1

Γ(α)
h(s)ds

+
tα−1

Δ

∫ T

0

T α

αΓ(α)
h(s)ds+

tα−1

Δ

∫ T

0

∫ ω

0

(ω − s)α

Γ(α)
h(s)dsdω

+
∫ T

0
G(t,s)h(s)ds

=
∫ T

0

[
G(t,s)+

1
Δ

m−2

∑
i=1

βit
α−1G(ξi,s)

]
h(s)ds

+
tα−1

Δ

∫ T

0

∫ ω

0

(ω − s)α

Γ(α)
h(s)dsdω︸ ︷︷ ︸

Replacemaent Order o f Variables

+
tα−1

Δ

∫ T

0

Tα

αΓ(α)
h(s)ds

=
∫ T

0

[
G(t,s)+

tα−1

Δ

{m−2

∑
i=1

βiG(ξi,s)+
1

Γ(α +1)
{Tα +(T − s)α}

}]
h(s)ds

=
∫ T

0
K(t,s)h(s)ds.

Unique coefficients c1,c2, ...,cn−1 imply that, (2.2) is the unique solution of boundary
value problem of fractional order (2.1) . This completes the proof. �

LEMMA 3. Let p > 1 be fixed. Considering K(t,s) , we claim that there exists a
positive constant ρ such that

min
t∈[p,q]

{
K(t,s)+

∂ α−1
0+

∂ t
K(t,s)+

∂ 1−α
0+

∂ t
K(t,s)

}

� ρ max
t∈[0,T ]

{
K(t,s)+

∂ α−1
0+

∂ t
K(t,s)+

∂ 1−α
0+

∂ t
K(t,s)

}
, p > 0,q < T. (2.6)

Proof. Indeed considering Lemma 2.4 and replacement α with −α we can cal-
culate the fractional primitive for power functions. Thus we have

Dα−1
0+ tα−1 = Γ(α), D1−α

0+ tα−1 =
Γ(α)

Γ(2α −1)
t2(α−1). (2.7)
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Now by definition 3 and (2.4), we have

∂ α−1
0+

∂ t
G(t,s) =

⎧⎨
⎩

2; 0 � s � t � T,

1; 0 � t � s � T,
(2.8)

and

∂ 1−α
0+

∂ t
G(t,s) =

1
Γ(2α −1)

{
t2(α−1) + (t− s)2(α−1), 0 � s � t � T,

t2(α−1), 0 � t � s � T.
(2.9)

Obviously we can observe that both of G(t,s),
∂ 1−α
0+
∂ t G(t,s) are increasing with respect

to first variable t and decreasing with respect to second variable s . Thus we have

min
[p,q]

G(t,s) =
pα−1

Γ(α)
,

max
t∈[0,T ]

G(t,s) =
1

Γ(α)
(
T α−1 +(T − s)α−1) , s ∈ [0,T ].

Setting

γ(s) =
min
[p,q]

G(t,s)

max
t∈[0,T ]

G(t,s)
=

pα−1

T α−1 +(T − s)α−1 , s ∈ [0,T ],

and choosing s = 0, we have

γ(s) � ρ1 =
( p

2T

)α−1
. (2.10)

Hence
min

t∈[p,q]
G(t,s) � ρ1 max

t∈[0,T ]
G(t,s). (2.11)

Similarly by direct calculation on
∂ 1−α
0+
∂ t G(t,s) , we deduce that

min
t∈[p,q]

∂ 1−α
0+

∂ t
G(t,s) � ρ2 max

t∈[0,T ]

∂ 1−α
0+

∂ t
G(t,s), (2.12)

where

ρ2 =
( p

2T

)2(α−1)
. (2.13)

Now using (2.8),(2.11),(2.12), we conclude that

min
t∈[p,q]

K(t,s) � λ1 max
t∈[0,T ]

K(t,s),

min
t∈[p,q]

∂ α−1
0+

∂ t
K(t,s) � λ2 max

t∈[0,T ]

∂ α−1
0+

∂ t
K(t,s),

min
t∈[p,q]

∂ 1−α
0+

∂ t
K(t,s) � λ3 max

t∈[0,T ]

∂ 1−α
0+

∂ t
K(t,s),

(2.14)
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where

λ1 = ρ1

{
1+

m−2

∑
i=1

βi

Δ

(
p
q

)α−1 }
+

T α−1

ΔΓ(α +1)

(
p
q

)α−1

,

λ2 =
1
2

+
Γ(α)

Δ

{m−2

∑
i=1

βiρ1 +
Tα

Γ(α +1)

}
,

λ3 = ρ2 +
Γ(α)

Δ

(
p
q

)2(α−1) {m−2

∑
i=1

βiρ1 +
T α

Γ(α +1)

}
.

(2.15)

At last considering (2.15), we conclude that

min
t∈[p,q]

{
K(t,s)+

∂ α−1
0+

∂ t
K(t,s)+

∂ 1−α
0+

∂ t
K(t,s)

}

� ρ max
t∈[0,T ]

{
K(t,s)+

∂ α−1
0+

∂ t
K(t,s)+

∂ 1−α
0+

∂ t
K(t,s)

}
,

where
ρ = min{λ1,λ2,λ3}.

The proof is complete. �

2.2. Step 2. Technical Requirements of Functional Analysis

In this step in order to design the desirable field for implementing our claimed
results, firstly we proceed to build the relevant Banach space as follows

B =
{

u(t)
∣∣∣ u ∈C[0,T ], sup

t∈[0,T ]
|u(t)| < ∞

}
,

E =
{

u(t) ∈ B
∣∣∣ Dα−1

0+ u,D1−α
0+ u ∈C[0,T ], sup

t∈[0,T ]
|Dα−1

0+ u(t)|, sup
t∈[0,T ]

|D1−α
0+ u(t)| < ∞

}
,

where E,B endowed with the norms ||u||B, ||u||E respectively as below

||u||B = sup
t∈[0,T ]

|u(t)| , ||u||E = ||u||B + sup
t∈[0,T ]

|Dα−1
0+ u(t)|+ sup

t∈[0,T ]
|D1−α

0+ u(t)|.

(B, ||.||B) and (E, ||.||E) are Banach spaces and our favorite Banach space in this
investigation is (E, ||.||E) .

Now we introduce a nonvoid, closed convex subset of E as follows
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C =
{

u ∈ E
∣∣∣ u(t) � 0,

min
t∈[p,q]

{
u(t)+ |Dα−1

0+ u(t)|+ |D1−α
0+ u(t)|

}
� ρ ||u||E

}
. (2.16)

Try to obtain positive solutions for FBVP (1.1), implies that why we introduced the
cone C mentioned above.

We define the integral operator A : C → E by

A(u(t)) =
∫ T

0
K(t,s) f (s,u(s),Dα−1

0+ u(s),D1−α
0+ u(s))ds, t ∈ [0,T ]. (2.17)

DEFINITION 4. [6] Let Y be a normed space and suppose S ⊂ Y . A finite set of
N balls B(yn,ε) with yn ∈Y and ε > 0 is said to be a finite ε -covering of S , provided
that every element of S lies inside one of the balls B(yn,ε) , i.e.

S ⊂
N⋃

n=1

B(yn,ε).

The set of centers {yn} of a finite ε -covering is called a finite ε -net for S .

DEFINITION 5. [6] Let Y be a normed space. A set S ⊂ Y is said to be a Totally
Bounded iff it has a finite ε -covering for every ε > 0.

THEOREM 1. [6] Assume that Y be a normed space. A set S ⊂Y is compact iff it
is closed and totally bounded.

THEOREM 2. [8] Let Y be a Banach space. Assume that A : Y −→ Y is a com-
pletely continuous mapping. If L : Y −→ Y be a linear bounded mapping such that 1
is not an eigenvalue of L and

lim
||u||→∞

||Au−Lu||
||u|| = 0, (2.18)

then A has a fixed point in Y .

3. Main Results

In the beginning of this section, first of all we shall show that if we consider the
operator A :C −→C defined by (2.17), then AC ⊂C . By (2.3)-(2.5) and (2.14), clearly
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we find that Hammerstein operator A is nonnegative. Also we have

min
t∈[p,q]

(Au)(t) �
∫ T

0
min
∈[p,q]

K(t,s) f (s,u(s),Dα−1
0+ u(s),D1−α

0+ u(s))ds

� λ1

∫ T

0
max

t∈[0,T ]
K(t,s) f (s,u(s),Dα−1

0+ u(s),D1−α
0+ u(s))ds

� λ1 max
t∈[0,T ]

∫ T

0
K(t,s) f (s,u(s),Dα−1

0+ u(s),D1−α
0+ u(s))ds

= λ1 max
∈[0,T ]

(Au)(t).

(3.1)

Similarly the following results can be derived:

min
t∈[p,q]

Dα−1
0+ (Au)(t) � λ2 max

t∈[0,T ]
Dα−1

0+ (Au)(t), (3.2)

and
min

t∈[p,q]
D1−α

0+ (Au)(t) � λ3 max
t∈[0,T ]

D1−α
0+ (Au)(t). (3.3)

So therefore using (3.1)-(3.3), we have the following:

min
t∈[p,q]

{
(Au)(t)+

∣∣ Dα−1
0+ (Au)(t)

∣∣ +
∣∣ D1−α

0+ (Au)(t)
∣∣ }

� ρ ||Au||E .

Thus we have proved that AC ⊂C .

LEMMA 4. Assume that condition (H) be satisfied. Then A :C→C is completely
continuous.

Proof. We know that the cone C is closed subset of E . Thus if we prove that
C is totally bounded, according to Theorem 2.9 we can deduce that C is compact and
consequently we can derive that because the integral operator A is continuous, hence A
is completely continuous. So we perform above operations as below:
let recall the cone C ,

C =
{

u ∈ E
∣∣∣ u(t) � 0, t ∈ [0,T ],

min
t∈[p,q]

{
u(t)+ |Dα−1

0+ u(t)|+ |D1−α
0+ u(t)|

}
� ρ ||u||E

}
.

We want to prove that C is totally bounded. In order to prove this claim, consider the
following:

Eu = {u ∈ E|u(t) � 0,t ∈ [0,T ]},

EDα−1
0+ u =

{
Dα−1

0+ u
∣∣ u ∈ Eu

}
,

ED1−α
0+ u =

{
D1−α

0+ u
∣∣ u ∈ Eu

}
.

(3.4)
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Clearly Eu,EDα−1
0+ u,ED1−α

0+ u are three closed subsets of E . Thus all of them are com-

plete spaces. Obviously u(t),Dα−1
0+ u(t),D1−α

0+ u(t) are equicontinuous on [0,T ] . Hence
using Arzela-Ascoli theorem we conclude that Eu,EDα−1

0+ u ,ED1−α
0+ u are relatively com-

pact. So observing the Hausdorff compactness criterion in Theorem 2.9, we deduce
that Eu,EDα−1

0+ u,ED1−α
0+ u are totally bounded.

Thus there exist three finite ε -coverings as

Bε(ui),Bε
(
Dα−1

0+ v j
)
,Bε

(
D1−α

0+ wk
)
, i = 1, ..., l1, j = 1, ..., l2, k = 1, ..., l3,

such that

Eu ⊂
l1⋃

i=1

Bε(ui),

EDα−1
0+ u ⊂

l2⋃
j=1

Bε
(
Dα−1

0+ (v j)
)
,

ED1−α
0+ u ⊂

l3⋃
k=1

Bε
(
D1−α

0+ (wk)
)
,

(3.5)

where

Bε(ui) = {u ∈ Eu| ||u−ui||B < ε},

Bε
(
Dα−1

0+ (v j)
)

=
{

Dα−1
0+ u ∈ EDα−1

0+ u

∣∣ ||Dα−1
0+ u−Dα−1

0+ v j||B < ε
}

,

Bε
(
D1−α

0+ (wk)
)

=
{

D1−α
0+ u ∈ ED1−α

0+ u

∣∣ ||D1−α
0+ u−D1−α

0+ wk||B < ε
}

.

(3.6)

Now define

Ei jk =
{

u ∈ Eu
∣∣ u ∈ Bε(ui),Dα−1

0+ u ∈ Bε
(
Dα−1

0+ (v j)
)
,D1−α

0+ u ∈ Bε
(
D1−α

0+ (wk)
)}

.

It is easy to see that C ⊂ Eu ⊂ ⋃
1�i�l1,1� j�l2,1�k�l3 Ei jk . Indeed if we take ui jk ∈ Ei jk ,

then Eu can be covered by finite 9ε -covering

B9ε(ui jk) =
{

u ∈ Eu
∣∣ ||u−ui jk||E < 9ε

}
.

In other words for every u ∈C there exist indexes i, j,k such that

u ∈ Bε(ui) , Dα−1
0+ u ∈ Bε

(
Dα−1

0+ (v j)
)

, D1−α
0+ u ∈ Bε

(
D1−α

0+ (wk)
)
.

Thus we have

|u−ui jk| � |u−ui|+ |ui−ui j|+ |ui j−ui jk| < ε + ε + ε = 3ε. (3.7)
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Similarly ∣∣ Dα−1
0+ u−Dα−1

0+ ui jk
∣∣< 3ε ,

∣∣ D1−α
0+ u−D1−α

0+ ui jk
∣∣< 3ε. (3.8)

Therefore relations (3.7),(3.8) ensure that ||u−ui jk||E < 9ε . Hence we have managed
to show that cone C has a finite 9ε -covering B9ε(ui jk) . Thus C is totally bounded and
closed. Hence according to Theorem2.9 we conclude that C is compact. On the other
hand continuity of Dα−1

0+ u,D1−α
0+ u and Lebesgue dominated convergence theorem, im-

ply that the Hammerstein operator A defined by (2.17) is continuous and AC⊂C . Thus
operator A is completely continuous on C . This completes the proof. �

Moreover stipulation (H) we impose the following hypothesis;

(S) lim
|u(t)|→∞

f (t,u(t),Dα−1
0+ u(t),D1−α

0+ u(t))
u(t)
2 +aDα−1

0+ u(t)+bD1−α
0+ u(t)

= ψ(t),

where a,b ∈ R and

u(t)
2

+aDα−1
0+ u(t)+bD1−α

0+ u(t) �= 0 for t ∈ [0,T ]

and

a||Dα−1
0+ u||+b||D1−α

0+ u|| � ||u||
2

, (||.|| ≡ ||.||E).

THEOREM 3. Let the hypothesis (H),(S) be satisfied and assume that∫ T

0
K(t,s)ds < ||ψ ||−1. (3.9)

Then the FBVP (1.1) has a positive solution.

Proof. Let us define the linear bounded mapping L : C →C as follows;

Lu(t) =
∫ T

0
K(t,s)

{
u(s)
2

+aDα−1
0+ u(s)+bD1−α

0+ u(s)
}

ψ(s)ds, t ∈ [0,T ].

Let take λ = 1 as an eigenvalue of operator L (i.e. Lu = u ). As a result of (3.9), we
have

||Lu|| �
∫ T

0
K(t,s)||ψ(s)||ds

||u||
2

+
∫ T

0
K(t,s)||ψ(s)||ds

×
{

a||Dα−1
0+ u||+b||D1−α

0+ u||
}

�
∫ T

0
K(t,s)||ψ(s)||ds

||u||
2

+
∫ T

0
K(t,s)||ψ(s)||ds

||u||
2

<
||u||
2

+
||u||
2

= ||u||.



70 YOUSEF GHOLAMI

Thus we conclude that ||Lu|| < ||u|| , which is contradiction with this assumption that
λ = 1 is an eigenvalue of L . Hence λ = 1 can not be an eigenvalue of L .

Considering standard definition of limit at infinity in (S) we deduce that for ε > 0,
there exist positive constant M such that for every ||u|| > M :

∣∣∣∣
∣∣∣∣ f (t,u(t),Dα−1

0+ u(t),D1−α
0+ u(t))

u(t)
2 +aDα−1

0+ u(t)+bD1−α
0+ u(t)

−ψ(s)
∣∣∣∣
∣∣∣∣< ε, s ∈ [0,T ]. (3.10)

Thus if ||u|| > M , using (3.10) and (2.3) we have

||Au−Lu||�
∫ T

0
K(t,s)

∣∣∣∣
∣∣∣∣ f (t,u(t),Dα−1

0+ u(t),D1−α
0+ u(t))−{

u(t)
2

+aDα−1
0+ u(t)+bD1−α

0+ u(t)
}

ψ(s)
∣∣∣∣
∣∣∣∣ ds

<

(∫ T

0
K(t,s)ds

)
ε

∣∣∣∣
∣∣∣∣ u(t)

2
+aDα−1

0+ u(t)+bD1−α
0+ u(t)

∣∣∣∣
∣∣∣∣

�
(∫ T

0
K(t,s)ds

)
ε||u||

� 2Tα

Γ(α)

{
1+

T α−1

Δ

{m−2

∑
i=1

β i+
1
α

}}
ε||u||.

Hence (2.18) is verified. Then according to the Theorem 2.10, the Integral operator A
has a fixed point in cone C , which this fixed point is equivalently positive solution of
FBVP (1.1). The proof is complete. �

EXAMPLE 1. Let us consider the following FBVP:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

D
3
2
0+u(t)− f (t,u(t),D

1
2
0+u(t),D− 1

2
0+ u(t)) = 0, t ∈ [0,10−2],

u(0) = 0, Dα−1
0+ u(t)

∣∣∣∣
t=10−2

+
∫ 10−2

0
u(ω)dω +

3

∑
i=1

βiu(ξi) = 0,

(3.11)

where

m = 5, T = 10−2, β1 = 10−1, β2 = 10−2, β3 = 10−3,

ξ1 =
1
64

, ξ2 =
1
16

, ξ3 =
1
4
,

and

f (t,u(t),D
1
2
0+u(t),D− 1

2
0+ u(t)) = (1+ t2)

{
u(t)
2

+aD
1
2
0+u(t)+bD

− 1
2

0+ u(t)
}

.
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Applying (S) , we deduce that ψ(t) = (1+ t2) . Direct calculation shows that ||ψ || ≈
6.7593. Equivalently we have

||ψ ||−1 ≈ 0.1479. (3.12)

On the other hand, during the proof of Theorem 3.2, we used the following inequality:

∫ T

0
K(t,s)ds � 2Tα

Γ(α)

{
1+

T α−1

Δ

{m−2

∑
i=1

β i+
1
α

}}
.

Simple computation implies that∫ T

0
K(t,s)ds � 0.0042. (3.13)

Now comparing results (3.12) and (3.13), we have demonstrated that∫ T

0
K(t,s)ds < ||ψ ||−1.

Hence using Theorem 3.2, we conclude that FBVP (3.11) has a positive solution.
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