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EXISTENCE OF POSITIVE SOLUTIONS FOR A
QUASILINEAR ELLIPTIC SYSTEM OF p-KIRCHHOFF TYPE

QIN L1 AND ZUODONG YANG

(Communicated by Chun-Lei Tang)

Abstract. In this paper, we consider the existence of positive solutions to the following p-
Kirchhoff-type system

M ( Jo [Vl dx) Ay = g ()|t~ 2u+ 525 [ul*2ulylP, x € Q.
~M( Jo [VulPdx) Ay = h@)v]* v+ P20, xeQ,
u=v=0, x€0Q,

where Q is a bounded domain in RV, M(s) = a + bs*, Apu = div(|Vu|[P~2Vu) is the p-

Laplacian operator, o > 1, f§ > 1, 1<p<q<a+ﬁ<p*:NN—fp.

1. Introduction

In this paper, we deal with the nonlocal elliptic system of the p-Kirchhoff type
given by

~M( [ |VulPdx)Apu= g(x)|ul"2u+ ﬁ\urx’zu\v\ﬁ, xeQ,
~M( [o|VulPdx)A,v = h(x)|v|42v+ Of%ﬁ\u|°‘|v|ﬁ’2v, xeQ, (1.1)
u=vy=0, x€0Q,
where Apu = div(|Vu|P~2Vu) is the p-Laplacian operator, o > 1, f > 1 and 1 < p <
g<o+p<pt= NN—E?.
In recent years, there have been many papers concerned with the existence of
positive solutions for Kirchhoff equation

—M(fQ |Vu|2dx> Au= f(x,u) x € Q,

1.2
u=0 x €0Q, (1-2)

which is related to the stationary analogue of the Kirchhoff equation

u,,—M(/Q|qu|2dx>Axu:f(x,t)
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where M(s) =a+bs, a>0, b> 0. It was proposed by Kirchhoff [2] as an extension

of the classical D’ Alembert’s wave equation for free vibrations of elastic strings.
Some interesting studies of problem (1.2) by variational methods can be found in

[1,3,6,7,9,10]. As for quasilinear problems, [3] studied the following equation

{—M(fQ|Vu|pdx>Apu:f(x,u)xEQ, (1.3)
u=0 x € 0Q,

where M(s) = a+bs*, f(x,u) = Ahy(x)|u|?2u+ ho(x)|u| " 2u+h3(x), 1 <g<p<
r<p*,0<k< NLLP, p(k—+1) < r. The authors proved (1.3) has at least two nontrivial
weak solutions when ||h3][, < my.
In [4], the authors established the existence of a weak solution for the following
system
— My (Jo |VulPdx)|P~ Apu = f(u,v)+ p1(x) x € Q,
— My ([ |VV|Pdx)|P7 Ay = g(u,v) + pa(x) x €Q, (1.4)
‘9—;‘, = g—TV, =0 x€0Q,
where M (1),M>(t) = my > 0.

Motivated by the results of the above cited papers, we shall attempt to treat prob-
lem (1.1) and extend the results of the literature [4].

In this paper, we make the following assumptions:
(A1) M(s) =a+bs*, a,b >0, k> 0;
(A2) I<p<g<o+B<p*, plk+1)<gq;
(A3) h(x),H(x) € L¥"7(Q) are nonnegative with & = pfiq and v is a small positive
number.

Our main result is given as follows.

THEOREM 1. Under assumptions (A1) — (A3z), problem (1.1) admits at least one
positive solution (ug,vo) € W, 7 (Q) x W, ? (Q).

2. Preliminaries

Let X = W, " (Q) x W, ”(Q) be the Sobolev space endowed with the norm
1
()| = (/Q(|Vu|l’+\vv|l’)dx)v
and |u|, denotes the norm in L"(Q) , i.e.

= ([ lul"d)

We shall look for solutions of (1.1) by finding critical points of the energy func-
tional /: X — R given by

1
¥
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1~ 1 ~
I(u,v) = —M(/ \Vu\”dx)—F—M(/ |Vv|Pdx)
p Q p Q

1 ol
g Jo WP [ (el 4 ho

where M(t) = [§ M(s)ds = at + 2511 Tt is well known that the functional I(u,v) €
C!'(X,R). Forany (¢1,¢2) € X, there holds

(I'(w,v), (@1, 92))
zM(/Q\Vu\pdx>/Q\VMV’JVMV(pldx

+M</Q |Vv\pdx> |Vv|P=2VyV @, )dx

= [ (Wl ugr-+ Al vg)ds

- 2P a2 5 e v,

Consider the Nehari manifold

N = {(u,v) € X\{(0,0)}[{I'(u,v), (,v)) = 0}.
Thus, (u,v) € N if and only if

M(/Q|Vu|pdx>/Q|Vu|pdx+M(/Q|Vv\pdx>/Q\Vv|pdx

— | (gCoutt +hColvi)dx— [ uf|vlPax =o.

Note that the Nehari manifold N contains all nontrivial weak solutions of (1.1).
Denote ?
Sa.’ﬁ — inf H(u7v)” 5 .
uveWy " (Q@\{0} ( [ |u|®|v|Pdx) #P
S is the best Sobolev constant defined by

Vul?
S = inf M >0
ueWy P ({0} ( g |u|?" dx) ®

Note that / is not bounded from below on X . But from the following lemma, we
have that / is bounded from below on the Nehari manifold N.

LEMMA 1. The energy functional I is bounded from below on N.

Proof. For any (u,v) € N, we have

109) = )P+ =2 Va1 9017
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1 i B a b k1
- dx— 2| (un)||P -2 /V Pkt
5 xSl =21 [vapa)

1
+(/ \vv|de)k+1}+—/ [ [v]B dx
Q q.JQ

a a b b
:(;—5)|\(”»V)||p+(m—5)[(/Q|V”|pdx)k+l

1 1
F v s -

)/ u|%[v[Pdx> 0
Q

Thus, 7 is bounded from below on N. [

Then, we define
0= inf I(u,v).
(u,v)EN
LEMMA 2. (i) There are p ,ry > 0 such that I(u,v) > ro for ||(u,v)|| =p
(ii) There exists (u,v) € X\{(0,0)} such that ||(u,v)|| > p and 1(@,v) < 0.

5

Proof. (i) By Holder’s inequality (g1 = pfiq, g = %, qu + iz =1) and the
Sobolev embedding theorem, we have

1<u7v>=§\|<u7v>|\l’+ﬁ ([ 1vulrast ([ [olraf]

— o L= [ (sl ha) i)

a
> Pt gt ([ [Vulrd v
P+ g gy Ve [ [vvpa

- ul®vBax— = Olu vl dx
a+ﬂ/g‘ Flvfa q/Q(g( )ul? +h(x)|v|*)d

) - L))
2kp(k+1)" o+ BB ’

a
Z —|[(u,v)[|”+
p

1 rq _a q
—gmax{\lg\lm,l\hl\w}lﬁ\ S| ()]
Since p < p(k+1) < g < o+ B, there are p, ry > 0 sufficiently small such that
1(u,v) > ro for [[(u,)]| = p
(ii) Let (u,v) € X\{(0,0)}, we have

prPk+1)

plk+1) {(/Q [VulPdx)*t + (/Q Vv[Pax)|
ey B z’i
T a1 p /Qlu\ |v] dx_g/g(g(x)‘”V*'h(X)\v\q)dx

at? +1) 1oa+B
< Py p<k+1>__/ iy
PR i e s AU a i B Jo I dx

at?
I(tu,tv) = 7|\(H»V)H”+




Differ. Equ. Appl. 6 (2014), 73-80. 77

== [ (st ha) i)

Since p < p(k+1) < g < oo+ 3, we have I(tu,1v) — —eo as t — +eo. Then, for
fixed (u,v) € X\{(0,0)}, there exists 7 > 0 such that ||(7u,v)|| > p and I(7u,v) <O.
Let (7,7v) = (fu,7v), then we finish the proof. [

LEMMA 3. There exists a (PS)g-sequence {(un,vy)} CN for I.

Proof. By Lemma 2, [ satisfies the conditions of the Mountain Pass Lemma.
Thus, by applying Ekeland’s variational principle and using the same argument as in

Cao and Zhou [8] or Tarantello [5], we can easily find a (PS)g -sequence {(uy,v,)} CN
for the functional 7. [l

Next, we will show that [ satisfies the (PS)g-condition in X.
LEMMA 4. Let {(un,vn)} C X be an arbitrary (PS)g-sequence for 1. That is,

I(tp,vy) — 0 and I'(uy,v,) — 0 in X~ Then {(un,v,)} has a convergent subse-
quence.

Proof. First, we prove that {(u,,v,)} is bounded in X . In fact, we have

dn nyvn
0.+ el )

= I(Mn, Vn) - $<1/(una Vn)’ (um V")>

a
:l—)H(un,vn)H”—f—W (L Vinlran ([ (9vrant]

— o L s = 2 [ (e Al
= Sl = 2 [( [ 1Vl 4 [ [V ]

b= [ ol Pt < [ el
LI b P!
= (= Ol + s = D[, Valan

1 1
p k+1 - - o B
([ Vanlrany ]+ a+ﬁ)/(2|un\ [Pl

aqg —a
> L8140, 1P
pq

where ¢, = 0,(1), d, = 0,(1) as n — oo. From where we get {(up,v,)} is bounded in
X . Then, there exist a subsequence (still denoted by {(u,,v,)}) and (u,v) € X such
that

Up — U,V —V weakly in W, (Q);
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Uy — U, Vy —V a.e in Q;
u, — u,v, — v strongly in L*(Q), 1<s<p*

and I'(u,v) =0 in X!,
Next, we prove that

/Qg(x)\u,,|q_2u,,(un —u)dx—0, n—oo (2.1)

/Qh(x)|v,,\q_2v,,(v,, —v)dx —0, n— o (2.2)
and

/ | * 210 (1t — ) [ |Pdx — 0, n— o0 (2.3)

Q

/Q|v,,\ﬁ_2vn(v,,—v)\un\°‘dx—>07 n— oo (2.4)

By Holder’s Inequality, we have

_ -1
- 0l = i < Clgly i3t s

1 g—1 1 _ .
where 5 + %= 4 = 1. Itis easy to show that u < p* and so lup —uly — 0 as

n— oo,

Since {(uy,vn)} C X is bounded, there exists M| > 0 such that

q—

_ _gl g-1 il _
‘”nﬂ*lgs ! (/_Q‘Vlltn‘pdx) 7S [ va) | <My

Then, we can get (2.1). (2.2) can be proved similarly.
By Holder’s Inequality again, we get

- 1t = i Pt < a5 i =

here 0‘1;1 + 1% + % =1, then n < p* and |u, —uly — 0 as n — eo. Similarly, there

exists M,, M3 > 0 such that \un\g‘fl <M, |vn|g* < M; Then,

/Q \un|a72un(un —u)\vn|ﬁdx —0

Similarly,
/ |v,,|l3_2v,,(v,, —)|uy|%dx — 0
Q

Finally, we prove ||(u, — u,v, —v)|| — 0 in X . In fact,

m( / Vi Pl / ([Vita]? Vit — |Vae|P~2Vit, Vity — Vi)
Q Q
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/\an\pdx / (IVva|P=2Vv, — |V |P~2Vy, Vi, — Vv)dx
= {I'(un,vp), (p — u, vy, —v)) —M /Q|Vu,,|pdx>/Q|Vu|p72<Vu,Vun—Vu>dx
—M(/Q\Vv,,\pdx>/Q\Vv|p72<Vv7an—Vv>dx
a?—ﬁ /Q\u,,|a_2u,,(un—u)\vn\ﬁdx
+ aﬁTﬁ/ | [V P20 (v — v)dx

+ / ) 4|7 210 (1 — 4) 4+ R() V]9 2V (v — v)]dx.

Since u, — u, v, — v, we have
/ \VulP~2(Vu,Vu, — Vu)dx — 0, n— oo
Q
/ |Vv|P~2(Vy, Vv, — Vi)dx — 0, n — oo.
Q
Thus,
M(/ |Vu,,\pdx> / (IVun|P~2Vu, — |Vu|P~>Vu, Vu, — Vu)dx
Q Q
+M(/ |an|pdx> / (IVva|P~2Vv,, — |V [P~2Vy, Vv, — V)dx — 0.
Q Q
Using the standard inequality

(P2 = P2y x—y) = Cplx—y|P, p=2

or
Cplx—y|?
(s 2= bl k) > TS 25
‘We obtain
m( /Q Vi Pl /Q (Vitn|? 2Vt — [Vie|P~Vit, Vit — Vid)dx
>an/Q|Vu,,—Vu|pdx
and

m( / Vo) / (Vv [P 2V v — VY|P 2V, Vi, — V)
Q Q

>an/ |Vv, — Vv|Pdx
Q
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which implies that

/ (|IVup — Vul? +|Vv, = Vv|P)dx - 0, n— oo
Q

That is, ||(u, —u,v, —v)|| — 0 in X. Then, the proof is finished. [J

3. Proof of Theorem 1

By Lemma 3, there is a minimizing sequence {(u,,v,)} C N for I satisfying

I(tp,v) = 0 +0,(1) and I'(uy,v,) = 0,(1) in X~'. By Lemma 4, there exist a subse-
quence (still denoted by { (s, v,)}) and (ug,vo) € X such that (u,,v,) — (up,vo) in X.
It is easy to show that (ug,vo) is a nontrivial solution of (1.1) and I(ug,vo) = 6. Using
the fact that I(ug,vo) = I(Juol,|vo|) and (|upl,|vo|) € N, we may assume that uy > 0,
vo = 0. By the maximum principle, we can get that uy > 0, vo > 0 in Q. Then, (1.1)
admits a positive solution.
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