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ON THE UNIQUENESS OF WEAK SOLUTIONS FOR THE 3D PHASE

FIELD NAVIER–STOKES VESICLE–FLUID INTERACTION MODEL

JIHONG ZHAO, QIAO LIU AND SHUANGHU ZHANG

(Communicated by Eduard Marušić-Paloka)

Abstract. In this paper, we study a hydrodynamical system modeling the deformation of vesi-
cle membrane in incompressible viscous fluids. In three dimensional case, we establish some
uniqueness criteria of weak solutions for this system which reveal that the regularity of velocity
field alone controls the uniqueness of weak solutions.

1. Introduction

Recently, there have been many experimental and mathematical studies focusing
on the formation and dynamics of elastic vesicle membranes [1, 3, 19, 21, 24]. The
single component vesicles are elastic membranes containing a liquid and surrounded
by another liquid, which are possibly the simplest models for the biological cells and
molecules. Such vesicles can be formed by certain amphiphilic molecules assembled
in water to build bilayers, and exhibit a rich set of geometric structures in various me-
chanical, physical and biological environment [7, 20]. Their equilibrium shapes can
be characterized by minimizing the following bending elastic energy of the membranes
[11]:

E =
∫

Γ

k
2
(H− c0)2dS, (1.1)

where Γ is the surface of vesicle membrane, H = k1+k2
2 is the mean curvature of the

membrane surface with k1 and k2 as the principal curvatures, c0 is the spontaneous
curvature which arises due to inhomogeneities in the bilayer lipid membrane structure,
and k is the bending modulus of the vesicle membrane.

In order to model and understand the formation and dynamics of vesicle mem-
branes and the fluid structure interaction, one approach is to consider equations of elas-
ticity for the vesicle membranes and the Navier-Stokes equations for the fluid. How-
ever, the model established in this approach is very difficult to study and numerically
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simulate due to the fact that the description for elasticity is in Lagrangian coordinate
(Hooke’s law) and for fluids is in Eulerian coordinate. To overcome this difficulty, in
[4, 6, 7], the authors established a phase field Navier-Stokes vesicle fluid interaction
model for the vesicle shape dynamics in flow fields via the phase field approach. In this
model, the vesicle membrane is described by a phase function φ , which is a labeling
function defined on computational domain Q . The function φ takes value +1 inside
of the vesicle membrane and −1 outside, with a thin transition layer of width charac-
terized by a small (compared to the vesicle size) positive parameter ε . Obviously, the
vesicle membrane Γ coincides with the zero level set {x : φ(x) = 0} . The convergence
of the phase field model to the original sharp interface model as the transition width of
the diffuse interface ε → 0 has been carried out in [5]. On the other hand, the viscous
fluid is modeled by the incompressible Navier-Stokes equations with unit density and
with an external force defined in terms of φ .

As in [4], for simplicity, we assume that k is a positive constant and c0 = 0. The
elastic bending energy (1.1) will be approximated by a modified Willmore energy (cf.
[7])

Eε(φ) =
k
2ε

∫
Q
| f (φ)|2dx with f (φ) = −εΔφ +

1
ε
(φ2 −1)φ , (1.2)

which depends on the interface transitional thickness ε . Moreover, in order to keep the
total volume and the surface area of the vesicle membrane are conserved in time, two
constraint functionals for the vesicle volume and surface area are prescribed by (cf. [7])

A(φ) =
∫

Q
φ dx, B(φ) =

∫
Q

(ε
2
|∇φ |2 +

1
4ε

(|φ |2 −1)2
)
dx. (1.3)

To enforce these constraints, two penalty terms were added to the elastic bending energy
Eε(φ) , and the approximate elastic bending energy is given by (cf. [8, 9])

E(φ) = Eε(φ)+
1
2
M1(A(φ)−α)2 +

1
2
M2(B(φ)−β )2, (1.4)

where M1 and M2 are two penalty constants, α = A(φ0) and β = B(φ0) are determined
by the initial value of the phase function φ0 .

In this paper, we study the three dimensional phase field Navier-Stokes vesicle
fluid interaction model with the periodic boundary conditions (i.e., in torus T

3 ), which
reads as follows:

∂t u+u ·∇u+ ∇π = μΔu+
δE(φ)

δφ
∇φ in [0,T ]×Q, (1.5)

∇ ·u = 0 in [0,T ]×Q, (1.6)

∂tφ +u ·∇φ = −γ
δE(φ)

δφ
in [0,T ]×Q (1.7)

with the initial conditions

u(0,x) = u0(x) with ∇ ·u0 = 0,

∫
Q

u0dx = 0 and φ(0,x) = φ0(x) in x ∈ Q, (1.8)
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and the boundary conditions

u(t,x+ ei) = u(t,x), φ(t,x+ ei) = φ(t,x) on x ∈ [0,T ]× ∂Q, (1.9)

where the set of vectors {e1 = (1,0,0),e2 = (0,1,0),e3 = (0,0,1)} denotes an or-
thonormal basis of R

3 and Q is the unit cube in R
3 . Here u = (u1,u2,u3) ∈ R

3 and
π ∈ R denote, respectively, the velocity field and the pressure of the fluid, φ ∈ R is
the phase function of the vesicle membrane. δE(φ)

δφ is the so-called chemical/physical
potential that denotes the variational derivative of E(φ) in the variable φ . μ is the
fluid viscosity which is assumed to be a positive constant throughout both fluid phases
and the interface, and γ denotes the mobility coefficient which is assumed to be a small
positive constant. It is easy to derive from (1.2)–(1.4) that if we denote

g(φ) = −Δ f (φ)+
1
ε2 (3φ2−1) f (φ), (1.10)

then

δE(φ)
δφ

= kg(φ)+M1(A(φ)−α)+M2(B(φ)−β ) f (φ). (1.11)

The system (1.5)–(1.7) describes the evolution of vesicle membranes immersed in
an incompressible viscous fluid. Equations (1.5) and (1.6) are the momentum conserva-
tion equations and the mass conservation equations of a viscous fluid with unit density
and with an external force caused by the phase field φ . Equation (1.6) is the condition
of incompressibility. Equation (1.7) is a relaxed transport equation of φ with advection
by the velocity field u . The right-hand side of (1.7) is a regularization term which en-
sures the consistent dissipation of energy. Roughly speaking, the system (1.5)–(1.7) is
governed by the coupling of the hydrodynamic fluid flow and the bending elastic prop-
erties of the vesicle membrane. The resulting vesicle membrane configuration and the
flow field reflect the competition and the coupling of the kinetic energy and membrane
elastic energies.

Local and global well-posedness of the system (1.5)–(1.7) with the no-slip bound-
ary condition for the velocity field u and the Dirichlet boundary condition for the phase
field function φ have been studied in [4, 18]. In [4], by using the modified Galerkin
argument, Du, Li and Liu proved global existence of weak solution, moreover, they
also proved the weak solution is unique under an additionally regularity assumption
u ∈ L8(0,T ;L4(Q)) . Similar results also hold for periodic boundary case, see Theorem
2.1 in [27]. However, as for the conventional Navier-Stokes equations, the question of
regularity and uniqueness of weak solution of the system (1.5)–(1.9) in three dimen-
sional space is still an outstanding open problem. For some regularity criteria of weak
solutions, we refer the reader to see [27, 28]. In this paper, we are interested in finding
sufficient conditions for weak solutions of the system (1.5)–(1.9) such that they be-
come unique. Let us recall the definition of weak solution (for definitions of functional
settings for periodic problems we refer the reader to see Section 2).
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DEFINITION 1. Let u0 ∈L2
per(Q) and φ0 ∈H2

per(Q) with ∇·u0 = 0 and
∫
Q u0dx =

0. A measurable pair of functions (u,φ) is called a weak solution of (1.5)–(1.9) on
(0,T )×Q if it satisfies the following conditions:

(i) u ∈ L∞(0,T ;L2
per(Q))∩L2(0,T ;H1

per(Q)) and
φ ∈ L∞(0,T ;H2

per(Q))∩L2(0,T ;H4
per(Q)) .

(ii) ∇ ·u = 0 in the sense of distribution.

(iii) For any η ∈C∞(per)
0 ([0,t]×Q) , ∇ ·η = 0, ξ ∈C∞(per)

0 ([0,t]×Q) with 0 < t � T ,
we have:∫ t

0

∫
Q

(
u ·∂tη−μ∇u∇η+u ·∇η ·u)

(τ,x)dxdτ

= −
∫ t

0

∫
Q
(

δE(φ)
δφ

∇φ ·η)(τ,x)dxdτ

+
∫

Q
u(t,x)η(t,x)dx−

∫
Q

u0(x)η(0,x)dx,

and∫ t

0

∫
Q

(
φ ·∂tξ +u ·∇ξ ·φ)

(τ,x)dxdτ

= γ
∫ t

0

∫
Q
(

δE(φ)
δφ

·ξ )(τ,x)dxdτ

+
∫
Q

φ(t,x)ξ (t,x)dx−
∫

Q
φ0(x)ξ (0,x)dx,

where f ∈ C∞(per)
0 ([0,t]×Q) means that f ∈ C∞

0 ([0,t]×Q) and f (t,x + ei) =
f (t,x) for all t ∈ [0,T ] .

(iv) u(0,x) = u0(x) , φ(0,x) = φ0(x) .

Since the Navier-Stokes equations is a subsystem of (1.5)–(1.9), one cannot expect
better results than for the Navier-Stokes equations. For the three dimensional Navier-
Stokes equations, Prodi [22] and Serrin [25] proved that uniqueness holds in the class

P = Lq(0,T ;Lp(R3)) with
3
p

+
2
q

= 1, 3 < p � ∞.

Von Wahl [26] and Giga [14] improved this result in the class

P = C([0,T ],L3(R3)).

Moreover, this last result was further extended in the limit case by Kozono and Sohr
[15], and Escauriaza, Seregin and S̆verák [10], who proved that uniqueness holds in the
class

P = L∞(0,T ;L3(R3)).
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Some uniqueness criteria related to the Sobolev spaces we refer the reader to see [23].
Recently, many researches devoted to improving the above results. Kozono and Tani-
uchi [16] proved that uniqueness holds in the class

P = L2(0,T ;BMO).

Gallagher and Planchon [12] proved that uniqueness holds in the class

P = Lq(0,T ; Ḃ−1+3/p+2/q
p,q (R3)) with 2 � p < ∞,2 < q < ∞ and

3
p

+
2
q

> 1.

Lemarié-Rieusset [17] and Germain [13] proved that uniqueness holds in the class

P = C([0,T ],X (0)
1 ) or P = L2/(1−r)(0,T ;Xr) with r ∈ [−1,1).

Finally, Chen, Miao and Zhang [2] improved the above results that uniqueness holds in
the class P = Lq(0,T ;Bs

p,∞(R3)) with

2
q

+
3
p

= 1+ s,
3

1+ s
< p � ∞,s ∈ (0,1] and (p,s) �= (∞,1).

We refer the reader to see [13] and [17] for definitions of these function spaces.
Motivated by the above uniqueness criteria for weak solutions of the Navier-Stokes

equations, the purpose of this paper is to consider uniqueness criteria of weak solutions
for the system (1.5)–(1.9). The result indicates that the regularity of velocity field alone
controls the uniqueness of weak solutions, and reveals that the velocity field u plays a
more dominant role than that of the phase function φ in the uniqueness theory of weak
solutions to the phase field Navier-Stokes vesicle-fluid interaction system (1.5)–(1.9).

Now we state the main result of this paper.

THEOREM 1. Let (u0,φ0) ∈ L2
per(Q)×H2

per(Q) with ∇ ·u0 = 0 and
∫
Q u0dx = 0 .

Let (u1,φ1) and (u2,φ2) be two weak solutions of the system (1.5)–(1.9) on (0,T ) with
the same initial data (u0,φ0) . If one of the following conditions holds for i = 1,2 :

(i) ui ∈ Lq(0,T ;Lp
per(Q)) with

2
q

+
3
p

= 1, 3 < p � ∞; (1.12)

(ii) ∇ui ∈ Lq(0,T ;Lp
per(Q)) with

2
q

+
3
p

= 2,
3
2

< p � ∞; (1.13)

(iii) ui ∈C([0,T ],L3
per(Q)); (1.14)

(iv) ui ∈ L2(0,T ;BMOper); (1.15)

(v) ui ∈ Lq(0,T ;Bs(per)
p,∞ (Q)) with

2
q

+
3
p

= 1+ s,
3

1+ s
< p � ∞,

s ∈ (0,1] and (p,s) �= (∞,1), (1.16)

then we have u1 = u2 and φ1 = φ2 a.e. on (0,T )×Q.

The rest of this paper is organized as follows. In Section 2, we shall give the
definitions of functional spaces for periodic problems used in this paper, then in Section
3, we shall present the proof of Theorem 1. Throughout the paper, we denote by C the
generic constant which may depend on the coefficients of the system (1.5)–(1.9).
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2. Preliminaries

In this section we shall recall some preliminaries on the Littlewood-Paley decom-
position theory and the definitions of functional spaces for periodic problems. Let
S (R3) be the Schwartz class of rapidly decreasing function and S ′(R3) be its dual.
Given f ∈ S (R3) , we denote by F ( f ) = f̂ the Fourier transform of f which is de-
fined by

F ( f )(ξ ) = f̂ (ξ ) =
1

(2π)3/2

∫
R3

f (x)e−ix·ξ dx.

Let

B = {ξ ∈ R
3, |ξ | � 4

3
} and C = {ξ ∈ R

3,
3
4

� |ξ | � 8
3
}.

Choose two nonnegative smooth radial functions χ ,ϕ ∈S (R3) respectively supported
on B and C which satisfy

χ(ξ )+ ∑
j�0

ϕ(2− jξ ) = 1, ξ ∈ R
3.

Let h = F−1ϕ and h̃ = F−1χ , where F−1 is the inverse Fourier transform. Then we
define the frequency localization operators Δ j and S j as follows:

Δ j f = ϕ(2− jD) f = 23 j
∫

R3
h(2 jy) f (x− y)dy for j � 0,

S j f = χ(2− jD) f = ∑
−1�k� j−1

Δk f = 23 j
∫

R3
h̃(2 jy) f (x− y)dy,

and

Δ−1 f = S0 f , Δ j f = 0 for j � −2.

Here D = (D1,D2,D3) and D j = i−1∂x j ( i2 = −1, j = 1,2,3). With the introduction
of Δ j and S j , we have

f = S0 f + ∑
j�0

Δ j f for f ∈ S ′(R3),

which is called the Littlewood-Paley decomposition of f . Now let us recall the defini-
tion of the inhomogeneous Besov spaces.

DEFINITION 2. Let s ∈ R , 1 � p,r � ∞ , inhomogeneous Besov space Bs
p,r(R

3)
is defined by

Bs
p,r(R

3) = { f ∈ S ′(R3) : ‖ f‖Bs
p,r < ∞},

where

‖ f‖Bs
p,r

=

{(
∑∞

j=−1 2 jsr‖Δ j f‖r
Lp

)1/r
for 1 � r < ∞,

sup j�−1 2 js‖Δ j f‖Lp for r = ∞.
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Let us point out that Bs
2,2(R

3) is the usual inhomogeneous Sobolev space Hs(R3)
which is endowed with the usual norm

‖ f‖Hs = ‖(−Δ)s/2 f‖L2 +‖ f‖L2 .

Now we introduce some well-established functional settings for periodic prob-
lems: for 1 � p � ∞ , we denote

Lp
per(Q) = {u ∈ Lp(R3) | u(x+ ei) = u(x)}

endowed with the usual norm ‖ · ‖Lp . For an integer m > 0, we denote

Hm
per(Q) = {u ∈ Hm(R3) | u(x+ ei) = u(x)}

endowed with the usual norm ‖ ·‖Hm . For s ∈ R and (p,r) ∈ [1,∞]× [1,∞] , we denote

Bs(per)
p,r (Q) = {u ∈ Bs

p,r(R
3) | u(x+ ei) = u(x)}

associated with the usual norm ‖·‖Bs
p,r

. For the space of the Bounded Mean Oscillation

BMO , which is defined as a set for locally L1(R3) function u such that

‖u‖BMO = sup
R,x∈R3

1
|BR(x)|

∫
BR(x)

|u(y)− uBR |dy < ∞,

where uBR stands for the average of u over the ball BR(x) , i.e.,

uBR =
1

|BR(x)|
∫

BR(x)
u(y)dy.

We denote the corresponding space BMOper for periodic problems by

BMOper = {u ∈ BMO | u(x+ ei) = u(x)}
associated with the usual norm ‖ · ‖BMO .

Before ending this section, we recall the following result from [27] which reveals
that the average of the velocity field u is conserved.

LEMMA 1. (Lemma 2.1 in [27]) Let (u,φ) be a weak solution of the system (1.5)-
(1.9) on [0,T ] . Then∫

Q
u(t,x)dx =

∫
Q

u0(x)dx = 0 for all t ∈ [0,T ]. (2.1)

By using the well-known Poincaré-Wirtinger inequalities, we infer from Lemma
1 that

‖u‖H1 ≈ ‖∇u‖L2 and ‖u‖H2 ≈ ‖Δu‖L2 . (2.2)

This combining the Sobolev embedding H1(Q) ↪→ L6(Q) implies that

‖u‖L6 � C‖∇u‖L2 . (2.3)
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This result will be used frequently in the proof of Theorem 1.
We emphasize here that, as the authors pointed out in [27], in the initial condi-

tions (1.8), we have assumed that the average of the initial velocity field vanishes, i.e.,∫
Q u0(x)dx = 0. The advantage of this assumption is that one can apply the Poincaré-

Wirtinger inequalities to the solution u such that the H1 -norm of u can be controlled
by ‖∇u‖L2 . However, when a flow with non-vanishing average velocity field u is con-
sidered, we can introduce the new variable ũ = u− 1

|Q|
∫
Q u(t,x)dx and transform the

problem (1.5)–(1.9) into a new system in terms of ũ and φ . Note that 1
|Q|

∫
Q u(t,x)dx

is a known constant determined by (2.1), it is not difficult to verify that our main re-
sult for the initial velocity with zero mean can be extended to this case with minor
modifications.

3. The proof of Theorem 1

The idea of the proof of Theorem 1 comes from [4]. To simplify the proof, we
introduce the following three notations:

G(φ) =
1
2

∫
Q

(
kε|Δφ |2 +

k
ε
|∇φ |2 + |φ |2

)
dx,

L(φ) =
δG(φ)

δφ
= kεΔ2φ − k

ε
Δφ + φ , N(φ) =

δE(φ)
δφ

−L(φ).

It is clear that there exists a constant C depending only on k and ε such that

1
C
‖φ‖2

H2 � G(φ) � C‖φ‖2
H2 .

Observe that N(φ) is the nonlinear term in δE(φ)
δφ and is the main difficult term we shall

deal with.
Assume that (u1,φ1) and (u2,φ2) are two weak solutions to the system (1.5)-(1.9)

associated with the same initial data (u0,φ0) , and assume that u1 and u2 satisfy one
of the assumptions (1.12)–(1.16). Then there exist two functions π1 and π2 such that
(u1,π1,φ1) and (u2,π2,φ2) satisfy the system (1.5)–(1.9). Set

û = u1−u2, π̂ = π1−π2, φ̂ = φ1−φ2.

Due to (u1,π1,φ1) and (u2,π2,φ2) both are weak solutions, one obtains

∂t û+û ·∇u1+u2 ·∇û− μΔû+ ∇π̂ =(L(φ1)+N(φ1))∇φ1−(L(φ2)+N(φ2))∇φ2,
(3.1)

∇ · û = 0, (3.2)

∂t φ̂ +u1 ·∇φ̂ + û ·∇φ2 = −γ(L(φ̂ )+N(φ1)−N(φ2)). (3.3)

We first multiply (3.1) by û , integrate over Q , after integration by parts, one obtains
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1
2

d
dt
‖û‖2

L2 + μ‖∇û‖2
L2

= −
∫

Q
û ·∇u1 · ûdx+

∫
Q
(L(φ1)∇φ1 −L(φ2)∇φ2) · ûdx

+
∫
Q
(N(φ1)∇φ1 −N(φ2)∇φ2) · ûdx, (3.4)

where we have used the fact
∫
Q u2 ·∇û · ûdx = 0 due to the periodicity of ui ( i = 1,2)

and ∇ ·u2 = 0.
Next, we multiply (3.3) by L(φ̂ ) , integrate over Q , after integration by parts, we

have

d
dt

G(φ̂ )+ γ‖L(φ̂)‖2
L2

= −
∫

Q
(u1 ·∇φ̂ + û ·∇φ2)L(φ̂ )dx− γ

∫
Q
(N(φ1)−N(φ2))L(φ̂ )dx. (3.5)

Adding (3.4) and (3.5) together, we conclude that

d
dt

(1
2
‖û‖2

L2 +G(φ̂)
)

+ μ‖∇û‖2
L2 + γ‖L(φ̂)‖2

L2

= −
∫

Q
û ·∇u1 · ûdx+

∫
Q

L(φ1)∇φ̂ · ûdx−
∫
Q

u1 ·∇φ̂L(φ̂ )dx

+
∫
Q
(N(φ1)∇φ1 −N(φ2)∇φ2) · ûdx− γ

∫
Q
(N(φ1)−N(φ2))L(φ̂ )dx. (3.6)

Let us derive the desired estimates for each terms appeared in the right-hand side
of (3.6).

LEMMA 2. Under the assumption (1.12), we have∣∣∣∫
Q

û ·∇u1 · ûdx
∣∣∣ � μ

6
‖∇û‖2

L2 +C‖u1‖2p/(p−3)
Lp ‖û‖2

L2 . (3.7)

Proof. By using the divergence free condition ∇ · û = 0, the periodicity of ui

( i = 1,2), the Hölder’s inequality and Young’s inequality, one obtains∣∣∣∫
Q

û ·∇u1 · ûdx
∣∣∣ =

∣∣∣∫
Q

û ·∇û ·u1dx
∣∣∣

� ‖û‖L2p/(p−2)‖∇û‖L2‖u1‖Lp

� C‖û‖1−3/p
L2 ‖∇û‖1+3/p

L2 ‖u1‖Lp

� μ
6
‖∇û‖2

L2 +C‖u1‖2p/(p−3)
Lp ‖û‖2

L2 ,

where we have used the interpolation inequality

‖û‖L2p/(p−2) � C‖û‖1−3/p
L2 ‖∇û‖3/p

L2 .
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LEMMA 3. Under the assumption (1.13), we have∣∣∣∫
Q

û ·∇u1 · ûdx
∣∣∣ � μ

6
‖∇û‖2

L2 +C‖∇u1‖2p/(2p−3)
Lp ‖û‖2

L2 . (3.8)

Proof. By using the Hölder’s inequality and Young’s inequality, we obtain∣∣∣∫
Q

û ·∇u1 · ûdx
∣∣∣ � ‖∇u1‖Lp‖û‖2

L2p/(p−1) � C‖∇u1‖Lp‖û‖2−3/p
L2 ‖∇û‖3/p

L2

� μ
6
‖∇û‖2

L2 +C‖∇u1‖2p/(2p−3)
Lp ‖û‖2

L2 ,

where we have used the interpolation inequality

‖û‖L2p/(p−1) � C‖û‖1−3/(2p)
L2 ‖∇û‖3/(2p)

L2 .

LEMMA 4. Under the assumption (1.14), we can split u1 on [0,T ] as u1 = u11 +
u12 such that u11 ∈ L∞(0,T ;L∞

per(Q)) and ‖u12‖L∞(0,T ;L3) < μ
12 . Moreover, we have∣∣∣∫

Q
û ·∇u1 · ûdx

∣∣∣ � μ
6
‖∇û‖2

L2 +C‖u11‖2
L∞‖û‖2

L2 . (3.9)

Proof. The proof of this lemma is due to [26]. Since u1 ∈C([0,T ],L3
per(Q)) , by

the uniform continuity of u1 , we can choose N large enough such that

∥∥∥u1(t,x)−
N−1

∑
k=0

χ[ k
N T, k+1

N T ](t)u1(
k
N

T,x)
∥∥∥

L∞(0,T ;L3)
<

μ
24

,

where χ[a,b] denotes the characteristic function on the interval [a,b] . Now we may

approximate each u1( k
N T, ·) by a function Uk,N ∈ L∞

per(Q) with an error controlled in

L3 -norm by ‖u1( k
N T, ·)−Uk,N(·)‖L3 < μ

24 . Define

u11(t,x) = ∑
0�k�N−1

χ[ k
N T, k+1

N T ](t)Uk,N(x)

and u12 = u1−u11 . Then it is clear that u11 ∈ L∞(0,T ;L∞
per(Q)) and ‖u12‖L∞(0,T ;L3) <

μ
12 . Moreover, by using ∇ · û = 0, the periodicity of ui ( i = 1,2) and (2.3), we have∣∣∣∫

Q
û ·∇u1 · ûdx

∣∣∣ =
∣∣∣∫

Q
û ·∇û ·u1dx

∣∣∣
� ‖u12‖L3‖û‖L6‖∇û‖L2 +‖u11‖L∞‖∇û‖L2‖û‖L2

� μ
6
‖∇û‖2

L2 +C‖u11‖2
L∞‖û‖2

L2 .

This completes the proof of (3.9).
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LEMMA 5. Under the assumption (1.15), we have∣∣∣∫
Q

û ·∇u1 · ûdx
∣∣∣ � μ

6
‖∇û‖2

L2 +C‖u1‖2
BMO‖û‖2

L2 . (3.10)

Proof. The idea of the proof comes from [16]. Since ∇ · û = 0, it follows from
[16] that

û ·∇û ∈ H 1 and ‖û ·∇û‖H 1 � C‖û‖L2‖∇û‖L2 ,

where H 1 denotes the Hardy space. Recall that the dual space of Hardy space H 1 is
BMO , thus we have∣∣∣∫

Q
û ·∇u1 · ûdx

∣∣∣ =
∣∣∣∫

Q
û ·∇û ·u1dx

∣∣∣
� C‖û ·∇û‖H 1‖u1‖BMO

� C‖û‖L2‖∇û‖L2‖u1‖BMO

� μ
6
‖∇û‖2

L2 +C‖u1‖2
BMO‖û‖2

L2 .

We complete the proof of Lemma 5.

LEMMA 6. Under the assumption (1.16), we can decompose u1 as u1 = u13 +u14

such that u13 ∈ L1(0,T ;Lipper) and u14 ∈ Lq̃(0,T ;Lp̃
per(Q)) with some p̃, q̃ satisfying

2
q̃ + 3

p̃ = 1 and p̃ > 3 , where Lipper denotes the periodic Lipschitz space which is a set
of functions u such that u ∈ L∞

per(Q) and ∇u ∈ L∞
per(Q) . Moreover,∣∣∣∫

Q
û ·∇u1 · ûdx

∣∣∣ � μ
6
‖∇û‖2

L2 +C(‖∇u13‖L∞ +‖u14‖q̃
Lp̃)‖û‖2

L2 . (3.11)

Proof. Inspired by [2], we set

u13 = SNu1, u14 = u1−u13.

Then by choosing

N =
[q
2

log2(e+‖u‖Bs
p,∞)

]
+1,

it is easy to prove that u13 ∈ L1(0,T ;Lipper) and u14 ∈ Lq̃(0,T ;Lp̃
per(Q)) for some p̃, q̃

satisfying 2
q̃ + 3

p̃ = 1 and p̃ > 3, for details, see [2]. To prove (3.11), by using the facts
∇ · û = 0 and the periodicity of û , and the Hölder’s inequality, we obtain∣∣∣∫

Q
û ·∇u1 · ûdx

∣∣∣ �
∣∣∣∫

Q
û ·∇u13 · ûdx

∣∣∣+ ∣∣∣∫
Q

û ·∇û ·u14dx
∣∣∣

� ‖∇u13‖L∞‖û‖2
L2 +‖u14‖Lp̃‖û‖L2 p̃/(p̃−2)‖∇û‖L2

� ‖∇u13‖L∞‖û‖2
L2 +C‖u14‖Lp̃‖û‖1−3/ p̃

L2 ‖∇û‖1+3/ p̃
L2

� μ
6
‖∇û‖2

L2 +C(‖∇u13‖L∞ +‖u14‖q̃
Lp̃)‖û‖2

L2 ,
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which completes the proof of (3.11).

The second and third terms on the right-hand side of (3.6) can be estimated as
follows:

LEMMA 7. Under the assumptions of Theorem 1, we have∣∣∣∫
Q

L(φ1)∇φ̂ · ûdx
∣∣∣ � μ

6
‖∇û‖2

L2 +C‖L(φ1)‖2
L2‖φ̂‖2

H2 , (3.12)∣∣∣∫
Q

u1 ·∇φ̂L(φ̂ )dx
∣∣∣ � γ

4
‖L(φ̂ )‖2

L2 +C‖∇u1‖2
L2‖φ̂‖2

H2 . (3.13)

Proof. By using the Hölder’s inequality, Young’s inequality and (2.3), it easy to
derive that∣∣∣∫

Q
L(φ1)∇φ̂ · ûdx

∣∣∣ � ‖L(φ1)‖L2‖∇φ̂‖L3‖û‖L6 � C‖L(φ1)‖L2‖φ̂‖H2‖∇û‖L2

� μ
6
‖∇û‖2

L2 +C‖L(φ1)‖2
L2‖φ̂‖2

H2

and ∣∣∣∫
Q

u1 ·∇φ̂L(φ̂ )dx
∣∣∣ � ‖u1‖L6‖∇φ̂‖L3‖L(φ̂)‖L2

� γ
4
‖L(φ̂ )‖2

L2 +C‖∇u1‖2
L2‖φ̂‖2

H2 .

In order to estimate the last two terms on the right-hand side of (3.6), we need to
establish the following estimate for the nonlinear term N(φ) .

LEMMA 8. Under the assumptions of Theorem 1, we have

‖N(φ1)−N(φ2)‖L2 � C‖φ̂‖H2 , (3.14)

where C is a constant depending only on the ‖φi‖L2(0,T ;H4(Q)) , ‖φi‖L∞(0,T ;H2(Q)) (i =
1,2) and coefficients of the system.

Proof. By (1.10) and (1.11), it can be easily calculate that

N(φ) = − k
ε

Δ(φ3)+
2k
ε

Δφ −φ +
3k
ε2 φ2 f (φ)− k

ε2 f (φ)

+M1(A(φ)−α)+M2(B(φ)−β ) f (φ).

Hence, there exists a constant C such that

‖N(φ1)−N(φ2)‖L2

� C
(
‖Δ(φ3

1 )−Δ(φ3
2 )‖L2 +‖Δφ̂‖L2 +‖φ̂‖L2 +‖ f (φ1)− f (φ2)‖L2
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+‖φ2
1 f (φ1)−φ2

2 f (φ2)‖L2 +‖A(φ̂)‖L2 +‖B(φ1) f (φ1)−B(φ2) f (φ2)‖L2

)
� C

(
‖Δ(φ3

1 )−Δ(φ3
2 )‖L2 +‖ f (φ1)− f (φ2)‖L2 +‖φ2

1 f (φ1)−φ2
2 f (φ2)‖L2

+‖A(φ̂)‖L2 +‖B(φ1) f (φ1)−B(φ2) f (φ2)‖L2

)
+C‖φ̂‖H2

= C
( 5

∑
j=1

Kj

)
+C‖φ̂‖H2 . (3.15)

Since φi ∈ L∞(0,T ;H2(Q)) (i = 1,2) , H2(Q) ↪→ L∞(Q) and H2(Q) is a Banach alge-
bra, one can easily obtain that for i, j = 1,2,

‖φi‖L∞(0,T ;L∞(Q)) � C, |∇φi‖L∞(0,T ;L6(Q)) � C,

‖Δφi‖L∞(0,T ;L2(Q)) � C, ‖φiφ j‖H2 � C.

Hence, we estimate K1 , K2 and K3 as follows:

K1 = ‖Δ(φ3
1 −φ3

2 )‖L2 = ‖Δ(φ̂(φ2
1 + φ1φ2 + φ2

2 ))‖L2

� ‖Δφ̂(φ2
1 + φ1φ2 + φ2

2 )‖L2 +‖φ̂Δ(φ2
1 + φ1φ2 + φ2

2 )‖L2

+‖∇φ̂∇(φ2
1 + φ1φ2 + φ2

2 )‖L2

� ‖Δφ̂‖L2‖φ2
1 + φ1φ2 + φ2

2‖L∞ +‖φ̂‖L∞‖Δ(φ2
1 + φ1φ2 + φ2

2 )‖L2

+‖∇φ̂‖L6‖∇(φ2
1 + φ1φ2 + φ2

2 )‖L6

� C‖φ̂‖H2 ,

K2 � C
(‖Δφ̂‖L2 +‖φ̂‖L2 +‖φ3

1 −φ3
2 ‖L2

)
� C‖φ̂‖H2 ,

K3 � ‖(φ2
1 −φ2

2 ) f (φ1)‖L2 +‖φ2
2 ( f (φ1)− f (φ2))‖L2

� ‖φ̂‖L∞‖φ1 + φ2‖L∞‖ f (φ1)‖L2 +‖φ2‖2
L∞‖ f (φ1)− f (φ2)‖L2

� C‖φ̂‖H2 .

Since A(φ) and B(φ) are functions depending only on time, by (1.3), we can estimate
K4 and K5 as follows:

K4 � C‖φ̂‖L1 � C‖φ̂‖H2 ,

K5 � ‖B(φ1)( f (φ1)− f (φ2))‖L2 +‖(B(φ1)−B(φ2)) f (φ2)‖L2

� |B(φ1)|‖( f (φ1)− f (φ2))‖L2 +‖ f (φ2)‖L2 |B(φ1)−B(φ2)|
� C(‖∇φ1‖2

L2 +‖φ2
1 −1‖2

L2)‖φ̂‖H2 +C|B(φ1)−B(φ2)|
� C‖φ̂‖H2 .

Combining the above estimates, we complete the proof of Lemma 8.

Now we can establish the estimates for the last two terms on the right-hand side of
(3.6).
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LEMMA 9. Under the assumptions of Theorem 1, we have∣∣∣∫
Q
(N(φ1)∇φ1 −N(φ2)∇φ2) · ûdx

∣∣∣
� μ

6
‖∇û‖2

L2 +C
(‖N(φ1)‖2

L2 +‖φ2‖2
H2

)‖φ̂‖2
H2 , (3.16)

and ∣∣∣γ ∫
Q
(N(φ1)−N(φ2))L(φ̂ )dx

∣∣∣ � γ
4
‖L(φ̂)‖2

L2 +C‖φ̂‖2
H2 . (3.17)

Proof. It follows from Lemma 8 and (2.3) that∣∣∣∫
Q
(N(φ1)∇φ1 −N(φ2)∇φ2) · ûdx

∣∣∣
�

∣∣∣∫
Q

N(φ1)∇φ̂ · ûdx
∣∣∣+ ∣∣∣∫

Q
(N(φ1)−N(φ2))∇φ2 · ûdx

∣∣∣
� ‖N(φ1)‖L2‖∇φ̂‖L3‖û‖L6 +‖N(φ1)−N(φ2)‖L2‖∇φ2‖L3‖û‖L6

� μ
6
‖∇û‖2

L2 +C‖N(φ1)‖2
L2‖φ̂‖2

H2 +C‖φ2‖2
H2‖N(φ1)−N(φ2)‖2

L2

� μ
6
‖∇û‖2

L2 +C(‖N(φ1)‖2
L2 +‖φ2‖2

H2)‖φ̂‖2
H2 .

This completes the proof of (3.16). The proof of (3.17) is obvious.

Finally, we complete the proof of Theorem 1 through the following five cases.

Case 1 Under the assumption (1.12), putting Lemmas 2, 7 and 9 together and
noticing that ‖φ̂‖2

H2 � CG(φ̂ ) , we obtain

d
dt

(
‖û‖2

L2 +2G(φ̂)
)

+ μ‖∇û‖2
L2 + γ‖L(φ̂)‖2

L2

� C
(
‖û‖2

L2 +2G(φ̂)
)

×
(
‖u1‖q

Lp +‖∇u1‖2
L2 +‖L(φ1)‖2

L2 +‖N(φ1)‖2
L2 +1

)
. (3.18)

It is easy to verify that(
‖u1‖q

Lp +‖∇u1‖2
L2 +‖L(φ1)‖2

L2 +‖N(φ1)‖2
L2 +1

)
is integrable in time. Moreover, due to û(0,x) = 0 and φ̂ (0,x) = 0, it follows from
Gronwall’s inequality that û = 0 and φ̂ = 0 for a.e. t ∈ (0,T ) .

Case 2 Under the assumption (1.13), putting Lemmas 3, 7 and 9 together, we
obtain

d
dt

(
‖û‖2

L2 +2G(φ̂)
)

+ μ‖∇û‖2
L2 + γ‖L(φ̂)‖2

L2
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� C
(
‖û‖2

L2 +2G(φ̂)
)

×
(
‖∇u1‖q

Lp +‖∇u1‖2
L2 +‖L(φ1)‖2

L2 +‖N(φ1)‖2
L2 +1

)
. (3.19)

Similarly, by applying Gronwall’s inequality to (3.19), it follows from û(0,x) = 0 and
φ̂(0,x) = 0 that û = 0 and φ̂ = 0 for a.e. t ∈ (0,T ) .

Case 3 Under the assumption (1.14), putting Lemmas 4, 7 and 9 together, we
obtain

d
dt

(
‖û‖2

L2 +2G(φ̂)
)

+ μ‖∇û‖2
L2 + γ‖L(φ̂)‖2

L2

� C
(
‖û‖2

L2 +2G(φ̂)
)

×
(
‖u11‖2

L∞ +‖∇u1‖2
L2 +‖L(φ1)‖2

L2 +‖N(φ1)‖2
L2 +1

)
. (3.20)

Proceeding the same proof as Case 1, we can show that û = 0 and φ̂ = 0 for a.e.
t ∈ (0,T ) .

Case 4 Under the assumption (1.15), putting Lemmas 5, 7 and 9 together, we
obtain

d
dt

(
‖û‖2

L2 +2G(φ̂)
)

+ μ‖∇û‖2
L2 + γ‖L(φ̂)‖2

L2

� C
(
‖û‖2

L2 +2G(φ̂)
)

×
(
‖u1‖2

BMO +‖∇u1‖2
L2 +‖L(φ1)‖2

L2 +‖N(φ1)‖2
L2 +1

)
. (3.21)

Proceeding the same proof as Case 1, we can show that û = 0 and φ̂ = 0 for a.e.
t ∈ (0,T ) .

Case 5 Under the assumption (1.16), putting Lemmas 6, 7 and 9 together, we
obtain

d
dt

(
‖û‖2

L2 +2G(φ̂)
)

+ μ‖∇û‖2
L2 + γ‖L(φ̂)‖2

L2 � C
(
‖û‖2

L2 +2G(φ̂)
)

·
(
‖∇u13‖L∞ +‖u14‖q̃

Lp̃ +‖∇u1‖2
L2 +‖L(φ1)‖2

L2 +‖N(φ1)‖2
L2 +1

)
. (3.22)

Proceeding the same proof as Case 1, we can show that û = 0 and φ̂ = 0 for a.e.
t ∈ (0,T ) .
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[17] P.-G. LEMARIÉ-RIEUSSET, Recent Developments in the Navier-Stokes Problem, Research Notes in
Mathematics, Chapman & Hall/CRC, 2002.

[18] Y. LIU, T. TAKAHASHI AND M. TUCSNAK, Strong solution for a phase field Navier-Stokes vesicle
fluid interaction model, J. Math. Fluid Mech., 14 (2011), 177–195.

[19] L. MIAO, U. SEIFERT, M. WORTIS AND H.-G DÖBEREINER, Budding transitions of fluid-bilayer
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