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SECOND–ORDER DIFFERENTIAL EQUATIONS:

SOME SIGNIFICANT RESULTS DUE TO JAMES S.W. WONG

QINGKAI KONG AND MERVAN PAŠIĆ

(Communicated by Jurang Yan)

Abstract. Wong’s contribution in the qualitative theory of second-order differential equations is
well-known to a large mathematical auidence. Among a huge number of published Wong’s pa-
pers, in this survey article, we analyze only a few Wong’s theorems including their consequences,
examples and many influences to other mathematicians dealing with oscillations of second-order
differential and functional differential equations as well as of corresponding dynamic equations
on time scales.
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1. Introduction

Among Wong’s 151 scientific papers, we are focused here only to the following ones: Wong
theorem [108, Theorem 1] - from 1999 (see Section 2), Sun and Wong theorems [92, Theorems
1 and 2] - from 2007 (see Section 3), and Wong theorems [109, Theorems 1 and 3] - from 2000
(see Section 4).

Each section, except this, contains: main result with examples, remarks, and comments,
influences to related results by other authors and a review on several different results on these
topics. Some examples are presented here in more general forms than their original ones.

Unless otherwise stated, we always assume that every solution x = x(t) of any considered
equation is smooth enough on [t0,∞) , that is, x ∈C([t0,∞),R)∩C2((t0,∞),R) , and as usual, a
nontrivial solution x = x(t) is said to be oscillatory (at t = ∞ ) if for any large enough T > t0
there exists t � T such that x(t) = 0.

2. A variational technique and Wong’s interval oscillation
criterion

In this section we consider the forced second-order linear differential equation:(
r(t)x′

)′ +q(t)x = e(t), t � t0, (2.1)

where r(t) is continuously differentiable function, q(t) and e(t) are continuous functions. On
the qualitative properties of solutions of equation (2.1) we refer the reader to some well-known
books such as: Hartman [40, Chapters XI. and XIV.], Coppel [19, Chapter 1], Swanson [94,
Chapters 1 and 2], Agarwal, Grace and O’Regan [2, Chapter 2], Amrein, Hinz and Pearson [5],
etc. On the existence of a kind of continuable solutions of the forced equation (2.1), we refer
reader, for instance, to Kelley and Peterson [48, Theorem 7.6] and references therein.

2.1. Main result - from 1999

James S.W. Wong in his paper [108] stated and proved the next interval oscillation criterion,
that is called anywhere in this paper as Wong’s interval oscillation criterion.

THEOREM 1. ([108, Theorem 1] - from 1999) Assume r(t) > 0 and for any T > 0 there
exist a pair of intervals [a1,b1] and [a2,b2] , T � a1 , b1 � a2 , such that e(t) � 0 on [a1,b1]
and e(t) � 0 on [a2,b2] . Let D(ai,bi) be a set of functions defined by

D(ai,bi) = {u ∈C1([ai,bi]) : u(t) �≡ 0,u(ai) = u(bi) = 0}, i = 1,2. (2.2)

If there exists a function u ∈ D(ai,bi) such that

∫ bi

ai

(
q(t)u2(t)− r(t)u′2(t)

)
dt � 0, i = 1,2, (2.3)

then equation (2.1) is oscillatory.

REMARK 1. Instead of ”for any T > 0” we can always write ”for any large enough T > 0”
since both phrases give the same conclusion because of the asymptotic nature of oscillations at
t = ∞ . �
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REMARK 2. The function u∈D(ai,bi) can be replaced by two ones ui ∈D(ai,bi) , i = 1,2
so that (2.3) is fulfilled with u(t) = ui(t) , i = 1,2. �

In Section 2.2 below, some important results that preceded Wong’s interval oscillation cri-
terion will be discussed such as: Leighton and Hartman variational principles, and El-Sayed’s
and Nasr’s interval oscillation criteria.

The variational technique that Wong developed in the proof of Theorem 1 is composed of
three steps: the classic Riccati transformation of a nonoscillatory solution, a variational trick of
testing of a differential inequality by a given function u∈ D(ai,bi) , and finally, an integration by
parts. In order to avoid any repetition from the original Wong’s proof of Theorem 1, we recall
this method in proving the next analogous theorem to Theorem 1 that is valid for the forced linear
differential equation with damping term:(

r(t)x′
)′ + p(t)x′ +q(t)x = e(t), t � t0. (2.4)

A rather complete review about the oscillation criteria for such a class of forced linear differential
equations will be presented in the final subsection of this section.

THEOREM 2. Let r(t) > 0 . Assume for any large enough T > 0 there exist a pair of
intervals [a1,b1] and [a2,b2] , T � a1 , b1 � a2 , such that e(t) � 0 on [a1,b1] and e(t) � 0
on [a2,b2] . Let D(ai,bi) be the set of functions define by (2.2). If there exists a function u ∈
D(ai,bi) , i = 1,2 , such that

∫ bi

ai

[
q(t)u2(t)− r(t)

(
u′(t)− p(t)

2r(t)
u(t)

)2]
dt > 0, i = 1,2, (2.5)

then equation (2.4) is oscillatory.

Proof. To the contrary, if equation (2.4) is not oscillatory, then there is a solution x = x(t)
and a T � t0 such that x(t) �= 0 for all t � T . We set i = 1 if x(t) > 0 and i = 2 if x(t) < 0.
Since e(t) � 0 on [a1,b1] and e(t) � 0 on [a2,b2] , it is simple to show that the function

ω(t) = − r(t)x′(t)
x(t)

for t > T (2.6)

satisfies the Riccati-type differential inequality:

ω ′ � 1
r(t)

ω2 − p(t)
r(t)

ω +q(t), t ∈ (ai,bi).

Multiplying this inequality by u2(t) , where u ∈ D(ai,bi) , we obtain:

∫ bi

ai

ω ′(t)u2(t)dt �
∫ bi

ai

1
r(t)

ω2(t)u2(t)dt −
∫ bi

ai

p(t)
r(t)

ω(t)u2(t)dt +
∫ bi

ai

q(t)u2(t)dt.

Using the partial integration on the left hand side and u(ai) = u(bi) = 0, we obtain:

0 �
∫ bi

ai

[
1√
r(t)

ω(t)u(t)+
√

r(t)
(
u′(t)− p(t)

2r(t)
u(t)

)]2

dt

+
∫ bi

ai

[
q(t)u2(t)− r(t)

(
u′(t)− p(t)

2r(t)
u(t)

)2]
dt,



102 QINGKAI KONG AND MERVAN PAŠIĆ

which contradicts assumption (2.5). Thus, equation (2.4) is oscillatory. �

Theorem 1 has been illustrated in [108, Example 1] by proving the oscillation of the equa-
tion (√

tx′
)′ +x = sin(

√
t), t � 0. (2.7)

In the next example, we show that Theorem 1 can be also applied in the study of oscillations of a
one-parametric class of equations that contains the previous equation as a special case.

EXAMPLE 1. For any real parameter β > 0 we consider the equation

(
t

β−1
β x′

)′ + t
2−β

β x = sin(t
1
β ), t > 0. (2.8)

Obviously, this one-parametric class of equations contains equation (2.7) as particular case where
β = 2. We claim that equation (2.8) is oscillatory. In fact, by using Theorem 1 for any large

T > 0 and e(t) = sin(t
1
β ) , it is enough to find numbers ai,bi and a function u ∈ D(ai,bi) such

that e(t) � 0 on [a1,b1] and e(t) � 0 on [a2,b2] and condition (2.3) is fulfilled. For any T > 0,

there exists an n ∈ N such that
(
(2n−1)π

)β � T . Let

a1 =
(
(2n−1)π

)β
, b1 = a2 = (2nπ)β and b2 =

(
(2n+1)π

)β
.

Hence, for u = sin(t
1
β ) , we have:

∫ bi

ai

(
q(t)u2(t)− r(t)u′2(t)

)
dt =

∫ bi

ai

(
t

2−β
β sin2(t

1
β )− 1

β 2 t
β−1

β + 2
β −2 cos2(t

1
β )

)
dt

=
βπ2

4
(4n−1)− π

2β
> 0.

Thus, by Theorem 2 (or Theorem 1) equation (2.8) is oscillatory. �

2.2. Related results that preceded Wong’s interval oscillation criterion - from 1962
to 1998

In this subsection, we present in the chronological order some results by other authors which
preceded Wong’s interval oscillation criterion: results due to Leighton - 1962, Hartman - 1964,
Komkov - 1972, Butler, Erbe and Mingarelli - 1987, El-Sayed - 1993, and Nasr - 1998.

•1) In 1962 Walter Leighton in his paper [57] presented the following oscillation principle for
unforced linear differential equations.

THEOREM 3. ([57, Theorem 1] - from 1962) Let e(t) ≡ 0 and D(a,b) be the set of func-
tions define by (2.2). Assume there is a function u ∈ D(a,b) such that assumption (2.3) holds
with a = ai , b = bi . Then for any solution x(t) of the unforced equation (2.1) such that x(a) = 0 ,
there is a c ∈ (a,b) such that x(c) = 0 .

The main limitations of this theorem are e(t) ≡ 0 and x(a) = 0.

•2) Philip Hartman in the original edition of his famous book in 1964 proved the following
variational principle so that the unforced equation (2.1) is disconjugate on an interval J , that is,
every nontrivial solution has at most one zero in J . In order to recall Hartman’s result, let

A1
(
(a,b),RN)

=
{

u : [a,b] → R
N | u(a) = u(b) = 0, u ∈ AC

(
[a,b],RN)

, u′ ∈ L2((a,b),RN)}
,
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where N � 1, AC
(
(a,b),RN

)
is the set of all absolutely continuous functions on [a,b] . For

N = 1, let

I(u;a,b) =
∫ b

a

(
r(t)u′2(t)−q(t)u2(t)

)
dt for u ∈ A1((a,b),R) .

REMARK 3. If x(t) is a solution of the unforced equation (2.1) such that x(a) = x(b) = 0,
then multiplaying (2.1) by x(t) and integrating by parts, we obtain I(x(t);a,b) = 0. �

THEOREM 4. ([40, Theorem 6.2] - from 1964) Let r(t) > 0 , q(t) be real-valued contin-
uous functions on J and e(t) ≡ 0 . Then equation (2.1) is disconjugate on J if and only if, for
every closed bounded subinterval a � t � b of J , the functional I(u;a,b) is positive-definite on
A1((a,b),R) , that is, I(u;a,b) � 0 for u ∈ A1((a,b),R) and I(u;a,b) = 0 for u ≡ 0 . �

COMMENT 1. Wong’s interval oscillation criterion (2.3) can also be written in terms of the
energy functional I(u;a,b) in this way: ”there exists a function u ∈ D(ai,bi) , i = 1,2, such that
I(u;ai,bi) � 0, i = 1,2”. From Theorem 4 and Sturm’s separation theorem ([40, Corollary 3.1]),
one can derive Wong’s oscillation criterion in the unforced case. It is left to the reader. The main
limitation of Theorem 4 is e(t) ≡ 0.

On the half-linear generalization of Hartman’s Theorem 4, we refer the reader to Došlý and
Rehak [22], Došlý and Fišnarová [20].

•3) In 1972 Komkov in [49] obtained the following generalization of the Leighton variational
priniciple given in Theorem 3.

THEOREM 5. ([49, Theorem 2] - from 1972) Let r(t) > 0 and e(t) ≡ 0 . Suppose there
exist a function u ∈C1([a,b],R) and a non-constant function G(v) , v ∈ R , such that G(u(a)) =
G(u(b)) = 0 , G′(v) is continuous, [G′(v)]2 � 4G(v) on R and

∫ b

a

(
q(t)G(u(t))− r(t)u′2(t)

)
dt > 0.

The every solution of (2.1) must vanish on [a,b] .

It is clear that for G(v) = v2 we have that G(v) is not constant, G′(v) = 2v is continuous and
(G′(v))2 = 4v2 = 4G(v) . Hence, Theorem 5 generalizes Theorem 3. About the application of
Komkov’s Theorem 5 in the nonoscillation of a class of the second-order nonlinear differential
equation associated to (2.1), we refer the reader to the results due to Graef and Spikes in [31].

•4) In their paper [13] from 1987 Butler, Erbe and Mingarelli studied the oscillation of the
second-order differential linear system Y ′′+Q(t)Y = 0, where Y (t),Q(t) are N×N real contin-
uous matrix functions with Q(t) symmetric. They derived and proved several oscillation criteria
(see [13, Theorems 3.1, 3.2 and 3.3]) based on the Hartman’s variational principle of Theorem 4
exploited in the next matrix form ([13, p. 267]):

Variational principle in matrix form. System Y ′′ +Q(t)Y = 0 is oscillatory if and only
if there is a sequence of intervals [an,bn] , with limn→∞ an = ∞ , and a sequence of functions
un ∈ A1

(
(an,bn),RN

)
, such that

∫ bn

an

(
u∗n(t)Q(t)un(t)−|u′n(t)|2

)
dt > 0.
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It is not difficult to compare this inequality with assumption (2.3). The main limitation of this
variational principle is e(t) ≡ 0.

•5) In his paper [24] from 1993, El-Sayed proved the following interval oscillation criterion:

THEOREM 6. ([24, Theorem 1] - from 1993) Let there exist two positive increasing diver-
gent sequences {a+

n } , {a−n } and two sequences of positive numbers {c+
n } , {c−n } such that

∫ a±n +π/
√

c±n

a±n

(
c±n [1− r(t)]cos2 (√

c±n (t −a±n )
)
+[q(t)−c±n ]sin2 (√

c±n (t−a±n )
))

dt � 0 (2.9)

for every n ∈ N . Assume that the function e(t) satisfies

e(t)

{
� 0, t ∈ [

a+
n ,a+

n +π/
√

c+
n

]
� 0, t ∈ [

a−n ,a−n +π/
√

c−n
]
,

for every n ∈ R . Then the linear forced equation (2.1) is oscillatory.

With the help of this result, El-Sayed was able to give an answer to a question posed by Wong in
[104] concerning the oscillation of the Mathieu’s equation, for the details see Remark 4 below.

COMMENT 2. In contrast to Theorem 1, where we have a flexibility to choose a test func-
tion u ∈ D(ai,bi) to satisfy condition (2.3), in Theorem 6 the test function is fixed. �

COMMENT 3. One can show that El-Sayed’s criterion (2.9) is a special case of Wong’s
criterion (2.3). In fact, for T � ai < bi , i = 1,2, let ci and u(t) be defined by

ci =
( π

bi −ai

)2
and u(t) = sin

(√
ci(t−ai)

)
, t ∈ [ai,bi], i = 1,2.

Obviously, we have:

bi = ai +
π√
ci

, u(ai) = u(bi) = 0, u(t) �≡ 0 on (ai,bi) and u ∈C1([ai,bi],R), i = 1,2,

and moreover,

∫ ai+ π√
ci

ai

[
ci cos2 (√

ci(t−ai)
)−ci sin

2 (√
ci(t−ai)

)]
dt

= ci

∫ ai+ π√
ci

ai

cos
(
2
√

ci(t−ai)
)
dt =

ci

2
√

ci
sin

(
2
√

ci(t−ai)
)∣∣∣∣ai+ π√

ci

ai

= 0, i = 1,2.

Hence, El-Sayed’s criterion (2.9) can be rewritten in the following equivalent form:

∫ ai+ π√
ci

ai

[
q(t)sin2 (√

ci(t−ai)
)−cir(t)cos2 (√

ci(t−ai)
)]

dt � 0.

But, this inequality is contained in Wong’s criterion (2.3) especially for u(t) = sin
(√

ci(t−ai)
)
.

�
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•6) For the forced Emden-Fowler equation:

x′′ +q(t)|x|γ sgn(x) = e(t), γ > 0, (2.10)

we recall the following Nasr’s oscillation criterion.

THEOREM 7. ([68, Theorem] - from 1998) Let γ > 1 and for any T > 0 there exist a pair
of intervals [a1,b1] and [a2,b2] , T � a1 , b1 = a2 , such that e(t) � 0 on [a1,b1] and e(t) � 0
on [a2,b2] , and q(t) � 0 , q(t) �≡ 0 on (a1,b1)∪ (a2,b2) . Let D(ai,bi) be the set of functions
defined by (2.2). If there exists a function u ∈ D(ai,bi) , i = 1,2 , such that

∫ bi

ai

(
|e(t)|1−1/γ [q(t)]1/γu2(t)−u′2(t)

)
dt � 0, i = 1,2, (2.11)

then equation (2.10) is oscillatory.

This theorem answered a question raised by Wong in his paper [104].

COMMENT 4. Besides γ > 1, Nasr’s Theorem 7 has another two essential limitations that
do not appear in Wong’s Theorem 1: the condition b1 = a2 and the condition q(t) � 0, q(t) �≡ 0
on (a1,b1)∪ (a2,b2) . In some cases, it is not appropriate to require that these two conditions
simultaneously hold. For instance, if e(t) = −cos(t) and q(t) = sin(2t) , then only one possible
choice exists for intervals [a1,b1] and [a2,b2] so that e(t) � 0 on [a1,b1] and e(t) � 0 on
[a2,b2] , and q(t) � 0, q(t) �≡ 0 on (a1,b1)∪ (a2,b2) is [0,π/2] and [π,3π/2] , but obviously
[a1,b1]∩ [a2,b2] = /0 . �

For the cases γ < 1, γ = 1 and γ > 1, equation (2.10) is called respectively sub-linear,
linear and super-linear. The oscillatory behaviour of the unforced Emden-Fowler equation (2.10)
(with e(t) ≡ 0) have been studied by many authors in the past. Results on the nonoscillation of
the unforced sub-linear Emden-Fowler equation (2.10) can be found in the books of Agarwal,
Grace and O’Regan [2, Chapters 4 and 5] and Agarwal, Bohner and Li [1, Chapter 4]. One of the
most important results on the nonoscillation of unforced equation (2.10) can be found in Kwong
and Wong [56].

The case when both sub-linear and super-linear terms are appearing in the equation at the
same time i.e., when the equation is of the so-called ”mixed nonlinearities”, will be considered
in Section 3. The oscillation criteria with integral mean of the unforced sub- and super-linear
Emden-Fowler equation (2.10) will be discussed in Section 4.

REMARK 4. (on the Mathieu’s equation) We consider the well-known Mathieu’s equation:

x′′ +(a+bcos(2t))x = 0,t � 0. (2.12)

This equation was firstly introduced by M. Émile Mathieu in 1868 for the purpose of determining
the vibration of a stretched membrane with an elliptic boundary; Heine in 1878 derived the
solution of (2.12) by the cosine and sine series without evaluating the coefficients of the series;
Floquet in 1883 published well-known theorem on the periodic solutions of linear differential
equations with the periodic coefficients (for historical details see [69]). In the modern literature,
the following facts about Mathieu’s equation (2.12) are often emphasized: for each a,b ∈ R ,
equation (2.12) has one odd and one even solution as well as at least one solution x(t) such that
x(t+π) = σx(t) , where the constant σ is called the periodicity factor depending on parameters a
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and b . About this facts and the application of Mathieu-type equations in some modern problems
of applied sciences we refer the reader to [29].

El-Sayed in [24, Example 1] answered a question posed by Wong in [104] on the oscillation
of Mathieu’s equation (2.12). Precisely, Wong in [104] derived that equation (2.12) is oscillatory
if

a+
1
2
|b| � 1, a,b ∈ R.

Moreover, Wong posed an open question about the oscillations of the Mathieu’s equation (2.12)
for other values of a,b ∈ R . In order to answer this question, in [24, Example 1] it has been
proved that equation (2.12) is also oscillatory if

a,b ∈ R and a > 0.

Furthermore, in [88] the authors did speculate that for a = −1 and b >
√

2.5 equation (2.12) is
still oscillatory. �

2.3. Influences to related results by other authors - from 2002 to 2013

Now, we give a brief review on some results written by other authors that have been inspired
by Wong’s Theorem 1. These results are arranged in the chronological order from 2002 to 2013:

− in 2002, Wan-Tong Li and Sui Sun Cheng [62];

− in 2003, Yuan Gong Sun [87], Qigui Yang [117];

− in 2004, Cakmak and Tiryaki [14];

− in 2006, Yuan Gong Sun and Fan Wei Meng [89], Wenying Shi [83];

− in 2007, Zhaowen Zheng and Fan Wei Meng [123], Qi-Ru Wang [98];

− in 2008, Douglas R. Anderson [6], Lynn H. Erbe, Allan C. Peterson and Samir H. Saker [27];

− in 2009, Douglas R. Anderson and Agacik Zafer [7], A. Feza Guvenilir [36];

− in 2012, Zhonghai Guo, Xiaoliang Zhou and Wu-Sheng Wang [35];

− in 2013, Yibing Sun, Zhenlai Han, Shurong Sun and Chao Zhang [93].

First of all, the analogous half-linear equation to (2.1) is:(
r(t)|x′|α−1x′

)′ +q(t)|x|α−1x = e(t), t � t0, (2.13)

where α > 0. On the qualitative properties of solutions of the second-order half-linear differ-
ential equation we refer the reader to the excellent book by Ondrej Dosly and Pavel Rehak [22].
Obviously, for α = 1 this equation becomes the linear equation (2.1).

In 2002 Wan-Tong Li and Sui Sun Cheng in their paper [62] studied the oscillations of
(2.13) and they proved the following interval oscillation criterion.

THEOREM 8. ([62, Theorem 2] - from 2002) Let for any T > 0 there exist a pair of in-
tervals [a1,b1] and [a2,b2] , T � a1 , b1 � a2 , such that e(t) � 0 on [a1,b1] and e(t) � 0 on
[a2,b2] . Let D(ai,bi) be the set of functions defined by (2.2). If there exist a function u∈D(ai,bi)
and a positive nondecreasing function φ ∈C([t0,∞),R) such that

∫ bi

ai

φ(t)
[
q(t)u2(t)− r(t)

(α +1)α+1|u(t)|α−1

(
2|u′(t)|+ |u(t)|φ

′(t)
φ(t)

)α+1]
dt > 0, (2.14)

for i = 1,2 , then equation (2.13) is oscillatory.
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For α = 1 and φ(t) ≡ 1 assumption (2.14) becomes (2.3), and therefore Theorem 8 generalizes
Wong’s interval oscillation criterion. The proof of Theorem 8 is a half-linear generalization of the
proof of Wong’s Theorem 1. It contains: the half-linear Riccati transformation of a nonoscillatory
solution x(t) �= 0, t > T ,

ω(t) = −φ(t)
r(t)|x′(t)|α−1x′(t)

|x(t)|α−1x(t)
for t > T , (2.15)

that generalizes (2.6) in particular for φ(t)≡ 1 and α = 1, then an appropriate Riccati differential
inequality is derived, which is multiplied by u2 and using partial integration together with some
elementary inequalities, the proof of Theorem 8 follows. Theorem 8 was illustrated by the next
half-linear equation

(
(2+cos t)|x′|α−1x′

)′ +5
(3

2

)4/3|x|α−1x = sint, t � 1, (2.16)

where α = 1/3. Authors showed that equation (2.16) is oscillatory by using Theorem 8 in
particular for u(t) = sin t , a1 = 2nπ , b1 = (2n+1)π and φ(t) ≡ 1.

Next, we are concerned with the functional-differential analogue of the forced linear differ-
ential equation (2.1):

x′′(t)+q(t)x(τ(t)) = e(t), (2.17)

with delayed argument τ(t) satisfying that τ(t) � t and limt→∞ τ(t) = ∞ . On the qualitative
properties of second-order linear differential equations with delay, we refer the reader to Erbe,
Kong and Zhang [26, Chapter 4].

In 2003 Yuan Gong Sun studied the oscillation of equation (2.17) in the first part of his
paper [87]. Later, we will also discuss the second result from [87] about the oscillations of more
general Emden-Fowler type equations with delayed arguments.

THEOREM 9. ([87, Theorem 1] - from 2003) Let for any T > 0 there exist a pair of inter-
vals [a1,b1] and [a2,b2] , T � τ(a1) , b1 � τ(a2) , such that e(t) � 0 on [τ(a1),b1] and e(t) � 0
on [τ(a2),b2] , and q(t) � 0 , q(t) �≡ 0 on (τ(a1),b1)∪ (τ(a2),b2) . Let D(ai,bi) be the set of
functions defined by (2.2). If there exists a function u ∈ D(ai,bi) such that

∫ bi

ai

(
q(t)

τ(t)− τ(ai)
t − τ(ai)

u2(t)−u′2(t)
)

dt � 0, i = 1,2, (2.18)

then equation (2.17) is oscillatory.

Obviously, for τ(t) = t equation (2.17) and condition (2.18) become respectively (2.1) and (2.3).
Hence, Theorem 9 is a generalization of Wong’s interval oscillation criterion under the restriction
that q(t) � 0, q(t) �≡ 0 on (τ(a1),b1)∪ (τ(a2),b2) . The proof of Theorem 9 follows the same
steps as in the proof of Wong’s Theorem 1. However, when the classic Riccati transformation
(2.6) is applied to a nonoscillatory solution x(t) �= 0, t � T , the corresponding Riccati differen-
tial equation derived involves the delay argument τ(t) . Then, this term is eliminated by using
some qualitative properties of concave functions on (τ(ai),bi)) , i = 1,2, and hence a Riccati
differential inequality is obtained without delay argument τ(t) .

Next, we consider the forced second-order nonlinear differential equation:

(r(t)x′)′ +q(t) f (x) = e(t), t � t0, (2.19)
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where the function f = f (x) satisfies the following lower growth condition:

f (x)/x � K|x|γ−1 for x �= 0, where K > 0 and γ � 1 . (2.20)

Specially for K = γ = 1, condition (2.20) is satisfied by the linear function f (x) = x and there-
fore equation (2.19) is a generalization of forced linear equation (2.1). On the other hand, for
f (x) = |x|γ sgn(x) and K = 1, equation (2.19) generalizes the super-linear Emden-Fowler equa-
tion (2.10).

In 2003 Qigui Yang in his paper [117] derived and proved the next criterion for the oscilla-
tions of equation (2.19).

THEOREM 10. (the second part of [117, Theorem 1] - from 2003) Let assumption (2.20)
hold. Let for any T > 0 there exist a pair of intervals [a1,b1] and [a2,b2] , T � a1 , b1 � a2 , such
that e(t) � 0 on [a1,b1] and e(t) � 0 on [a2,b2] , and q(t) � 0 , q(t) �≡ 0 on (a1,b1)∪ (a2,b2) .
Let D(ai,bi) be the set of functions defined by (2.2). If there exists a function u ∈ D(ai,bi) such
that ∫ bi

ai

(
|e(t)|1−1/γ [Kq(t)]1/γu2(t)− r(t)u′2(t)

)
dt � 0, i = 1,2, (2.21)

then equation (2.19) is oscillatory.

If we put K = γ = 1 into assumption (2.21), then we get assumption (2.3) and thus, Theorem
10 is a generalization of Wong’s interval oscillation criterion under the restriction that q(t) � 0,
q(t) �≡ 0 on (a1,b1)∪ (a2,b2) . Also, if we put f (x) = |x|γsgn(x) and K = 1 into (2.19), then
we conclude that Theorem 10 also generalizes Nasr’s Theorem 7. In contrast to Theorems 1,
8 and 9, where the forced term e(t) is zero, in the main condition of Theorem 10 the function
e(t) plays an active role. The proof of Theorem 10 is essentially a modification of the proof of
Theorem 1. Using Theorem 10 in particular for u(t) =−sin2t , a1 = 2nπ −π/2, b1 = a2 = 2nπ
and b2 = 2nπ +π/2, the author showed the oscillation of the equation

(
(1+asin2 t)x′(t)

)′ +(β cos t) |x(t)|γ
[
1+

m

∑
i=1

bix
2i(t)

]
sgnx(t) = sin t, γ � 1, t � 0,

where a � 0, bi � 0, γ > 1, provided

β 1/γ � π
(
1+

a
2

)/[
2

Γ(3+ 1
γ )Γ(4+ 1

γ )

Γ(7)

]
.

Yuan Gong Sun studied in the second part of his paper [87] the oscillations of the Emden-
Fowler type forced equation with a deviating argument:

x′′(t)+q(t)|x(τ(t))|γ sgn(x(τ(t))) = e(t), γ > 1. (2.22)

As a continuation of his Theorem 9, he proved the following criterion for (2.22).

THEOREM 11. ([87, Theorem 2] - from 2003) Let for any T > 0 there exist a pair of
intervals [a1,b1] and [a2,b2] , T � τ(a1) , b1 � τ(a2) , such that e(t) � 0 on [τ(a1),b1] and
e(t) � 0 on [τ(a2),b2] , and q(t) � 0 , q(t) �≡ 0 on (τ(a1),b1)∪ (τ(a2),b2) . Let D(ai,bi) be the
set of functions defined by (2.2). If there exists a function u ∈ D(ai,bi) such that∫ bi

ai

(
θ |e(t)|1−1/γq1/γ (t)

τ(t)− τ(ai)
t − τ(ai)

u2(t)−u′2(t)
)

dt � 0, i = 1,2, (2.23)

where θ = γ(γ −1)−1+1/γ , then equation (2.22) is oscillatory.
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Applying Theorem 9 in particular for u(t) = sin2t cos2t , a1 = 2nπ + 3π/4, b1 = 2nπ + π ,
a2 = 2nπ +π/4, b1 = 2nπ +π/2, the authors proved the oscillation of the following equation

x′′(t)+msin t |x(t −π/4)|γ sgn
(
x(t −π/4)

)
= cos t, γ � 1, t � 0,

is oscillatory, where m � 0 is a constant.

COMMENT 5. If f (x) = |x|γ sgnx , γ > 1, then equation (2.22) and Sun’s Theorem 11 can
be considered respectively as a generalization of equation (2.19) and Yang’s Theorem 10. �

REMARK 5. In [14, Theorems 1 and 2] - from 2004 Devrim Cakmak and Aidyn Tiryaki
gave a quasilinear generalization of Wong’s Theorem 1 and Li-Cheng’s Theorem 8 by studying
the oscillation of the following quasilinear generalization of linear equation (2.1) and nonlinear
equation (2.19):

(r(t)Ψ(x)|x′|α−1x′)′ +q(t) f (x) = e(t), t � t0, (2.24)

where Ψ ∈C(R,R) . �

In 2006 Yuan Gong Sun and Fan Wei Meng in [89] studied the oscillation of the quasilinear
forced differential equation:(

r(t)|x′|α sgnx′
)′ +q(t)|x|β sgnx = e(t), t � t0, (2.25)

where r(t) ≡ 1, β > α > 0 and q(t),e(t) are continuous functions on [t0,∞) . In the case
β = α > 0, equation (2.25) becomes the half-linear equation (2.13).

THEOREM 12. ([89, Theorem 2.3] - from 2006) Let r(t)≡ 1 . Assume for any T > 0 there
exist intervals [a1,b1] and [a2,b2] , T < a1 < b1 � a2 < b2 such that q(t) � 0 on [ai,bi] , i = 1,2
and e(t) has different signs on [a1,b1] and [a2,b2] . If there exist two differentiable functions
u1(t) and u2(t) such that ui(ai) = ui(bi) = 0 , |u′i(t)| ∈ L1+α ([ai,bi],R) and∫ bi

ai

[
θqα/β (t)|e(t)|1−α/β uα+1

i (t)−|u′i(t)|α+1
]
dt � 0, i = 1,2,

where θ = β
α

(
β
α −1

) β
α −1

> 1 , then equation (2.25) is oscillatory.

This theorem was illustrated to the quasilinear equation(|x′|α)′ +msin t|x|β sgnx = cos t, t � 0, (2.26)

where β > α > 0, α = odd/odd and m > 0. By using Theorem 12 especially for a1 = 2nπ ,
b1 = a2 = 2nπ +π/2, b2 = 2nπ +π and u1(t) = u2(t) = sint , the author showed that equation
(2.26) is oscillatory.

In 2006 Wenying Shi [83] studied the oscillation of a general class of nonlinear second-
order differential equations with damping:(

r(t)k1(x,x′)
)′ + p(t)k2(x,x′)x′ +q(t) f (x) = e(t), t � t0, (2.27)

where r(t) > 0 and r′(t), p(t),q(t),e(t),k1(u,v),k2(u,v) and f (u) are continuous functions on
their domains which are respectively [t0,∞) , R

2 and R . The nonlinear functions k1(u,v) and
k2(u,v) satisfy the following structural assumptions:

k1(u,v)v � α1k
2
1(u,v) for some α1 > 0 and all (u,v) ∈ R

2, u �= 0, (2.28)

k2(u,v)uv � α2k
2
1(u,v) for some α2 � 0 and all (u,v) ∈ R

2, u �= 0. (2.29)



110 QINGKAI KONG AND MERVAN PAŠIĆ

COMMENT 6. The choice for the functions k1(u,v) and k2(u,v) satisfying (2.28) and
(2.29) should be careful, because it is supposed that k1,k2 ∈C(R2,R) . For instance, if we chose
k1(u,v) = v and k2(u,v) = φ2(u)v , then (2.27) becomes

(
r(t)x′)′+ p(t)φ2(x)x′2+q(t) f (x) = e(t)

and φ2(u) should satisfy φ2 ∈ C(R,R) and φ2(u)u � α2 > 0 for all u �= 0. But such a φ2(u)
does not exist. Thus, k1(u,v) should also depend on the variable u such as k1(u,v) = φ1(u)v for
some function φ1 ∈C(R,R) . �

THEOREM 13. ([83, Theorem 1] - from 2006) Let for any T > 0 there exist a pair of
intervals [a1,b1] and [a2,b2] , T � a1 , b1 � a2 , such that e(t) � 0 on [a1,b1] , e(t) � 0 on
[a2,b2] and q(t) � 0 on . Let D(ai,bi) be the set of functions defined by (2.2). Let (2.20), (2.28)
and (2.29) hold. If there exist a function u ∈ D(ai,bi) and a positive function φ ∈C([t0,∞),R)
such that

∫ bi

ai

φ(t)
[

θ |e(t)|1−1/γ [Kq(t)]1/γu2(t)− r2(t)
α1r(t)+α2 p(t)

(
u′(t)+u(t)

φ ′(t)
2φ(t)

)2]
dt > 0, (2.30)

where θ = γ(γ −1)−1+1/γ for i = 1,2 , then equation (2.27) is oscillatory.

If p(t) ≡ 0, f (x) = x , then K = 1 and φ(t) ≡ 1 and consequently, assumption (2.30) is reduced
to the Wong’s interval oscillation criterion (2.4) and hence, Theorem 13 extends Wong’s Theorem
1 from linear to a general nonlinear case. Theorem 13 was illustrated by the nonlinear damped
diffferential equation (2.27) especially for:

r(t) =
√

t(2+ sin
√

t), p(t) =
√

t(2− sin
√

t), q(t) =
1√
t

and e(t) = sin
√

t, t � 1,

k1(u,v) =
u2v

1+u2 , k2(u,v) =
u3v(1+u2 +v2)

(1+u2)2
and α1 = α2 = 1,

f (x) = x(2+cos x), K = 1 and γ = 1.

The main limitations r(t) ≡ 1 and β > α > 0 appearing in equation (2.25) and Theorem
12 were relaxed in Zhaowen Zheng and Fan Wei Meng [123] with r(t) > 0 and β � α > 0 as
follows.

THEOREM 14. ([123, Theorem 2.2] - from 2007) Let r(t) > 0 and β � α > 0 . Assume for
any T > 0 there exist intervals [a1,b1] and [a2,b2] , T < a1 < b1 � a2 < b2 such that e(t) has
different signs on [a1,b1] and [a2,b2] . If there exist a function u ∈C1([ai,bi],R) , uα+1(t) > 0
on (ai,bi) and u(ai) = u(bi) = 0 and a positive nondecreasing function φ ∈C([t0,∞),R) such
that

∫ bi

ai

φ(t)
[

θ [q(t)]α/β |e(t)|1−α/β uα+1(t)−r(t)
(
|u′(t)|+u(t)

φ ′(t)
(α +1)φ(t)

)α+1]
dt > 0, (2.31)

then equation (2.25) is oscillatory, where θ = β
α

(
β
α −1

) β
α −1

and 00 = 1 .

This theorem was illustrated by the quasilinear equation:

(
at−b/3x′

)′ + t−b|x|2x = −sin3 t, t � 1, (2.32)
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where the constants a,b > 0. Especially for α = 1 < 3 = β , u(t) = sin t and φ(t) = tb/3 , the
authors showed that equation (2.32) is oscillatory provided

0 < a <
9 3
√

2
8(1+b/6)2

.

Next, we present further generalizations of Wong’s interval oscillation criterion to a general
class of nonlinear second-order differential equations:

(r(t)x′)′ +F(t,x,x′) = 0, t � t0, (2.33)

due to Qi-Ru Wang [98] in 2007. The general nonlinear term F(t,y,z) is supposed to contain
in particular the linear case F(t,y,z) = q(t)y− e(t) as well as the nonlinear case F(t,y,z) =
q(t) f (y)− e(t) and therefore, linear and nonlinear equations (2.1) and (2.19) are two special
cases of equation (2.33).

THEOREM 15. ([98, Theorems 2.2 and 2.3] - from 2007) Let for any T > 0 there exist an
[a,b] , T � a < b, and let D(a,b) be the set of functions defined by (2.2). If there exists a function
u ∈ D(a,b) such that for any y ∈ C1([a,b],R) with y(t) �= 0 on [a,b] the following inequality
holds: ∫ b

a

(
F(t,y(t),y′(t))

y(t)
u2(t)− r(t)u′2(t)

)
dt � 0, (2.34)

then equation (2.33) is oscillatory.

THEOREM 16. ([98, Corollary 2.4] - from 2007) Let q,e ∈C([t0,∞),R) and the nonlinear
term F(t,y,z) satisfy

yF(t,y,z) � q(t)y2 −e(t)y for all (t,y,z) ∈ [t0,∞)×R
2 . (2.35)

Let for any T > 0 there exist a pair of intervals [a1,b1] and [a2,b2] , T � a1 and b1 � a2 , such
that e(t) � 0 on [a1,b1] and e(t) � 0 on [a2,b2] , and q(t) � 0 , q(t) �≡ 0 on (a1,b1)∪ (a2,b2) .
Let D(ai,bi) be the set of functions defined by (2.2). If there exists a function u ∈ D(ai,bi) such
that (2.3) holds, then equation (2.33) is oscillatory.

Comparing Wong’s Theorem 1 with Wang’s Theorem 16 it is simple to deduce that the latter
generalizes the former when F(t,y,z) = q(t)y− e(t) . The author used Theorem 16 in order to
show the oscillation of the following class of equations (see [98, Example 3.1]):(√

t +1x′(t)
)′ +q(t)x(t)

(
1+αx2(t)+βx′2(t)

)
= sin

√
t +1, t � 0,

where α,β � 0, q(t) ∈C([0,∞),(0,∞)) and q(t) � 1/4
√

t +1 . See also [98, Example 3.1].

Next, we consider the time scale analogue equation to equation (2.33):

(r(t)xΔ(t))Δ +F(t,xσ (t),xΔ(t)) = 0, t ∈ [t0,∞)T, (2.36)

where T is a time scale, and the functions r = r(t) , r : T → (0,∞) and F = F(t,y,z) , F :
T×R

2 → R are right-dense in the time scale variable t . Instead of the set of functions D(a,b)
defined by (2.2) one uses its time scale analogue set:

J(a,b) = {u ∈CΔ
rd[a,b]T : u(t) �≡ 0,u(a) = u(b) = 0}. (2.37)

In 2008 Douglas R. Anderson in his paper [6] established the following generalizations of
Wang’s Theorems 15 and 16.
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THEOREM 17. ([6, Theorem 3.2] - from 2008) Let for any T ∈ [t0,∞)T there exist an
interval [a,b]T ⊂ [T,∞)T and a function u ∈ J(a,b) such that for any y ∈CΔ

rd([a,b]T,R) with
yyσ > 0 on [a,b]T the following inequality holds:

∫ b

a

(
F(t,yσ (t),yΔ(t))

yσ (t)
(uσ (t))2 − r(t)(uΔ(t))2

)
Δt � 0. (2.38)

Then equation (2.36) is oscillatory.

THEOREM 18. ([6, Corollary 3.3] - from 2008) Let q,e ∈Crd([t0,∞)T,R) and the nonlin-
ear term F(t,y,z) satisfy

yF(t,y,z) � q(t)y2 −e(t)y for all (t,y,z) ∈ [t0,∞)T ×R
2 . (2.39)

Let for any T > 0 there exist ai,bi , i = 1,2 , T � a1 < b1 � a2 < b2 such that e(t) has different
signs on [a1,b1]T and [a2,b2]T . If there exists a function u ∈ J(ai,bi) such that

∫ bi

ai

(
q(t)(uσ (t))2− r(t)(uΔ(t))2

)
Δt � 0, i = 1,2, (2.40)

then equation (2.36) is oscillatory.

When T = R , Anderson’s Theorems 17 and 18 become respectively Wang’s Theorems 15 and
16.

Lynn H. Erbe, Allan C. Peterson and Samir H. Saker [27] in 2008 considered the time scale
analogue of the second-order Emden-Fowler equation with forcing term:

(r(t)xΔ(t))Δ +q(t)|xσ (t)|γsgnxσ (t) = e(t), t ∈ T, (2.41)

where T is a time scale and γ � 1. The main assumption is:

∫ bi

ai

(
γ

(γ −1)1−1/γ [q(t)]1/γ |e(t)|1−1/γ[uσ (t)
]2 − r(t)

[
uΔ(t)

]2
)

Δt � 0, i = 1,2, (2.42)

where 00 = 1.

THEOREM 19. ([27, Theorem 2.1] - from 2008) Let γ � 1 , r(t)> 0 , q,e∈Crd([t0,∞)T,R) .
Asumme for any T ∈ [t0,∞)T there exist ai,bi , i = 1,2 , T � a1 < b1 � a2 < b2 such that e(t)
has different signs on [a1,b1]T and [a2,b2]T . Assume there exists a function u ∈C1

rd(T,R) such
that u(t) �≡ 0 on [ai,bi]T , u(ai) = u(bi) = 0 and (2.42) holds. Then the dynamic equation (2.41)
is oscillatory on [t0,∞)T .

Especially for T = R , this theorem generalizes Wong’s Theorem 1 or Nasr’s Theorem 7 respec-
tively for γ = 1 or γ > 1. Furthermore, if T = R , f (x) = |x|γsgn(x) , γ > 1 and K = 1, then
Yang’s Theorem 10 becomes a special case of Theorem 19.

In 2009 Douglas R. Anderson and Agacik Zafer [7] studied the oscillation of the α -
Laplacian analogoue of equation (2.36) i.e.,(

r(t)Φα(xΔ(t))
)Δ +F(t,xσ (t),xΔ(t)) = 0, t ∈ [t0,∞)T, (2.43)

where Φα (x) = |x|α−1x and α > 0. The author extended the case α = 1 given in Theorem 17
to the following one with any α > 0.
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THEOREM 20. ([7, Theorem 3.1] - from 2009) Let for any T ∈ [t0,∞)T there exist an
interval [a,b]T ⊂ [T,∞)T and a function u ∈ J(a,b) such that for any y ∈CΔ

rd([a,b]T,R) with
yyσ > 0 on [a,b]T the following inequality holds:

∫ b

a

(
F(t,yσ (t),yΔ(t))

Φα (yσ (t))
|uσ (t)|α+1− r(t)|uΔ(t)|α+1

)
Δt � 0. (2.44)

Then equation (2.43) is oscillatory.

Also, the authors in [7] established the oscillation of a class of delay dynamic equations associ-
ated to (2.43), see [7, Theorem 4.1].

In 2009 A. Feza Guvenilir [36] considered the oscillation of a class of second-order func-
tional differential equations:(

r(t)x′(t)
)′ + p(t)x(h(t))+q(t)|x(h(t))|γ−1x(h(t)) = e(t), t � 0, (2.45)

where the functions r, p,q and e are continuous and the functional term h(t) = σ(t) in advanced
and h(t) = τ(t) in delayed case.

THEOREM 21. ([36, Theorems 2.1] - from 2009) Let r(t) > 0 be nondecreasing, γ > 1 ,
q,e ∈C([t0,∞),R) and the functional term σ(t) be nondecreasing such that limt→∞ σ(t) = ∞ ,
σ(t) � t . Let for any T > 0 there exist a pair of intervals [a1,b1] and [a2,b2] , T � a1 < b1 ,
σ(b1) � a2 < b2 , such that e(t) � 0 on [a1,σ(b1)] and e(t) � 0 on [a2,σ(b2)] , p(t) � 0 and
q(t) � 0 , q(t) �≡ 0 on [a1,σ(b1)]∪ [a2,σ(b2)] . Let D(ai,bi) be the set of functions defined by
(2.2). If there exists a function u ∈ D(ai,bi) such that∫ bi

ai

[(
p(t)+θ |e(t)|1−1/γ [q(t)]1/γ

)σ(bi)−σ(t)
σ(bi)− t

u2(t)− r(t)u′2(t)
]
dt � 0, (2.46)

where θ = γ(γ −1)−1+1/γ , then the advanced equation (2.45) is oscillatory.

According to this theorem, the author showed that the advanced equation

x′′(t)+m1 sin t x(t +π/6)+m2 cos t x3(t +π/6) = cos2t, t � 0,

is oscillatory provided m1 or m2 is large enough.

THEOREM 22. ([36, Theorems 2.1] - from 2009) Let r(t) > 0 be nondecreasing, γ > 1 ,
q,e ∈ C([t0,∞),R) and the functional term τ(t) be nondecreasing such that limt→∞ τ(t) = ∞ ,
τ(t) � t . Let for any T > 0 there exist a pair of intervals [a1,b1] and [a2,b2] , T � τ(a1) �
a1 < b1 , b1 � τ(a2) � a2 < b2 , such that e(t) � 0 on [τ(a1),b1] and e(t) � 0 on [τ(a2),b2] ,
p(t) � 0 and q(t) � 0 , q(t) �≡ 0 on [τ(a1),b1]∪ [τ(a2),b2] . Let D(ai,bi) be the set of functions
defined by (2.2). If there exists a function u ∈ D(ai,bi) such that∫ bi

ai

[(
p(t)+θ |e(t)|1−1/γ [q(t)]1/γ

) τ(t)− τ(ai)
t− τ(ai)

u2(t)− r(t)u′2(t)
]
dt � 0, (2.47)

where θ = γ(γ −1)−1+1/γ , then the delayed equation (2.45) is oscillatory.

Consequently, the author showed that the delayed equation

x′′(t)+m1 sint x(t−π/12)+m2 cos t x3(t−π/12) = cos2t, t � 0,

is oscillatory provided m1 or m2 is large enough.
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REMARK 6. In 2012 Zhonghai Guo, Xiaoliang Zhou and Wu-Sheng Wang in [35, Theorem
2.4] established an interval oscillation criterion related to the Wong’s oscillation criterion for the
following class of super-half-linear impulsive differential equations with delay:(

r(t)Φα(x′(t))
)′ + p(t)Φα (x(t − τ))+q(t) f (x(t − τ)) = e(t), t �= τk,

x(t+) = akx(t), x′(t+) = bkx
′(t), t = τk, k = 1,2, ...,

where Φα (u) = |u|α−1u , τ is a nonnegative constant, τk denotes the impulsive moments se-
quence with τ1 < τ2 < ... < τk < ....., limk→∞ τk = ∞ and τk+1− τk > τ . �

REMARK 7. In 2013 Yibing Sun, Zhenlai Han, Shurong Sun and Chao Zhang gave in [93,
Theorems 3, 5 and 7] an interval oscillation criterion related to the Wong’s oscillation criterion
for the following second-order nonlinear dynamic equation with forcing and damping term:

(r(t)xΔ(t))Δ + p(t)xΔσ (t)+q(t)
(
xσ (t)

)α = F(t,xσ (t)), t ∈ T,

where α is a quotient of odd positive integers. �

2.4. Other types of interval oscillation criteria - from 1997 to 2013

In previous subsections, we have studied some known interval oscillation criteria motivated
by Wong’s Theorem 1. However, simultaneously with these results, there are some other types
of interval oscillation criteria different from Theorem 1 presented in the chronological order:

− in 1997, C. Huang [45];

− in 1998, A. Elbert [23];

− in 1999, Q. Kong [50, 51];

− in 2000, W.T. Li and R.P. Agarwal [60, 61];

− in 2001, W.T. Li and H.F. Huo [63];

− in 2003, Q. Yang [117];

− in 2004, J.S.W. Wong [112], Q. Yang, R.M. Mathesen [118], Y.G. Sun, C.H. Ou, J.S.W. Wong
[88];

− in 2005, Z. Xu and S. Peng [114];

− in 2007, Q. Kong [52], Y.V. Rogovchenko and F. Tuncay [81];

− in 2008, T. Hassan [41];

− in 2009, A.K. Nandakumaran and S. Panigrahi [67];

− in 2011, J. Tyagi [97];

− in 2013, E. Tunc and H. Avci [96], M. Pašić [72].

In 1997 Chunchao Huang in his paper [45] studied the nonoscillation and oscillation of the
second-order linear differential equation

x′′ +q(t)x = 0, t � 0, (2.48)

where q(t) � 0. It is the most simple form of the second-order linear differential equation (2.1)
where r(t) ≡ 1 and e(t) ≡ 0.
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THEOREM 23. ([45, Theorem 2] - from 1997) Let c0 = 3− 2
√

2 and q(t) � 0 , q ∈
C([0,∞),R) . If there exist t0 > 0 and c > c0 such that for every n ∈ N ,

∫ 2n+1t0

2nt0
q(t)dt � c

2nt0
, (2.49)

then equation (2.48) is oscillatory.

Since in this paper we only discuss the oscillation criteria, we omit a nonoscillation result
presented in [45, Theorem 1]. Moreover, the author derived the following interesting conse-
quence of Theorem 23.

THEOREM 24. ([45, Corollary 2] - from 1997) Let c0 = 3 − 2
√

2 and q(t) � 0 , q ∈
C([0,∞),R) . If

lim
t→∞

t
∫ 2t

t
q(s)ds = c > c0,

then equation (2.48) is oscillatory.

This result was illustrated with equation (2.48), where q(t) = ∑qn(t) and qn(t) is a sequence of
nonnegative functions satisfying:

suppqn(t) ⊂
[
2n − 1

2n ,2n
]

and
∫

R

qn(t)dt =
1

2n+1 , n = 1,2, ....

REMARK 8. Agarwal and Li [61] pointed out that Huang’s Theorem 23 is not sharp enough.
In fact, it is well-known that the Euler equation x′′ + γt−2x = 0 is oscillatory for γ > 1/4; how-
ever, this is not revealed by Huang’s result, especially for γ ∈ (3−2

√
2,6−4

√
2) . �

In 1998 A. Elbert in [23] improved preceding Huang’s results giving sharper ones.

THEOREM 25. ([23, Theorem 2] - from 1998) Let q(t) � 0 . Assume there exist two se-
quences tn and cn such that 0 < t0 < t1.... < tn < ... , tn → ∞ and cn > 0 , n ∈ N . If q(t)
satisfies

(tn+1− tn)
∫ tn+1

tn
q(t)dt � cn, n ∈ N, (2.50)

where the recurrence relation

vn+1 =
cn+1

cn

tn+1 − tn
tn+2 − tn+1

( vn

1−vn
+cn

)
, n ∈ N and v0 = 0,

has no solution such that 0 < vn < 1 , n ∈ N , then equation (2.48) is oscillatory.

On a related nonoscillation criterion we refer reader to [23, Theorem 2].

COMMENT 7. Theorem 23 is a special case of Theorem 25. First of all, it is clear that
Huang’s criterion (2.49) can be written in the form of Elbert’s criterion (2.50) in particular for

tn = 2nt0 and cn = c > 3−2
√

2.

Since
tn+1− tn

tn+2− tn+1
=

2n+1t0 −2nt0
2n+2t0−2n+1t0

=
1
2

and
cn+1

cn
=

c
c

= 1,
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the desired recurrence relation becomes

vn+1 =
1
2

( vn

1−vn
+c

)
, n ∈ N and v0 = 0. (2.51)

We show that assumption c > 3−2
√

2 implies that (2.51) has no solution L such that 0 < vn < 1.
On the contrary, if exists such an L , then it must be L ∈ [0,1] . Passing to the limit in (2.51) we
have that L satisfies the following algebraic equation with corresponding solution’s form:

2L2− (1+c)L+c = 0 and L1,2 =
1
4

(
1+c±

√
c2 −6c+1

)
, (2.52)

where c2 − 6c+ 1 =
(
c− (3− 2

√
2)

)(
c− (3+ 2

√
2)

)
. On the first hand, if c ∈ (

3− 2
√

2,3+
2
√

2
)
, then equation in (2.52) has no real solutions. On the other hand, if c � 3+ 2

√
2 , then

(2.52) has solutions and since (c− 3)2 > c2 − 6c + 1, from (2.52) we obtain L1,2 > 1, that
contradicts the conclusion L ∈ [0,1] . Thus, assumption c > 3−2

√
2 ensures that (2.51) has no

solution L such that 0 < vn < 1. �

As a consequence of Theorem 25, the author derived the following interesting criterion that
can be tested on the Euler equation.

THEOREM 26. ([23, Corollary 6] - from 1999) Under the same assumptions as in Theorem
25 suppose

tn+2− tn+1 = tn+1 − tn and cn � c

(n+1)2
, n ∈ N,

where c > 1/4 . Then equation (2.48) is oscillatory.

For the oscillation of the Euler equation x′′ + γt−2x = 0, Elbert’s Theorem 26 is sharper than
Huang’s Theorem 23. Indeed, if γ > 1/4, tn = n+1, q(t) = γ/t2 and cn = γ/[(n+1)(n+2)] ,
then tn+2 − tn+1 = tn+1 − tn = 1 and

(tn+1 − tn)
∫ tn+1

tn
q(t)dt =

∫ n+2

n+1

γ
t2

dt = cn >
c

(n+1)2
, ∀n � n0,

for some c > 1/4 and large enough n0 ∈ N . Now, by Theorem 26 the oscillation of the Euler
equation x′′ + γt−2x = 0 is established in this way too.

Independently from Wong’s Theorem 1, in 1999, Qingkai Kong derived the following type
of interval oscillation criteria for unforced linear differential equation (2.1): (r(t)x′)′ + q(t)x =
e(t) . This theorem inspired some other authors to study the oscillation of several types of second-
order differential equations, that will be briefly pointed out below. Denote D = {(t,s) : −∞ <
s � t < ∞} and let

H =
{

H = H(t,s) | H ∈C
(
D,R+

)
, H(t,t) = 0, H(t,s) > 0 for t > s,

there exist
∂H
∂ t

,
∂H
∂ s

such that h1,h2 ∈ Lloc(D,R)
}

, (2.53)

where

h1(t,s) =
1√

H(t,s)
∂H
∂ t

(t,s) and h2(t,s) = − 1√
H(t,s)

∂H
∂ s

(t,s). (2.54)
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THEOREM 27. ([50, Theorem 2.1] - from 1999) Let e(t) ≡ 0 and H be the class of
functions defined by (2.53). Equation (2.1) is oscillatory provided for any T � t0 there exists
H ∈ H and either

(i) there exists a,b,c ∈ R such that T � a < c < b and

1
H(c,a)

∫ c

a

(
q(s)H(s,a)− 1

4
r(s)h2

1(s,a)
)
ds

+
1

H(b,c)

∫ b

c

(
q(s)H(b,s)− 1

4
r(s)h2

2(b,s)
)
ds > 0, (2.55)

or

(ii) there exists a,b ∈ R such that T � a < b and for any c ∈ [a,b] at least one of the next
two inequalities holds: ∫ c

a

(
q(s)H(s,a)− 1

4
r(s)h2

1(s,a)
)
ds > 0 (2.56)

or ∫ b

c

(
q(s)H(b,s)− 1

4
r(s)h2

2(b,s)
)
ds > 0. (2.57)

EXAMPLE 2. Consider equation (2.1): (r(t)x′)′ + q(t)x = e(t) , where e(t) ≡ 0, r(t) = t
and

q(t) =
{

k/t, e2n � t � e2n+1

qn(t), e2n+1 < t < e2n+2,
n ∈ N,

with k > 12 and qn ∈C((e2n+1,e2n+2),R) such that
∫ e2n+2

e2n+1 qn(t)dt = −n for n ∈ N . It is easy
to see that

∫ ∞
0 q(t)dt = −∞ .

For any T � 0 there exists n ∈ N such that e2n � T. Let a = e2n,b = e2n+1 , and H(t,s) =
(lnt − lns)2. Then h1(t,s) = 2/t and h2(t,s) = 2/s . To show that Eq. (2.1) is oscillatory by
Theorem 27, (ii), it suffices to show that for all c ∈ [a,b]

G(c) :=
∫ c

a
H(s,a)q(s)ds+

∫ b

c
H(b,s)q(s)ds

−1
4

(∫ c

a
r(s)h2

1(s,a)ds+
∫ b

c
r(s)h2

2(b,s)ds

)
> 0,

and then we see that for any c ∈ [a,b] , at least one of (2.56) and (2.57) holds. In fact, by a simple
computation we have that

G(c) =
∫ c

a
(lns− lna)2

k
s
ds+

∫ b

c
(lnb− ln s)2

k
s
ds− 1

4

∫ b

a

4
s
ds

=
k
3
[(lnc− lna)3 +(lnb− lnc)3]− (lnb− lna)

= k(lnb− lna)[(lnc− 1
2
(lnb+ lna))2 +

1
12

(lnb− lna)2]− (lnb− lna)

� k
12

(lnb− lna)3 − (lnb− lna)

=
k
12

−1 > 0.

This means that Eq. (2.1) is oscillatory. �
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Next, let H0 be a subclass of H defined by

H0 = {H = H(t,s),H ∈ H | ∃H0 = H0(y), H0 : R → R such that H(t,s) = H0(t− s)}. (2.58)

It is elementary to check that for H ∈ H0 :

∂H
∂ t

(t,s) =
∂H
∂ s

(t,s) = H ′
0(t− s).

THEOREM 28. ([50, Theorem 2.2] - from 1999) Let e(t) ≡ 0 and H0 be a class of func-
tions defined by (2.58). Let for any T � t0 there exists H ∈H0 and a,c∈ R such that T � a < c
and

∫ c

a

(
H0(s−a)

[
q(s)+q(2c− s)

]− 1
4

[
r(s)+ r(2c− s)

]H
′2
0 (s−a)

H0(s−a)

)
ds > 0. (2.59)

Then equation (2.1) is oscillatory.

EXAMPLE 3. Consider equation (2.1) with r(t) ≡ 1, e(t) ≡ 0 and

q(t) = k

(
sin(

2π
3

t)− 1
2

)

with k > 32. For any T � 0 there exists n ∈ N0 such that 3n � T. Let a = 3n+1/4 and c =
3n+3/4. Note that q1(t) := sin( 2π

3 t)− 1
2 satisfies that q1(a) = 0, (q1(c)−q1(a))/(c−a) = 1,

and q1 is concave down on (a,c) . We have q(t) � k(t − a) . Let H0(t − s) = (t − s)2 . Then
H ′

0(t− s) = 2(t − s) . It follows that

∫ c

a
H0(s−a)[q(s)+q(2c− s)]ds = 2

∫ c

a
(s−a)2q(s)ds

� 2k
∫ c

a
(s−a)3 ds =

k
32

and ∫ c

a

1
4
[r(s)+ r(2c− s)]

H ′2
0 (s−a)

H0(s−a)
ds = 1.

Hence

∫ c

a

(
H0(s−a)[q(s)+q(2c− s)]− 1

4
[r(s)+ r(2c− s)]

H ′2
0 (s−a)

H0(s−a)

)
� k

32
−1 > 0.

By Theorem 28, Eq. (2.1) is oscillatory. However, in this equation we have
∫ ∞
0 q(t)dt = −∞. �

REMARK 9. In 1999 Qingkai Kong [51, Corollary 2.2] generalized his Theorem 27 to the
half-linear equation (

r(t)x′α
)′ +q(t)xα = 0, t � t0,

where α = odd/odd and 1/r,q ∈ L1
loc([t0,∞),R) . �
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REMARK 10. In 2000 Wan-Tong Li and Ravi P. Agarwal in [60, Theorem 2.1] and [61,
Theorem 2.1] extended Kong’s Theorem 27 respectively to the nonlinear differential equations
with damping: (

r(t)x′
)′ + p(t)x′ +q(t) f (x) = 0, t � t0, (2.60)

and without damping:
x′′ +q(t) f (x)g(x′) = 0, t � t0,

where f (x)x > 0 for x �= 0. See also Wan-Tong Li and Hai-Feng Huo [63, Theorem 2.1] from
2001 concerning the equation (2.60) with p(t) ≡ 0. �

REMARK 11. Besides Theorem 10 mentioned in previous subsection, in 2003 Qigui Yang
in [117] generalized both Kong’s interval oscillation criteria to the nonlinear equation (2.19):
(r(t)x′)′ +q(t) f (x) = e(t) , see [117, Theorem 2 and Corollaries 3,4 and 5]. �

In 2004 James S.W. Wong in his paper [112] proved the following extensions of Huang’s
results.

THEOREM 29. ([112, Theorem 2] - from 2004) Let q(t) � 0 , q ∈ L1
loc([0,∞),R) and λ >

1 . Assume for some t0 and every positive integer n,

∫ λ n+1t0

λ nt0
q(t)dt � c

(λ −1)λ nt0
,

where c > k0(λ ) = (
√

λ −1)2 . Then equation (2.48) is oscillatory.

For a related nonoscillatory criterion we refer the reader to [112, Theorem 1]. Especially for λ =
2 Wong’s Theorem 29 covers Huang’s Theorem 23. Furthermore, the author showed that such a
class of interval criterion is not a special case of known Hille’s oscillation criterion. Moreover,
Wong extended Theorem 29 to the case of delay linear differential equation:

x′′(t)+q(t)x(τ(t)) = 0, t � t0 > 0, (2.61)

where τ(t) is a continuous function such that τ(t) � t and limt→∞ τ(t) = ∞ .

THEOREM 30. ([112, Theorem 4] - from 2004) Let q ∈ L1
loc([0,∞),R) such that q(t) � 0

and λ > 1 . Assume for some t0 and every positive integer n,

∫ λ n+1t0

λ nt0
q(t)τ(t)dt � ĉ

λ nt0
,

where ĉ > k0(λ ) = (
√

λ −1)2 . Then equation (2.61) is oscillatory.

REMARK 12. In 2004 Qigui Yang and Ronald M. Mathesen [118, Theorems 2.1 and 2.2]
extended Kong’s Theorem 27 to the nonlinear delay differential equation(

r(t)ψ(x(t))x′(t)
)′ +F

(
t,x(t),x′(t),x(τ(t)),x′(τ(t))

)
= 0, t � t0,

where F is a continuous function on [t0,∞)×R
4 , τ(t) � t , τ(t) is increasing and limt→∞ τ(t) =

∞ . �



120 QINGKAI KONG AND MERVAN PAŠIĆ

Yuan Gong Sun, C.H. Ou and James S.W. Wong in [88] studied the oscillation of the second-
order inhomogeneous linear differential equation (2.1):

(
r(t)x′

)′ +q(t)x = e(t) , where q(t) and
e(t) may have different signs on given intervals [an,bn] ⊆ [0,∞) , an < bn � an+1 < bn+1 and
limn→∞ an = ∞ .

THEOREM 31. ([88, Theorem 1] - from 2004) Let there exist a sequence of functions ϕn(t)
such that:(

r(t)ϕ ′
n
)′ +q(t)ϕn � e(t),

(
r(t)ϕ ′

n
)′ +q(t)ϕn �≡ 0 and ϕ j

n(an) = ϕ j
n(bn) = 0, j = 1,2,

and

(−1)n
∫ bn

an

ϕn(t)e(t)dt � 0.

Then equation (2.1) is oscillatory.

Also, the author proved that the inequality ”�” in all assumptions of Theorem 31 can be replaced
by ”�” so that equation (2.1) is still oscillatory, see [88, Theorems 2 and 3]. Theorem 31 was
illustrated with the equation:

x′′ +c(sin t)x = tβ cos t, β � 0. (2.62)

Since for some α > 1, a2n−1 = 2nπ , b2n−1 = a2n = 2nπ +π and b2n = 2nπ +2π , the sequence
of functions

ϕn(t) = sinα
( t−an

bn −an

)
, t ∈ [an,bn],

satisfies all assumptions of Theorem 31, the author showed that equation (2.62) is oscillatory
provided

c � max
0�t�π/2

{
− (α −1)α cos2 t −α sin2 t

sin3 t

}
.

REMARK 13. In 2005 Zhiting Xu and Shiguo Peng in [114, Theorem 2.1] extended Kong’s
Theorem 27 to the second-order half-linear damped differential equation:(

r(t)Φα(x′)
)′ + p(t)Φα (x′)+q(t) f (x) = 0, t � t0,

where Φα (u) = |u|α−2u , α > 1 and f (u)u > 0 for u �= 0. �

In 2007 Qingkai Kong in [52] studied the oscillation of the second-order half-linear differ-
ential equation (

r(t)Φα(x′)
)′ +q(t)Φα (x) = 0, (2.63)

where Φα(u) = |u|α−1u , α > 0, r(t) > 0, q(t) � 0 and
∫ ∞
0 r−1/α (t)dt = ∞ . He extended

Huang’s Theorem 23 from linear to the half-linear case as follows.

THEOREM 32. ([52, Theorem 2.2] - from 2007) Let r(t) ≡ 1 , λ > 1 and c∗ = c∗(α) .
Assume there exist t0 ∈ (0,∞) and c > c∗ such that for each n ∈ N0 ,

(tn+1 − tn)
(∫ tn+1

tn
q(t)dt

)1/α
� c,

where tn = λ nt0 . Then equation (2.63) is oscillatory.
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The proof of Theorem 32 was motivated by that of Wong’s Theorem 29.

THEOREM 33. ([52, Theorem 2.4] - from 2007) Let λ > 1 and c∗ = c∗(α) . Assume there
exist t0 ∈ (0,∞) and c > c∗ such that for each n ∈ N0 ,

∫ tn+1

tn
r−1/α(t)dt

(∫ tn+1

tn
q(t)dt

)1/α
� c,

where tn = g−1
(
λ n ∫ t0

0 r−1/α (s)ds
)

and g(t) =
∫ t
a r−1/α(s)ds . Then equation (2.63) is oscilla-

tory.

Related nonoscillation criteria for equation (2.63) can be found in [52, Theorems 2.1 and 2.3].
The interval oscillation criteria given in Kong’s Theorems 32 and 33 are quite different from those
given in Wan-Tong Li and Sui Sun Cheng’s Theorem 8, which deals with the forced half-linear
differential equations.

REMARK 14. In 2007 Yuri V. Rogovchenko and Fatos Tuncay in [81, Theorems 1-5] ex-
tended Kong’s Theorem 27 to the following class of second-order nonlinear differential equations
with damping term: (

r(t)ψ(x)x′
)′ + p(t)x′ +q(t) f (x) = 0, t � t0,

where f (u)u > 0 for u �= 0. �

REMARK 15. In 2008 T. Hassan in [41, Theorem 2.1] extended Kong’s Theorem 27 to a
class of second-order nonlinear differential equations with a nonlinear damping term(

r(t)x′
)′ + p(t)x′ +q(t)|x|α−1x = 0, t � t0,

where α � 1 and the case
∫ ∞
t0 q(t)dt = −∞ is allowed such as in Theorem 27. �

REMARK 16. In 2009, A.K. Nandakumaran and S. Panigrahi in [67, Theorems 2.3, 2.7,
3.1, 3.2] extended Kong’s Theorem 27 to the nonlinear differential equation:(

r(t)x′
)′ + p(t)x′ +q(t) f (x)g(x′) = 0, t � t0,

where f (x)x > 0 for x �= 0. �

In 2011, J. Tyagi [97] studied an interval oscillation criterion of the unforced linear differen-
tial equation (2.1):

(
r(t)x′

)′+q(t)x = e(t) improving El-Sayed’s Theorem 6 which is specialized
for the forced case.

THEOREM 34. ([97, Theorem 2.4] - from 2011) Let e(t) ≡ 0 . Let there exist a monotonic
sequence an > 0 such that an → ∞ and a sequence kn > 0 , n ∈ N . Denote by bn = π/

√
kn ,

n ∈ N . If 0 < r(t) � 1 on [an,an +bn] and for all n ∈ N ,

∫ an+ bn
2

t
q(s)ds � kn

(
an +

bn

2
− t

)
, ∀t ∈

[
an,an +

bn

2

]
,

∫ t

an+ bn
2

q(s)ds � kn

(
t−an − bn

2

)
, ∀t ∈

[
an +

bn

2
,an +bn

]
.

Then equation (2.1) is oscillatory.
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The author illustrated this theorem with the equation(
(1−α sin2 t)x′

)′ +(1+2cos t)x = 0, 0 � α < 1,

by choosing an = 2nπ and kn = 1/16. It is interesting that the mean value of q(t) = 1+2cos t
is non-zero.

REMARK 17. In 2013 E. Tunc and H. Avci in [96, Theorem 1] extended Kong’s Theorem
27 to the unforced equation (2.27):

(
r(t)k1(x,x′)

)′+ p(t)k2(x,x′)x′+q(t) f (x) = 0, t � t0 , where
the functions k1(u,v) , k2(u,v) and f (u) satisfy the same assumptions as in Shi’s Theorem 13.
However, their oscillation criterion is different from the one given in Theorem 13. �

In Pašić [72], the author studied a kind of pointwise interval oscillation criteria for equa-
tion (2.27):

(
r(t)k1(x,x′)

)′ + p(t)k2(x,x′)x′ +q(t) f (x) = e(t) , where the functions k1(u,v) and
k2(u,v) satisfy the following conditions that are more general than (2.28): k1(u,v)v � α1k2

1(u,v)
and (2.29): k2(u,v)uv � α2k2

1(u,v) as imposed in Shi’s Theorem 13:

k1(u,v)v � α1|k1(u,v)|β |u|2−β for some α1 > 0, β > 1 and all (u,v) ∈ R
2, u �= 0, (2.64)

k2(u,v)uv � 0 for all (u,v) ∈ R
2, u �= 0. (2.65)

Especially for β = 2, assumption (2.64) becomes (2.28). Also, unlike (2.29), assumption (2.65)
does not depend on k1(u,v) . Consequently, (2.64)-(2.65) are more general than (2.28)-(2.29).
Moreover, assumption (2.64) allows two main classes of quasilinear second-order differential
operators: α -Laplacian and the prescribed mean curvature, see for details [73, Remark 1] or
Example 4 below. Even for β = 2, assumptions (2.64)-(2.65) give more possibilities than (2.28)-
(2.29). Precisely, by Comment 6 we know that (2.28)-(2.29) restrict the choice for the functions
k1(u,v) and k2(u,v) so that both of them should depend on the first variable u , for instance,
k1(u,v) = φ1(u)v and k2(u,v) = φ2(u)v , where φ1,φ2 ∈ C(R,R) are non-constant functions.
However, from assumptions (2.64) and (2.65), it is possible to have, for instance, k1(u,v) = v
and k2(u,v) = uv , where k1(u,v) only depends on v .

COMMENT 8. Shang and Qin [84] pointed out that some properties of k1(u,v) and k2(u,v)
related to (2.28) and (2.29) can contradict the basic assumption on the continuity of k1(u,v) and
k2(u,v) in both variables. �

THEOREM 35. ([72, Theorem 1.1] - from 2013) Let r(t) > 0 , r′, p,q,e∈C([t0,∞),R) and
f (u) satisfy (2.20). Let for any T > 0 there exist a pair of intervals [a1,b1] and [a2,b2] , T � a1
and b1 � a2 , such that e(t) � 0 on [a1,b1] and e(t) � 0 on [a2,b2] , and q(t) � 0 , q(t) �≡ 0 on
(a1,b1)∪ (a2,b2) . Assume (2.64) and (2.65). Equation (2.27) is oscillatory provided there are a
real parameter λ > 0 and a function C = C(t) , C ∈ L1((a1,b1)∪ (a2,b2),R+) , such that

1
ci

C(t) � β
2π

(
sin

π
β

)
min

{ α1

(λ r(t))β−1
,λQ(t)

}
, t ∈ [ai,bi], i ∈ {1,2},

where Q(t) and ci are defined by:

Q(t) =

⎧⎨
⎩

Kq(t) if γ = 1,

γ(γ −1)
1−γ

γ [Kq(t)]
1
γ |e(t)|

γ−1
γ if γ > 1,

and ci :=
∫ bi

ai

C(τ)dτ > 0, i ∈ {1,2},

where the constants K and γ are given in (2.20).
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EXAMPLE 4. (about the hypotheses (2.64)-(2.65)) Let the functions r(t) , p(t) , q(t) , f (u)
and e(t) satisfy conditions from Theorem 35. Then the following three classes of equations are
oscillatory: (

r(t)x′
)′ + p(t)|x|α sgn(x)x′2 +q(t)|x|γ sgn(x) = e(t), (2.66)

where α > 0 and γ � 1;

(
r(t)φ1(x)

x′√
1+x′2

)′
+ p(t)φ2(x)x′2 +q(t) f (x) = e(t), (2.67)

where 0 < φ1(u) � 1 and uφ2(u) � 0 for all u �= 0;

(
r(t)φ(x)|x′|α−1x′

)′
+ p(t)|x|α−1xψ(x′)x′ +q(t) f (x) = e(t), (2.68)

where α > 0, 0 < φ(u) � |u|1−α and vψ(v) � 0 for all u �= 0 and v ∈ R .
Indeed: in equation (2.66) we have k1(u,v) = v and k2(u,v) = |u|αsgn(u)v that satisfies

(2.64)-(2.65) for β = 2; in equation (2.67) we have

k1(u,v) = φ1(u)
v√

1+v2
and k2(u,v) = φ2(u)v

that satisfies (2.64)-(2.65) for β = 2 because 0 < φ1(u) � 1 and uφ2(u) � 0 for all u �= 0; and, in
equation (2.68) we have k1(u,v) = φ(u)|v|α−1v and k2(u,v) = |u|α−1uψ(v) that satisfies (2.64)-
(2.65) for β = 1+ 1/α because α > 0, 0 < φ(u) � |u|1−α and vψ(v) � 0 for all u �= 0 and
v ∈ R . �

3. Equations with mixed nonlinearities

In this section, we are concerned with a class of second-order differential equations having
the mixed nonlinearities. Recall that the forced Emden-Fowler equation (2.10) has a single term
of sub-linear or super-linear nonlinearity. The following class of differential equations contains
the sub-linear and super-linear terms simultaneously:

(
r(t)x′

)′ +q(t)x+
n

∑
j=1

q j(t)|x|α j sgn(x) = e(t), t � 0, (3.1)

where n ∈ N , α1 > ... > αm > 1 > αm+1 > ... > αn > 0. Since equation (3.1) contains the
sub-linear and super-linear terms, it is originally called the equation with mixed nonlinearities.
In a larger sense, if a differential equation contains at least two different super-linear terms, then
it is also called the equation with mixed nonlinearities, see in Section 3.2 about the so-called
super-half-linear equations.

3.1. Main results

The first result on the oscillations of equations with mixed nonlinearities was given in 2007
due to Yuan Gong Sun and James S.W. Wong in the following theorem.
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THEOREM 36. ([92, Theorem 1] - from 2007) Let for any T > 0 there exist a pair of
intervals [a1,b1] and [a2,b2] , b1 � a2 , such that e(t) � 0 on [a1,b1] and e(t) � 0 on [a2,b2] ,
and q j(t) � 0 , q j(t) �≡ 0 on (a1,b1)∪ (a2,b2) , j = 1,2, ..,n. Let D(ai,bi) , i = 1,2 be the set
of functions defined by (2.2). Let η0,η1, ...,ηn be positive constants satisfying

n

∑
j=1

α jη j = 1, 0 < η j < 1,
n

∑
j=1

η j < 1 and η0 = 1−
n

∑
j=1

η j. (3.2)

If there exists a function u ∈ D(ai,bi) such that

∫ bi

ai

(
Q(t)u2(t)− r(t)u′2(t)

)
dt � 0, i = 1,2, (3.3)

where

Q(t) = q(t)+ |e(t)|η0
n

∏
j=0

(q j(t)
η j

)η j
, (3.4)

then equation (3.1) is oscillatory.

To the best of our knowledge, it seems that this type of equation has not been considered in the
oscillation theory before Sun and Wong have published Theorem 36. This theorem generalizes
Wong’s Theorem 1 and Yang’s Theorem 10 in the method as well as in the result. In fact, if we
put q j(t) ≡ 0 into equation (3.1) and conditions (3.3)-(3.4), then we obtain equation (2.1) and
condition (2.3) respectively. Thus, Theorem 1 is a special case of Theorem 36. The main results
of [92, Theorem 1] was illustrated by the following forced Emden-Fowler equation of the mixed
type (see [92, Example 1]):

x′′ +c0 sin2t x+2c1 sin t |x|5/2sgnx+2c2 cos t |x|1/2sgnx = −cos2t, t � 0,

where c0,c1,c2 are three arbitrary positive constants.

In the case e(t) ≡ 0, the author established the following oscillation criterion.

THEOREM 37. ([92, Theorem 2] - from 2007) Let for any T > 0 there exists a subinterval
[a1,b1] of [T,∞) such that q j(t) � 0 , q j(t) �≡ 0 on (a1,b1) , j = 1,2, ..,n. Let D(a,b) be the
set of functions defined by (2.2). Let r(t) > 0 and q ∈C([t0,∞),R) . Let η1, ...,ηn be positive
constants satisfying

n

∑
j=1

α jη j = 1, 0 < η j < 1 and
n

∑
j=1

η j = 1.

If there exists a function u ∈ C1([a1,b1],R) such that u(t) �≡ 0 on [a1,b1] , u(a1) = u(b1) = 0
and ∫ b1

a1

(
Q(t)u2(t)− r(t)u′2

)
dt � 0,

where

Q(t) = q(t)+
n

∏
j=1

(q j(t)
η j

)η j
, (3.5)

then equation (3.1) with e(t) ≡ 0 is oscillatory.

For the case when (−1)ie(t) > 0 we refer the reader to [92, Theorem 3]. In [92, Section
3], the author presented several possibilities for choosing the test function u(t) such that u ∈
C1([ai,bi],R) , u(ai) = u(bi) = 0, u �≡ 0 on [ai,bi] and u(t) satisfies (3.3).
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3.2. Extensions by other authors

In this section we present several oscillation criteria for the second-order differential equa-
tions with mixed-nonlinearities whose publication were motivated by Sun and Wong’s Theorems
36 and 37. All results are rearranged in the chronological order: − in 2008, Yuan Gong Sun and
Fan Wei Meng [90]; − in 2009, Zhaowen Zheng, Xiao Wang and Hongmei Han [124], Ravi P.
Agarwal and Agacik Zafer [3]; − in 2010, Ravi P. Agarwal, Douglas R. Anderson and Agacik
Zafer [4], Yuzhen Bai and Lihua Liu [8], Sowdaiyan Murugadass, Ethiraju Thandapani and San-
dra Pinelas [64]; − in 2011, Taher S. Hassan and Qingkai Kong [43], Taher S. Hassan, Lynn
Erbe and Allan Peterson [42]; − in 2012, Jing Shao, Fanwei Meng and Xinqin Pang [82]; − in
2013, Mervan Pašić [71].

We first present the oscillation criteria for equation (3.1) due to Yuan Gong Sun and Fan
Wei Meng in [90]. For this purpose, we introduce a class of functions:

Da,b =
{

H = H(t,s) : H ∈C1([a,b]× [a,b],R
)
, H(b,t) > 0, H(s,a) > 0, ∀s,t ∈ [a,b]

}
.

Also, one can use the notation

h1(t,s) =
1

2
√

H(t,s)
∂H
∂ t

(t,s) and h2(t,s) = − 1

2
√

H(t,s)
∂H
∂ s

(t,s). (3.6)

THEOREM 38. ([90, Theorem 1] - from 2008) Let for any T > 0 there exist a pair of
intervals [a1,b1] and [a2,b2] , b1 � a2 , and two intermediate points ci ∈ [ai,bi] , i = 1,2 such
that e(t) � 0 on [a1,b1] and e(t) � 0 on [a2,b2] , and q j(t) � 0 , q j(t) �≡ 0 on (a1,b1)∪(a2,b2) ,
j = 1,2, ..,n. Let η0,η1, ...,ηn be positive constants satisfying (3.2). If there exist two functions
Hi = Hi(t,s) , Hi ∈ Dai,bi

, i = 1,2 with hi1(s,t),hi2(s,t) defined in (3.6) such that

1
Hi(ci,ai)

∫ ci

ai

(
Q(t)Hi(t,ai)− r(t)h2

i1(t,ai)
)
dt

+
1

Hi(bi,ci)

∫ bi

ci

(
Q(t)Hi(bi,t)− r(t)h2

i2(bi,t)
)
dt > 0, i = 1,2, (3.7)

where Q(t) is defined in (3.4), then equation (3.1) is oscillatory.

By this theorem, the authors showed the oscillation of the following equation with mixed nonlin-
earities (see [90, Example 1]):

x′′ +k sin t |x|α1 sgnx+ l cos t |x|α2 sgnx = −mcos2t, t � 0,

where k, l,m are three arbitrary positive constants and α1 > 1, 0 < α2 < 1. See also [90, Exam-
ple 2].

COMMENT 9. It is interesting to compare Sun-Wong’s Theorem 38 with q j(t) ≡ 0, j =
1,2, ..,n and Kong’s Theorem 27. �

In 2009, Zhaowen Zheng, Xiao Wang and Hongmei Han [124] studied the oscillation of the
second-order forced half-linear differential equation with mixed nonlinearities:

(
r(t)Φα (x′)

)′ +q(t)Φα (x)+
n

∑
j=1

q j(t)Φα j (x) = e(t), t � t0, (3.8)
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where Φα (x) = |x|α−1x , n ∈ N and αn > ... > α2 > α1 > α > 0. These exponents are not
exactly mixed in the sense of Wong’s Theorem since they are all super-half-linear. If n = 1,
then equation (3.8) becomes super-half-linear equation (3.8) considered in Zheng and Meng’s
Theorem 14.

THEOREM 39. ([124, Theorem 2.2] - from 2009) Let r(t) > 0 , e ∈C([t0,∞),R) . Assume
for any T > 0 there exist intervals [a1,b1] and [a2,b2] , T < a1 < b1 � a2 < b2 such that e(t) has
different signs on [a1,b1] and [a2,b2] . If there exist a function u ∈C1([ai,bi],R) , uα+1(t) > 0
on (ai,bi) and u(ai) = u(bi) = 0 and a positive function φ ∈C([t0,∞),R) such that

∫ bi

ai

φ(t)
[(

q(t)+
m

∑
j=1

Qj(t)
)
uα+1(t)− r(t)

(
|u′(t)|+ |u(t)| |φ ′(t)|

(α +1)φ(t)

)α+1]
dt > 0,

where

Q j(t) = α− α
α j α j[n(α j −α)]

α−α j
α j [q(t)]

α
α j |e(t)|

α j−α
α j , 1 � j � n, (3.9)

then (3.8) is oscillatory.

The author tested this theorem by the forced Duffing equation

x′′ +x+ εx3 = ε sin3 t, t � 0, (3.10)

which allows an explicit solution x(t) = sint . Even in the forced linear second-order differential
equations, oscillation and nonoscillation can occur simultaneously (since the Sturm’s theorem
generally does not hold in the forced case). However, according to Theorem 39, the authors
showed that equation (3.10) is oscillatory, by choosing for u(t) = sin t , φ(t) ≡ 1, a1 = 2kπ ,
b1 = (2k+1)π = a2 and b2 = (2k+2)π . About the oscillation of a large class of forced Duffing
equations, we refer the reader to M. Pašić [74] and references therein.

In the same year, Ravi P. Agarwal and Agacik Zafer [3] studied the oscillation of the second-
order forced half-linear dynamic equation on time scales with mixed nonlinearities:

(
r(t)Φα(xΔ)

)Δ +q(t)Φα (xσ )+
n

∑
j=1

q j(t)Φα j(x
σ ) = e(t), t ∈ [t0,∞)T, (3.11)

where Φα (x) = |x|α−1x , n ∈ N and α1 > ... > αm > α > αm+1 > ... > αn > 0. This equation
is a time scale generalization of equation (3.8).

THEOREM 40. ([3, Theorem 3.1] - from 2009) Let r(t) > 0 , q,e ∈ Crd([t0,∞)T,R) . As-
sume for any T ∈ [t0,∞)T there exist ai,bi , i = 1,2 , T � a1 < b1 � a2 < b2 such that q j(t) � 0
on [a1,b1]T ∪ [a2,b2]T for j = 1,2, ...,n and (−1)ie(t) � 0(�≡ 0) on [ai,bi]T , i = 1,2 . Let
η0,η1, ...,ηn be positive constants satisfying

n

∑
j=1

α jη j = α, 0 < η j < 1,
n

∑
j=1

η j < 1 and η0 = 1−
n

∑
j=1

η j. (3.12)

If there exists a function u ∈C1
rd(T,R) such that u(t) �≡ 0 on [ai,bi]T , u(ai) = u(bi) = 0 and

∫ bi

ai

(
Q(t)|uσ (t)|α+1− r(t)|uΔ(t)|α+1

)
Δt � 0, i = 1,2,
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where

Q(t) = q(t)+ |e(t)|η0
n

∏
j=1

(q j(t)
η j

)η j
,

then equation (3.11) is oscillatory.

In the case e(t) ≡ 0, the author established the following criterion.

THEOREM 41. ([3, Theorem 3.2] - from 2009) Let r(t) > 0 , q,e ∈ Crd([t0,∞)T,R) . As-
sume for any T ∈ [t0,∞)T there exists a subinterval [a1,b1]T of [T,∞)T such that q j(t) � 0 on
[a1,b1]T . Let η1, ...,ηn be positive constants satisfying

n

∑
j=1

α jη j = α, 0 < η j < 1 and
n

∑
j=1

η j = 1.

If there exists a function u ∈C1
rd(T,R) such that u(t) �≡ 0 on [a1,b1]T , u(a1) = u(b1) = 0 and

∫ b1

a1

(
Q(t)|uσ (t)|α+1− r(t)|uΔ(t)|α+1

)
Δt � 0,

where Q(t) is from (3.5), then equation (3.11) with e(t) ≡ 0 is oscillatory.

Especially for α = 1 and T = R , Theorems 40 and 41 become Sun and Wong’s Theorems 36
and 37. About the case (−1)ie(t) > 0 on [ai,bi]T , i = 1,2, we refer the reader to [3, Theorem
3.3].

Theorem 41 has been illustrated by the following half-linear differential equation with pos-
itive constant coefficients:(|x′|α−1x′

)′ +a|x|α−1x+b|x|α1−1x+b|x|α2−1x = 0, t � 0, (3.13)

where 0 < α2 < α < α1 . The author showed that equation (3.13) is oscillatory provided

a+
( b

η1

)η1
( c

η2

)η2 � 1,

where
η1 =

α −α2

α1 −α2
and η2 =

α1 −α
α1−α2

.

REMARK 18. In 2010 Ravi P. Agarwal, Douglas R. Anderson and Agacik Zafer in [4]
studied the oscillation of the equation (3.11) with delay arguments:

(
r(t)Φα(xΔ(t))

)Δ +q(t)Φα (x(τ0(t)))+
n

∑
j=1

q j(t)Φα j (x(τ j(t))) = e(t), t ∈ [t0,∞)T,

where τ j(t) : T → T are nondecreasing right-dense continuous functions with τ j(t) � t and
limt→∞ τ j(t) = ∞ . The author derived the delay version of Theorems 40 and 41, see [4, Theorems
3.1 and 3.2]. �

In 2010, Yuzhen Bai and Lihua Liu in [8] studied the oscillation of second-order delay
differential equation:

(
r(t)x′(t)

)′ + n

∑
j=1

r j(t)x(t − τ j)+
n

∑
j=1

q j(t)|x(t− τ j)|α j sgnx(t− τ j) = e(t), t � t0, (3.14)
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where τ j � 0 and the exponents α j are given as before. Clearly, equation (3.14) with τ j = 0, j =
1,2, ...,n , becomes equation (3.1). The following result is a differential-functional generalization
of the preceding Theorem 38 with the same notations for the set Dai,bi

, i = 1,2 and the function
h1(t,s) , except that

h2(t,s) = − 1

2
√

H(t,s)
∂H
∂ s

(t,s). (3.15)

THEOREM 42. ([8, Theorem 2.2] - from 2010) Let for any T > 0 there exist a pair of
intervals [a1,b1] and [a2,b2] , b1 � a2 , and two intermediate points ci ∈ [ai,bi] , i = 1,2 such
that e(t) � 0 on [a1 − τ j,b1] and e(t) � 0 on [a2 − τ j,b2] , r j(t) � 0 and q j(t) � 0 , q j(t) �≡ 0
on (a1 − τ j,b1)∪ (a2 − τ j,b2) , j = 1,2, ..,n. Let η0,η1, ...,ηn be positive constants satisfying
(3.2). Let there exist two functions Hi = Hi(t,s) , Hi ∈ Dai,bi

, i = 1,2 with hi1(s,t) and hi2(s,t)
defined respectively in (3.6) and (3.15) such that

1
Hi(ci,ai)

∫ ci

ai

(
Qi(t)Hi(t,ai)− r(t)h2

i1(t,ai)
)
dt

+
1

Hi(bi,ci)

∫ bi

ci

(
Qi(t)Hi(bi,t)− r(t)h2

i2(bi,t)
)
dt > 0, i = 1,2, (3.16)

where Qi(t) , i = 1,2 are two functions defined by

Qi(t) =
n

∑
j=1

r j(t)
( t −ai

t −ai + τ j

)
+ |e(t)|η0

n

∏
j=0

η−η j

j

n

∏
j=1

q
η j

j (t)
( t−ai

t−ai + τ j

)α jη j
. (3.17)

Then equation (3.1) is oscillatory.

Comparing the main conditions (3.7) and (3.16) of Theorems 38 and 42 respectively, we see that
there is only one difference between them because instead of function Q(t) the functions Qi(t) ,
i = 1,2 are appearing in (3.16). Moreover, if we put τ j = 0, j = 1,2, ...,n , and r1(t) ≡ q(t) ,
r j(t)≡ 0, j = 2, ..,n , then Q(t)≡Qi(t) , i = 1,2 and hence, Theorem 42 completely generalizes
Theorem 38. According to Theorem 42, the oscillation of the following equation with mixed
nonlinearities was shown (see [8, Section 3]):

x′′ +k sin t
∣∣∣x(t− π

8

)∣∣∣α1
sgnx

(
t− π

8

)
+ l cos t

∣∣∣x(t − π
4

)∣∣∣α2
sgnx

(
t − π

4

)
= −mcos2t, t � 0,

where k, l,m are positive constants, α1 > 1 and 0 < α2 < 1.

In 2010, Sowdaiyan Murugadass, Ethiraju Thandapani and Sandra Pinelas in [64] have
studied the oscillation of the second-order quasilinear delay differential equation:

(
r(t)(x′(t))α)′ +q(t)xα (t− τ)+

n

∑
j=1

q j(t)xα j (t− τ) = e(t), t � t0, (3.18)

where n∈N , α1 > ... > αm > α > αm+1 > ... > αn > 0, and α , α j > 0 are ratio of odd positive
integers. Analogously to (3.2), we need the positive constants η0,η1, ...,ηn satisfying (3.12).

Two kinds of oscillation criteria have been obtained as follows.

THEOREM 43. ([64, Theorem 2.6] - from 2010) Let for any T > 0 there exist a pair of
intervals [a1,b1] and [a2,b2] , T � a1 , b1 � a2 , such that e(t) � 0 on [a1− τ,b1] , e(t) � 0 on
[a2 − τ,b2] , q(t) � 0 and q j(t) � 0 on [a1 − τ,b1]∪ [a2 − τ,b2] , j = 1,2, ...,n. Let D(ai,bi)
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be the set of functions define by (2.2) and η0,η1, ...,ηn be positive constants satisfying (3.12).If
there exist two functions ui ∈ D(ai,bi) , uα+1

i > 0 on (ai,bi) and a positive, nondecreasing,
function φ ∈C([t0,∞),R) such that

∫ bi

ai

φ(t)
(

Qi(t)uα+1
i (t)− r(t)

(
|u′i(t)|+ui(t)

φ ′(t)
(α +1)φ(t)

)α+1
)

dt > 0, (3.19)

for i = 1,2 , where

Qi(t) =
(
|e(t)|η0

n

∏
j=0

η−η j

j

n

∏
j=1

q
η j

j (t)+q(t)
)( t−ai

t−ai + τ

)α
. (3.20)

Then equation (3.18) is oscillatory.

One can use the similar notations to (3.6) and (3.15):

h1(t,s) =
1

(α +1)
√

H(t,s)
∂H
∂ t

(t,s) and h2(t,s) = − 1

(α +1)
√

H(t,s)
∂H
∂ s

(t,s). (3.21)

Now we state the second oscillation criterion from [64].

THEOREM 44. ([64, Theorem 2.3] - from 2010) Let for any T > 0 there exist a pair of
intervals [a1,b1] and [a2,b2] , b1 � a2 , and two intermediate points ci ∈ (ai,bi) , i = 1,2 such
that e(t) � 0 on [a1 − τ,b1] and e(t) � 0 on [a2 − τ,b2] , q(t) � 0 and q j(t) � 0 on (a1 −
τ,b1)∪ (a2 − τ,b2) , j = 1,2, ..,n. Let η0,η1, ...,ηn be positive constants satisfying (3.12). Let
there exist two functions Hi = Hi(t,s) , Hi ∈ Dai,bi

, i = 1,2 with hi1(s,t) and hi2(s,t) defined in
(3.21) such that

1
Hi(ci,ai)

∫ ci

ai

Hi(t,ai)
(

Qi(t)− r(t)
αα

( hi1(t,ai)√
Hi(t,ai)

)α+1
)

dt

+
1

Hi(bi,ci)

∫ bi

ci

Hi(bi,t)
(

Qi(t)− r(t)
αα

( hi2(bi,t)√
Hi(bi,t)

)α+1
)

dt > 0, i = 1,2, (3.22)

where Qi(t) , i = 1,2 are two functions defined by (3.29). Then equation (3.18) is oscillatory.

The main results of [64] were illustrated by the following equation (see [64, Example 3.1]):

(
t(x′(t))3

)′ + l1 cos t
(
x
(
t− π

8

))3
+ l2(sin t)

20
11

(
x
(
t− π

8

))5
+ l3 cos4 t x

(
t− π

8

)
= −mcos5 2t,

where t � 0, and l1, l2, l3,m are positive constants. See also [64, Examples 3.1 and 3.2].

In 2011, Taher S. Hassan and Qingkai Kong in [43] studied the oscillation of the half-linear
differential equation (3.8) with damped term:

(
r(t)Φα (x′)

)′ + p(t)Φα (x′)+q(t)Φα (x)+
n

∑
j=1

q j(t)Φα j (x) = e(t), t � t0, (3.23)

where Φα (u) = |u|αsgn(u) = |u|α−1u and n∈N . Unlike equation (3.8), where α j are all super-
half-linear, in equation (3.23) exponents α j are of mixed-type i.e., α j > α > 0 for j = 1,2, ..., l
and α > α j > 0 for j = l +1, ...,n .
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The authors proved in [43, Lemma 2.1] that if

m =
α

n− l

n

∑
j=l+1

α−1
j and n =

α
l

l

∑
j=1

α−1
j

then for any δ ∈ (m,n) , there exists an n -tuple (η1,η2, ...,n) with η j > 0 satisfying:

∑
j=1

α jη j = α and ∑
j=1

η j = δ . (3.24)

This result improves the well-known lemma due to Sun and Wong [92, Lemma 1].

THEOREM 45. ([43, Theorem 2.2] - from 2011) Let for any T > 0 there exist a pair of
intervals [a1,b1] and [a2,b2] , b1 � a2 , such that e(t) � 0 on [a1,b1] and e(t) � 0 on [a2,b2] ,
and q j(t) � 0 , q j(t) �≡ 0 on (a1,b1)∪ (a2,b2) , j = 1,2, ..,n. Let D(ai,bi) , i = 1,2 be the set
of functions defined by (2.2). Let η1, ...,ηn be positive constants satisfying (3.24). Let there exist
two functions ui ∈ D(ai,bi) , i = 1,2 such that

sup
δ∈(m,1]

∫ bi

ai

(
Q(t)|ui(t)|α+1−ρ(t)r(t)|u′i(t)|α+1)dt � 0, i = 1,2, (3.25)

where

ρ(t) = exp
∫ t

0

p(s)
r(s)

ds and Q(t) = ρ(t)
(

q(t)+
( |e(t)|

1−δ

)1−δ n

∏
j=1

(q j(t)
η j

)η j
)

, (3.26)

with the notations 01−δ = 1 and (1−δ )1−δ = 1 for δ = 1 . Then equation (3.23) is oscillatory.

This theorem was illustrated with the following forced second-order differential equation with
mixed nonlinearities and damping

(
r(t)Φα(x′)

)′ − r2(t)|cos4t |α+1Φα (x′)+c0 cos4t Φα (x)

+c1 sin2t Φ 1
2 α(x)+c2 sin2t Φ 3

2 α (x) = −e(t)cos2t, t � 0,

where α > 0, c j > 0 for j = 0,1,2, r(t) > 0 on [0,∞) and e(t) ∈C([0,∞), [0,∞)) .

In 2011, Taher S. Hassan, Lynn Erbe and Allan Peterson in [42] studied the oscillation of
the half-linear functional differential equation:

(
r(t)(x′(t))α)′ +q0(t)xα (h0(t))+

n

∑
j=1

q j(t)|x(h j(t))|α jsgnx(h j(t)) = e(t), t � t0, (3.27)

where the function h j = h j(t) are positive continuous functions with limt→∞ h j(t) = ∞ , and
n ∈ N , α1 > ... > αm > α > αm+1 > ... > αn > 0. Here we use the next notation:

hmin(t) = min{t,h0(t), ...,hn(t)} and hmax(t) = max{t,h0(t), ...,hn(t)},

φi, j(t) =

⎧⎪⎨
⎪⎩

δi, j(t), h j(t) < t,

1, h j(t) = t,

ςi, j(t), h j(t) > t,
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where

δi, j(t) =
∫ hj(t)

hj(ai)

ds

r
1
α (s)

(∫ t

h j(ai)

ds

r
1
α (s)

)−1

and ςi, j(t) =
∫ hj(bi)

hj(t)

ds

r
1
α (s)

(∫ hj(bi)

t

ds

r
1
α (s)

)−1

.

In this way, the authors considered simultaneously three cases: retarded, nondeviating and ad-
vanced.

THEOREM 46. ([42, Theorem 2.5] - from 2011) Let for any T > 0 there exist a pair of
intervals [a1,b1] and [a2,b2] , T � a1 , b1 � a2 , such that e(t) � 0 on [hmin(a1),hmax(b1)] ,
e(t) � 0 on [hmin(a2),hmax(b2)] , and q j(t) � 0 on [hmin(a1),hmax(b1)]∪ [hmin(a2),hmax(b2)] ,
j = 0,2, ...,n. Let D(ai,bi) be the set of functions define by (2.2) and η0,η1, ...,ηn be positive
constants satisfying (3.12). If there exist a function u ∈ D(ai,bi) and a positive differentiable
function ρ(t) such that

∫ bi

ai

ρ(t)
(

Qi(t)uα+1(t)− r(t)
(
u′(t)+u(t)

ρ ′(t)
(α +1)ρ(t)

)α+1
)

dt > 0, (3.28)

for i = 1,2 , where

Qi(t) =
(
|e(t)|η0

n

∏
j=0

η−η j

j

n

∏
j=1

q
η j

j (t)φα jη j

i, j (t)+q0(t)φα
i,0(t)

)
. (3.29)

Then equation (3.27) is oscillatory.

See also [42, Theorems 2.6 and 2.7]. Theorem 46 was illustrated with the following forced
quasilinear differential equation with delay and advanced arguments:

(
(x′(t))α)′ +c0 sin2t xα

(
t− π

16

)
+c1 sin t

∣∣∣x(t− π
32

)∣∣∣ 3α
2

sgnx
(
t− π

32

)
+c2 cos t

∣∣∣x(t +
π
32

)∣∣∣ α
3
sgnx

(
t +

π
32

)
= −cos2t, t � 0,

where the constants ci > 0, i = 1,2,3 and α is a quotient of odd positive integers.

In 2012 Jing Shao, Fanwei Meng and Xinqin Pang in [82] studied the oscillation of equation
(3.8) (the undamped case of equation (3.23) with super-half-linear exponents α j > α > 0 for
all j = 1,2, ..,n . The author showed the following interval oscillation criterion different from
related ones presented in Theorems 39 and 45, because it uses the Komkov’s type function G(v)
introduced in Theorem 5.

THEOREM 47. ([82, Theorem 2.2] - from 2012) Let r(t) > 0 , e ∈ C([t0,∞),R) . Assume
for any T > 0 there exist intervals [a1,b1] and [a2,b2] , T < a1 < b1 � a2 < b2 such that e(t)
has different signs on [a1,b1] and [a2,b2] . Let G1,G2 be two non-negative functions such that
Gi(v) = 0 , G′

i(v) are continuous and [G′
i(v)]

α+1 � (α +1)α+1Gα+1
i (v) , ∀v ∈ R . If there exist

a function u ∈ C1([ai,bi],R) , uα+1(t) > 0 on (ai,bi) and u(ai) = u(bi) = 0 and a positive
function φ ∈C([t0,∞),R) such that

∫ bi

ai

φ(t)
[(

q(t)+
n

∑
j=1

Qj(t)
)
Gi(u(t))− r(t)

(
|u′(t)|+ G1/(α+1)

i (u(t))|φ ′(t)|
(α +1)φ(t)

)α+1]
dt > 0,

where Q j(t) is given in (3.9), then equation (3.8) is oscillatory.
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Obviously, the functions Gi(v) = v2 , i = 1,2, satisfy all required assumptions of Theorem 47
and hence, Theorem 47 generalizes Theorems 39 in the sense of Komkov’s Theorem 5. Theorem
47 was illustrated with the following forced nonlinear differential equation:(

r0t
−r1/3x′

)′ +q(t)x+q1(t)|x|2x = −sin3(t), t � 2π, (3.30)

where r0 and r1 are positive constants, q(t) = t−r1/3 exp(sint) and q1(t) = t−r1 exp(3sin t)
on [a1,b1] = [2kπ,(2k + 1)π] and q(t) = t−r1/3 exp(−sint) and q1(t) = t−r1 exp(−3sin t) on
[a2,b2] = [(2k+1)π,(2k+2)π] . The author showed that equation (3.30) is oscillatory by using
Theorem 47 especially for φ(t) = tr1/3 and u(t) = sint � 0, G1(u) = u2 exp(−u) on [a1,b1] ,
and u(t) = sin t � 0, G2(u) = u2 exp(u) on [a2,b2] .

In 2013, Pašić in [71] considered the oscillation of the following class of functional differ-
ential equations of second-order:

(
r(t)Φ(x′(t))

)′ + n

∑
i=1

ri(t) f (x(hi(t)))+
n

∑
i=1

qi(t)|x(hi(t))|αisgnx(hi(t)) = e(t), (3.31)

where the deviating arguments hi(t) may be of delay, advanced or delay-advanced types. Equa-
tion (3.31) generalizes equation (3.27) in particular for Φ(v) = |v|α−1v , since it satisfies the
general assumptions:

Φ ∈C1(R,R), Φ is odd and increasing function on R, (3.32)

Φ(v)v � |Φ(v)| α+1
α for all v ∈ R and some α > 0. (3.33)

Besides the half-linear function Φ(v) = |v|α−1v , the function of prescribed mean curvature
Φ(v) = v(1+ v2)−1/2 also satisfies the required assumptions (3.32) and (3.33). The exponents
αi are as usual of mixed type and satisfy⎧⎪⎪⎨

⎪⎪⎩
α1 � ... � αm > α > αm+1 � ... � αn > 0, m ∈ N, αi > αi+1, i ∈ {1, ...,n−1},
there exists (n+1)-tuple (η0,η1, .....,ηn) such that

0 < ηi < 1, ∑n
i=1 ηi < 1, η0 = 1−∑n

i=1 ηi and ∑n
i=1 αiηi = α,

(3.34)

where α is from assumption (3.33). The function f = f (y) satisfies two assumptions:

{
f (y) is odd function on R,

f (y)/yp � K > 0 for all y > 0 and some K ∈ R,
(3.35)

where α > 0 is from assumption (3.33). Unlike the previous oscillation criteria, the following
criterion is based on an elementary integral inequality:

1
2πα

∫ bj

a j

min
{ α

(λ jr(t))1/α ,λ j
(
R j(t)+Qj(t)

)}
dt � 1, j ∈ {1,2}, (3.36)

where a1 < b1 � a2 < b2 , α is from (3.33), πα = α
α+1 π/sin απ

α+1 , λ j > 0, and functions Qj(t) ,
R j(t) are explicitly expressed by the coefficients of equation (3.31). In the delay case, we have:

THEOREM 48. ([71, Theorem 1] - from 2013) Let (3.32), (3.33), (3.34) and (3.35) hold.
Let r(t) be a nondecreasing positive function on [t0,∞) . Let hi(t) = τi(t) � t on [t0,∞) and
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limt→∞ τi(t) = ∞ , i ∈ {1,2, ...,n} . Let for every T � t0 there exist a1,b1,a2,b2 , T � a1 < b1 �
τmin(a2) � a2 < b2 such that:

ri(t) � 0 and qi(t) � 0 on [τmin(a1),b1]∪ [τmin(a2),b2], (3.37)

e(t) � 0 on [τmin(a1),b1] and e(t) � 0 on [τmin(a2),b2], (3.38)

where τmin(t) = min{τ1(t),τ2(t), ...,τn(t)} . Then equation (3.31) is oscillatory provided there
are two real parameters λ1,λ2 > 0 such that (3.36) is fulfilled, where:

R j(t) = K
n

∑
i=1

ri(t)
(τi(t)− τi(a j)

t− τi(a j)

)p
, (3.39)

Qj(t) =
(
η−1

0 |e(t)|)η0
n

∏
i=1

(
η−1

i qi(t)
)ηi

n

∏
i=1

(τi(t)− τi(a j)
t− τi(a j)

)αiηi
, (3.40)

for t ∈ [a j,b j] , j ∈ {1,2} and positive constants p, K , ηi appearing respectively in (3.33),
(3.35) and (3.34).

This theorem was illustrated with the following class of second-order nonlinear differential equa-
tions of multiple delay arguments and with Emden-Fowler type nonlinearities:

x′′(t)+
n

∑
i=1

qi(t)|x(τi(t))|αisgnx(τi(t)) = e(t), (3.41)

where qi(t) , τi(t) and e(t) are as in Theorem 48. The author showed that equation (3.41) is
oscillatory provided

1
π

∫ bj

a j

Q j(t)dt �
√

max
t∈[aj ,bj ]

Qj(t) > 0, j = 1,2,

where Qj(t) is defined in (3.40). On related oscillation criteria in the advanced and delay-
advanced cases, we refer reader to [71, Theorems 10 and 12] and [71, Corollaries 11 and 13].

Recently in the oscillation theory, the following type of differential equations with non-
linearities given by Riemann-Stieltjes integrals is considered, which in some extent, generalizes
equations with mixed nonlinearities:

(
r(t)|x′(t)|psgn(x′(t))

)′ +q0(t)|x(t)|psgn(x(t))+
∫ b

0
q(t,s)|x(t)|α(s)sgn(x(t))dζ (s) = e(t),

(3.42)
where b ∈ (0,∞) , α ∈C((0,b],R) is strictly increasing and

∫ b
0 f (s)dζ (s) denotes the Riemann-

Stieltjes integral of the function f (s) on [0,b) with respect to ζ . On the oscillation criteria for
equation (3.42), we refer the reader to Sun and Kong [91], Hassan and Kong [44], Zeng [122]
and references therein.

4. Wong’s oscillation criteria involving a general mean

In 2000, James S.W. Wong in his paper [109] developed a general integral averaging method
and related oscillation criteria for the following general class of second-order differential equa-
tions:

x′′ +q(t) f (x) = 0, t ∈ [0,∞), (4.1)
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where the continuous function q(t) may change sign and

f ∈C(R,R)∩C1(R/{0},R), f ′(y) � 0 and y f (y) > 0, ∀y �= 0. (4.2)

The unforced Emden-Fowler equation is equation (2.10) with e(t) ≡ 0 i.e.,

x′′ +q(t)|x|γ sgn(x) = 0, γ > 0. (4.3)

Equation (4.3) is a prototype of general equation (4.1), since the function f (y) = |y|γsgn(y) ,
γ > 0, satisfies all properties given in (4.2), see (i)-Comment 10 below. As in equation (4.3),
where 0 < γ < 1 and γ > 1, two cases are studied:

− the sub-linear

0 <
∫ y

0±
dv
f (v)

< ∞, ∀y �= 0, (4.4)

with the additional the so-called strictly sub-linear condition (introduced by Manabu Naito [65])

f ′(y)
∫ y

0±
dv
f (v)

� c−1 > 0, ∀y �= 0, (4.5)

where 0± = 0+ if y > 0 and 0± = 0− if y < 0, and c is a positive constant only depending on
f , and

− the super-linear

0 <
∫ ∞

y

dv
f (v)

< ∞ and 0 <
∫ −∞

−y

dv
f (v)

< ∞, ∀y > 0, (4.6)

with the additional the so-called strictly super-linear condition (see [65])

min

{
f ′(y)

∫ ∞

y

dv
f (v)

, f ′(−y)
∫ −∞

−y

dv
f (v)

}
� d > 1, ∀y > 0, (4.7)

where the constant d only depends on f . It is simple to check that if f (y) = |y|γ sgn(y) , γ > 0,
then (4.4)-(4.5) and (4.6)-(4.7) are satisfied provided 0 < γ < 1 and γ > 1 respectively.

COMMENT 10. About hypotheses (4.2) and (4.4)-(4.7) one can say the following:

(i) Although the function sgn(y) is not continuous at y = 0, the equality f (y) = |y|γsgn(y) =
|y|γ−1y ensures that f (y) is continuous on R and f ′(y) = γ |y|γ−1 . This implies f ∈C1(R,R)
for γ � 1 and f ∈C1(R/{0},R) for 0 < γ < 1.

(ii) In assumptions (4.2) and (4.4)-(4.7), the case y < 0 is equivalently treated with the case
y > 0. As a consequence, in the proofs of the main results one can work only with the positive
nonoscillatory solution of (4.1) without loss of generality. However, it should be very careful
with this trick in general, since for certain classes of equations the proposed assumptions are not
enough to work only with positive nonoscillatory solutions without loss of generality. In such a
case, the nonoscillatory solutions must be considered without assuming their signs.

(iii) Assumption (4.2) implies that f (y) is positive (resp. negative) for y positive (resp. negative).
Hence, the inequalities

0 <

∫ y

0±
dv
f (v)

, ∀y �= 0, and 0 <

∫ ∞

y

dv
f (v)

, 0 < −
∫ −y

−∞

dv
f (v)

, ∀y > 0,

can be removed from (4.4) and (4.6).
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(iv) From (4.2) it follows f (0) = 0 and thus, the function 1/ f (v) has a singular point at 0 .
Hence, the super-linear condition (4.7) can not be written only with one integral

f ′(y)
∫ ∞

y

dv
f (v)

� d > 1, ∀y ∈ R,

and so, it has to be divided into two ones over (−∞,−y] and [y,∞) where y > 0. Consequently,
unlike sub-linear condition (4.5), the super-linear condition (4.6) (and (4.7)) should involve two
integrals. �

4.1. Main results

Before we discuss the key point of an integral averaging technique and some kinds of inte-
gral means (classic, of convolution type and general), we consider the nonnegative kernel func-
tion h(t,s) introduced for the first time by Philos [76] satisfying the following properties:

h(t,t) ≡ 0 and
∂h
∂ s

(t,s)
∣∣∣
s=t

≡ 0 for t � t0, (4.8)

∂h
∂ s

(t,s) � 0 and
∂ 2h

∂ s2
(t,s) � 0 for t � s � t0, (4.9)

−
∂h
∂ s (t,s)

∣∣∣
s=t0

h(t,t0)
� M0 for t � t0, (4.10)

where in (4.10) the indefinite limit form 0
0 appears at t = t0 and M0 is a constant depending

only on t0 . The first main result of this section is the following Wong’s oscillation criterion for
the sub-linear equation (4.1).

THEOREM 49. ([109, Theorem 1] - from 2000) Let q∈C([t0,∞),R) and f (y) satisfy (4.2)
and (4.4). Suppose that there exists a non-negative kernel function h(t,s) on {(t,s) : t � s � t0}
satisfying (4.8)-(4.10). If q(t) satisfies

limsup
t→∞

1
h(t,t0)

∫ t

t0
h(t,s)q(s)ds = ∞, (4.11)

then the sub-linear equation (4.1) is oscillatory.

A basic example for the functions h(t,s) satisfying hypotheses (4.8)-(4.10) is h(t,s) = (t − s)α ,
α > 1. Regarding to the proof of Theorem 49, the additional ”strictly sub-linear condition” (4.5)
is used only in [109, Theorem 2]. A summary on the oscillation criteria concerning the sub-linear
equation (4.1) is made in Section 4.3 including Theorem 49 as well as other results from Section
4.2.

Next, two additional conditions on the kernel function h(t,s) are added: for two constants
b0 and B0 depending only on t0 ,

0 < b0 � lim
t→∞

h(t,s)
h(t,t0)

� B0 < ∞ for s � t0, (4.12)

−
∂h
∂ s (t,s)

∣∣∣
s=τ

h(t,τ)
= o(1) for all τ � t0 as t → ∞. (4.13)

The second main result of this section is the following Wong’s oscillation criterion for the super-
linear equation (4.1).
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THEOREM 50. ([109, Theorem 3] - from 2000) Let q ∈ C([t0,∞),R) and f (y) satisfy
(4.2), (4.6) and (4.7). Suppose that there exist two non-negative kernel functions h1(t,s) and
h2(t,s) on {(t,s) : t � s � t0} satisfying (4.8)-(4.10) and (4.12)-(4.13), and in addition,

∣∣∣∂h2

∂ s
(t,s)

∣∣∣2 � d1
∂ 2h2

∂ s2
(t,s)h2(t,s), (4.14)

where the positive constant d1 < d and d is from (4.7). If q(t) satisfies

limsup
t→∞

1
h1(t,t0)

∫ t

t0
h1(t,s)q(s)ds = ∞, (4.15)

and

−∞ < liminf
t→∞

1
h2(t,t0)

∫ t

t0
h2(t,s)q(s)ds < 0, (4.16)

then super-linear equation (4.1) is oscillatory.

Two basic kernel functions satisfying (4.8)-(4.10) and (4.12)-(4.14) are h1(t,s) = (t−s)α , α > 1
and h2(t,s) = (t − s)β , β � 0, see [109, Corollary 3]. By the main results of [109] we see that
the Emden-Folwer equation:

x′′ + tσ sin(t)|x|γsgn(x) = 0, t > 0, γ > 0, (4.17)

is oscillatory provided σ > 1. In the super-linear case γ > 1, it was known by Butler [12]
that equation (4.17) is oscillatory if and only if σ � −1. In the sub-linear case 0 < γ < 1, by
Kura’s Theorem 64 below, (4.17) is oscillatory if σ > −γ . For γ = 1, (4.17) becomes the well
known Willet-Wong linear differential equation presented with details in Remark 21 in the next
subsection.

Another example considered in [109] with a non-Emden-Fowler nonlinear term f (y) and
the same coefficient q(t) as in (4.17):

x′′ + tσ sin(t)|x|1/2(1+ |x|)sgn(x) = 0, t > 0,

shows that this equation is oscillatory provided σ > 1 such as equation (4.17).
On some known important properties of the integral mean or integral average of a contin-

uous function Q(t) over the interval [t0,t] such as the Lebesgue-Besicovitch theorem, Poincaré
and Jensen inequalities, etc. we refer the reader to [11, 17, 28].

REMARK 19. (i) Using integration by part, it is easy to show that the integral mean of the
primitive function of q(t) is equal to the integral average (of convolution-type) of q(t) , because
of the integral identity: ∫ t

t0

∫ s

t0
q(τ)dτds =

∫ t

t0
(t− s)q(s)ds. (4.18)

(ii) In all observation in this section, the integral mean in various limit forms will apear as
1
t

∫ t
t0 Q(t) instead of 1

t−t0

∫ t
t0 Q(t) for some Q(t) , because

lim
t→∞

1
t− t0

∫ t

t0
Q(τ)dτ = lim

t→∞

t − t0
t

lim
t→∞

1
t− t0

∫ t

t0
Q(τ)dτ = lim

t→∞

1
t

∫ t

t0
Q(τ)dτ. (4.19)

(iii) From (4.18) and (4.19), it follows

lim
t→∞

1
t

∫ t

t0

∫ s

t0
q(τ)dτds = ∞ ⇒ lim

t→∞

1
t − t0

∫ t

t0
(t− s)q(s)ds = ∞, (4.20)
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and by Wong’s survey paper [111], dedicated to Paul Waltman, for any α > 1, it holds

lim
t→∞

1
t− t0

∫ t

t0
(t− s)q(s)ds = ∞ ⇒ lim

t→∞

1
(t− t0)α

∫ t

t0
(t− s)αq(s)ds = ∞. (4.21)

Thus, the integral mean of convolution type appearing on the right-hand side of (4.21) is more
general in the limit sense than the classic integral mean appearing on the left-hand side of (4.20).
Therefore, replacing the term (t − s)α with the general kernel function of Philos-type h(t,s) ,
Wong called the general mean of q(t) the next integral

1
h(t,t0)

∫ t

t0
h(t,s)q(s)ds. �

4.2. This type of oscillation criteria by other authors from 1949 to 1999

In this subsection, we present in the chronological order the oscillation criteria involving
the integral mean by other authors published in the period from 1949 to 1999 and consequently,
preceded Wong’s Theorems 49 and 50 from 2000.

• The first oscillation criteria including integral mean were devoted to the unforced second-
order linear differential equation:

(r(t)x′)′ +q(t)x = 0, t � t0. (4.22)

In 1949, Aurel Wintner in his paper [100] gave the first such a criterion.

THEOREM 51. ([100] - from 1949) Let r(t) ≡ 1 and q ∈C([t0,∞),R) . If

lim
t→∞

1
t

∫ t

t0

∫ s

t0
q(τ)dτds = ∞, (4.23)

then the linear equation (4.22) is oscillatory.

We illustrate this criterion in the next example and remark.

EXAMPLE 5. For any constant a > 0, the equation

x′′ +
a

t ln(t)
x = 0, t > 1, (4.24)

is oscillatory. In fact, by an elementary calculation we have:

∫
dτ

τ ln(τ)
= ln(ln(τ)), lim

s→∞
[ln(ln(s))] = ∞ and lim

t→∞

∫ t
t0 ln(ln(s))ds

t
= ∞,

and therefore, the function q(t) = a/[t ln(t)] satisfies (4.23). Thus, by Theorem 51 one can
conclude that equation (4.24) is oscillatory for any a > 0. �

REMARK 20. If a > 1/4, then the oscillation of equation (4.24) also follows from the
Sturm comparison principle, since for a > 1/4 and some λ0 ∈ (1/4,a) , it holds a/(t ln(t)) �
λ0/t2 for all t > 1 and using that Euler equation x′′ +(λ0/t2)x = 0 is oscillatory. �
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• In 1952 Philip Hartman in [39] showed that if ” lim” in (4.23) is replaced by ”limsup”,
then the corresponding condition is not enough for the oscillation of equation (4.22).

THEOREM 52. ([39] - from 1952) Let r(t) ≡ 1 and q ∈C([t0,∞),R) . If q(t) satisfies

−∞ < liminf
t→∞

1
t

∫ t

t0

∫ s

t0
q(τ)dτds < limsup

t→∞

1
t

∫ t

t0

∫ s

t0
q(τ)dτds � ∞, (4.25)

then linear equation (4.22) is oscillatory.

The key point of this criterion is that ” liminf” in (4.25) must be finite and not equal to ”limsup”.
For instance, if q(t) = sint , then (4.25) does not hold since:

liminf
t→∞

1
t

∫ t

t0

∫ s

t0
sin(τ)dτds = limsup

t→∞

1
t

∫ t

t0

∫ s

t0
sin(τ)dτds = 0. (4.26)

Theorem 52 was illustrated with the equation x′′ + t sin(t)x = 0 showing that all its solutions
oscillate, see also the next example. On this equation, Wintner’s Theorem 51 fails.

EXAMPLE 6. For any amplitude a �= 0 and frequency ω �= 0, the equation

x′′ +at sin(ωt)x = 0, t > 0, (4.27)

is oscillatory. For a given q(t) and t0 , let

Wq(t;t0) =
1
t

∫ t

t0

∫ s

t0
q(τ)dτds.

By an elementary calculation, it is easy to verify that for the function q(t) = at sin(ωt) ,

liminf
t→∞

Wq(t;t0) = c0 − |a|
ω2 < c0 +

|a|
ω2 = limsup

t→∞
Wq(t;t0), (4.28)

where the constant c0 = a[t0ω cos(ωt0)− sin(ωt0)]/ω2 . Thus, condition (4.25) is satisfied in
this case and by Theorem 52, equation (4.27) is oscillatory. For instance, if q(t) = t sin(t) and
t0 = π , then Wq(t;π) = −sin(t)− π − (2cos(t) + 2− π2)/t and its graph is given in the next
figure:

20 40 60 80 100

�4

�3

�2

�1

Figure 1: the graph of function Wq(t;π);

liminft→∞Wq(t;π) = −π −1 < −π +1 = limsupt→∞Wq(t;π). �
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REMARK 21. (on the Willet-Wong equation) The linear differential equation (4.27) is a
special case of the following class of linear differential equations, the so-called Willet-Wong
equation,

x′′ +atσ sin(ωt)x = 0, t > 0, a,σ ,ω ∈ R/{0}. (4.29)

For the first time, this class of linear differential equation was considered in Willet [99] and Wong
[101] in particular for σ = −1 and ω = 1. It was shown that equation (4.29) is oscillatory if
and only if a > 1/

√
2 . Moreover, Wong in [101] showed that for σ = −1 and ω �= 0 equation

(4.29) is oscillatory if |a/ω| > 1/
√

2 . �

• In 1954 Emilio Gagliardo in [30] proved the following criterion involving a classic inte-
gral mean.

THEOREM 53. ([30, Theorem ] - from 1954) Let r ∈ C1([t0,∞),R) and r(t) > 0 , q ∈
C([t0,∞),R) . If there exists a function η ∈C2([t0,∞),R) , η > 0 , such that

lim
t→∞

∫ t

t0

1
r(s)η2(s)

ds = ∞ and lim
t→∞

1
t

∫ t

t0

∫ s

t0

[(
r(τ)η ′(τ)

)′ +q(τ)η(τ)
]
η(τ)dτds = ∞,

(4.30)
then the linear equation (4.22) is oscillatory.

It is interesting that especially for q(t) � 0 and η(t) ≡ 1, from (4.30) we obtain the well-known
Fite-Wintner-Leighton oscillation criterion:

∫ ∞ 1/r(s)ds =
∫ ∞ q(s)ds = ∞ . In fact, since q(t) �

0 and (t−s)/t ∈ [0,1] for all s∈ [t0,t] , from (4.18) and the second statement in (4.30), we obtain

lim
t→∞

∫ t

t0
q(s)ds � lim

t→∞

1
t

∫ t

t0
(t− s)q(s)ds = lim

t→∞

1
t

∫ t

t0

∫ s

t0
q(τ)dτds = ∞.

Thus, in this case, criterion (4.30) is a special case of the Fite-Wintner-Leighton oscillation cri-
terion.

• In 1955 Calvin R. Putnam in [78] gave a variant of Hartman’s Theorem 52.

THEOREM 54. ([78] - from 1955) Let r(t) ≡ 1 and q ∈C([t0,∞),R) . If there exists c > 0
such that q(t) satisfies

∫ t

t0
q(s)ds > e−ct , t � t0, (4.31)

limsup
t→∞

1
t

∫ t

t0

∫ s

t0
q(τ)dτds = ∞, (4.32)

then linear equation (4.22) is oscillatory.

It seems that condition (4.31) is not necessarily a special case of Hartman’s condition (4.25).
Indeed, from (4.31) we obtain

liminf
t→∞

1
t

∫ t

t0

∫ s

t0
q(τ)dτds � lim

t→∞

1
ct

(
e−ct0 −e−ct) = 0,

and thus, ” liminf” may be equal to ∞ , which is not possible in (4.25). Hence, Theorem 54 is
different from Hartman’s Theorem 52.
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• In 1968 William J. Coles in [18] introduced the so-called weighted average

1∫ t
t0 w(s)ds

∫ t

t0
w(s)Q(s)ds

of a function Q(t) with respect to a nonnegative locally integrable function w(t) such that∫ t
t0 w(t)dt �≡ 0, in the next called as ”weighted function”, see also Willett [99].

THEOREM 55. ([18, Theorem 1] - from 1968) Let r(t) ≡ 1 and q ∈C([t0,∞),R) . If there
exists a weighted function w(t) such that for some k , 0 � k < 1 ,

lim
t→∞

∫ t

t0

w(s)
(∫ s

t0 w(τ)dτ
)k

∫ s
t0 w2(τ)dτ

ds = ∞ and lim
t→∞

1∫ t
t0 w(s)ds

∫ t

t0
w(s)

∫ s

t0
q(τ)dτ = ∞, (4.33)

then linear equation (4.22) is oscillatory.

According to Theorem 55, one can show that equation x′′ + t2 sin(t)x = 0 is oscillatory. But, it
can not be obtained by Wintner’s Theorem 51 and Hartman’s Theorem 52.

• In 1971, Coppel in his book [19] studied the oscillation of the one-parameter linear
differential equation

x′′ +λq(t)x = 0, (4.34)

where the coefficient q(t) has the integral mean value equal to zero, i.e.

lim
t→∞

1
t

∫ a+t

a
q(τ)dτ = 0, (4.35)

uniformly for a ∈ R .

THEOREM 56. ([19, Theorem 14] - from 1971) Let q(t) �≡ 0 be an almost periodic func-
tion. If (4.35) holds, then equation (4.34) is oscillatory for every λ �= 0 .

On the definition and properties of the almost periodic functions, we refer reader to the book by
Besicovitch [10]. Since a periodic function is also almost periodic and

∫ 2π
0 sin tdt = 0, with the

help of Theorem 56 one can show that the equation x′′ + sin t x = 0 is oscillatory. The periodic
case in Theorem 56 can be characterized by the properties (4.35), see Stanek [85]. It is also true
in the almost periodic case which will be presented in Halvorsen and Mingarelli’s Theorem 72
below.

• In 1971 Kamenev in [46] studied the unforced Emden-Fowler equation (4.3): x′′ +
q(t)|x|γ sgn(x) = 0, γ > 0. He showed that in sub-linear case of (4.3), that is, 0 < γ < 1, the
Wintner oscillation criterion (4.23) still holds if ” lim” is replaced by ”limsup”. We mentioned
before that Hartman proved that it is not true in the linear case.

THEOREM 57. ([46] - from 1971) Let 0 < γ < 1 and q ∈ C([t0,∞),R) . If q(t) satisfies
(4.32), then sub-linear Emden-Fowler equation (4.3) is oscillatory.

This Kamenev’s result drew much attention from many authors. The function q(t) = t2 sint
satisfies the required condition (4.32) which is not the case with q(t) = sint and q(t) = t sint
because of (4.26) and (4.28) respectively.

• In 1973 Wong in [102] studied the super-linear case of the Emden-Fowler equation (4.3),
that is γ > 1, and deduced the first oscillation criterion including integral mean for such a class
of equations.
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THEOREM 58. ([102] - from 1973) Let γ > 1 and q∈C([t0,∞),R) . If q(t) satisfies (4.32)
and

−∞ < liminf
t→∞

∫ t

t0
q(s)ds < 0, (4.36)

then the super-linear Emden-Fowler equation (4.3) is oscillatory.

COMMENT 11. In Wong’s condition (4.36) the term under ”liminf” is different from re-
lated term in Hartman’s condition (4.25). Hence, one can pose question about the relation be-
tween them, that is, between

−∞ < liminf
t→∞

∫ t

t0
q(s)ds < 0 and −∞ < liminf

t→∞

1
t

∫ t

t0

∫ s

t0
q(τ)dτds < ∞. (4.37)

The answer to this question is left to the reader. �

We demonstrate Wong’s Theorem 58 in the next example.

EXAMPLE 7. The super-linear Emden-Fowler equation

x′′ +
(
t cos(t)+ sin(t)+1

)|x|γ sgn(x) = 0, t � t0, γ > 1, (4.38)

is oscillatory. Choose T0 � t0 such that T0 �= 3
2 π + 2nπ , n ∈ N . Now, for q(t) = t cos(t) +

sin(t)+1, we have that the functions:

Q(t;T0) =
∫ t

T0

q(τ)dτ and W (t;T0) =
1
t

∫ t

T0

∫ s

T0

q(τ)dτds,

satisfy:

Q(t;t0) = t sin(t)+ t +c0,

W (t;T0) =
1
t

(
− t cos(t)+ sin(t)+

1
2
t2 +c0t +c1

)
,

where c0 =−T0 sin(T0)−T0 < 0 for T0 �= 3
2 π +2nπ and c1 ∈ R depending only on T0 . Hence,

liminf
t→∞

Q(t;T0) = liminf
t→∞

(
t(sin(t)+1)

)
+c0 = 0+c0 ∈ (−∞,0),

limsup
t→∞

W (t;T0) = 1+c0 +
1
2

limsup
t→∞

t = ∞.

Consequently, conditions (4.32) and (4.36) are satisfied. By Wong’s Theorem 58, we conclude
that equation (4.38) is oscillatory. The graphs of both functions Q(t;T0) and W (t;T0) for q(t) =
t cos(t)+ sin(t)+1 and T0 = π are given in the next figure:
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Figure 2 - left: the graph of function Q(t;π) ; Figure 2 - right: the graph of function
W (t;π)

liminft→∞ Q(t;π) = −π < 0; limsupt→∞W (t;π) = ∞ . �

In the same way as in the previous example, we can show the next one.

EXAMPLE 8. For any amplitude a > 0 and frequency ω �= 0, the super-linear Emden-
Fowler equation

x′′ +a
(
ωt cos(ωt)+ sin(ωt)+1

)|x|γ sgn(x) = 0, t � t0, γ > 1,

is oscillatory. �

• In 1975 Hiroshi Onose studied in [70] more general class of second-order differential
equations containing the Emden-Fowler equation (4.3) as a particular case, it is equation (4.1):
x′′ + q(t) f (x) = 0 studied by Wong in the main results of this section, see Theorems 49 and
50 above. It seems that the following theorem is the first oscillation criterion involving integral
mean for equation (4.1) in the super-linear case which extends Wong’s Theorem 58 from the
Emden-Fowler equation (4.3) to general equation (4.1).

THEOREM 59. ([70, Theorem 3] - from 1975) Let q ∈C([t0,∞),R) . Assume f (y) satisfy
the super-linear condition (4.6) and

f ∈C1([0,∞),R), f ′(y) � k > 0 for all y �= 0 . (4.39)

If q(t) satisfies (4.32) and (4.36), then super-linear equation (4.1) is oscillatory.

By Theorem 59, the author showed that the nonlinear equation x′′+q(t)(x3 +x) = 0 is oscillatory.

COMMENT 12. The Emden-Fowler nonlinearity f (y) = |y|γsgny , γ > 1, satisfies the gen-
eral super-linear condition (4.6) but not (4.39) since for y > 0 we have f ′(y) = γyγ−1 → 0 as
y → 0. Hence, Theorem 59 can not be applied on the super-linear Emden-Fowler equation (4.3).
�

EXAMPLE 9. A class of the nonlinear function f (y) that satisfies both conditions (4.6) and
(4.39) is the following linear perturbation of the Emden-Fowler super-nonlinearity:

f (y) = |y|γ sgny+ky, γ > 1, k > 0. �

• In 1978 Yung-Ming Chen in his paper [15] extended Wong’s Theorem 58 from the
Emden-Fowler equation (4.3) to general equation (4.1).

THEOREM 60. ([15, Theorem 1] - from 1978) Let q ∈ Lloc([t0,∞),R) . Assume f (y) > 0
for y > 0 and for some α,β , 1 < α < β < ∞ ,

y−α f (y) is nondecreasing and y−β f (y) is nonincreasing in (0,∞) . (4.40)

If q(t) satisfies (4.32) and (4.36), then general equation (4.1) is oscillatory.

Condition (4.40) was illustrated with the function f (y) = y2(1+log+ y)3 , where η+ = max{η,0}
for all η ∈ R .
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COMMENT 13. For the Emden-Fowler type of nonlinearity f (y) = |y|γ sgn(y) , γ > 0,
Chen’s condition (4.40) holds provided y−αyγ is nondecreasing and y−β yγ is nonincreasing
on (0,∞) . It is for γ −α � 0 and γ −β � 0, which implies β � γ � α > 1. Thus, Theorem 60
can be applied on the super-linear Emden-Fowler equation since one can always chose α and β
such that 1 < α � γ � β . �

• The problem whether or not ” lim” in Winter’s criterion (4.23) can be replaced by ”limsup”
is solved by Kamenev in his Theorem 57 for the sub-linear case of Emden-Fowler equation (4.3).
Although by Hartman’s result this is not possible in the linear case, fortunately, in 1978 Kamenev
in [47] gave an alternative solution of this problem in the linear case, as follows.

THEOREM 61. ([47] - from 1978) Let r(t) ≡ 1 and q ∈C([t0,∞),R) . If for some n > 2 ,

limsup
t→∞

1
tn−1

∫ t

t0
(t − s)n−1q(s)ds = ∞, (4.41)

then linear equation (4.22) is oscillatory.

It was the first result where the weighted mean of q(t) is involved. The Wintner condition (4.23)
is weaker than (4.41) because of the statements (4.20) and (4.21). Thus, Kamenev’s Theorem 61
is stronger than Wintner’s Theorem 51.

• In 1980 Butler in his paper [12] proved that the Wintner oscillation criterion (4.23) still
holds for the Emden-Fowler equation (4.3) with γ > 1.

THEOREM 62. ([12] - from 1980) Let γ > 1 and q ∈C([t0,∞),R) . If q(t) satisfies (4.23),
then super-linear Emden-Fowler equation (4.3) is oscillatory.

The main limitation of Theorem 62, in the contrast to Wong’s Theorem 58, is the term ”lim”
appearing originally in Wintner condition (4.23).

• In 1989 Cheh-Chih Yeh in his paper [119] considered a general class of equations with a
functional term:

x′′(t)+q(t)F(x(t),x(h(t)) = 0, t � t0, (4.42)

where the nonlinear and functional terms F(u,v) and h(t) satisfy h1(t) � h(t) , 0 < k � h′1(t) � 1
and:

∃M > 0, lim inf
v→∞

∣∣∣F(u,v)
v

∣∣∣ � c > 0 for all v � M . (4.43)

Especially for the Emden-Fowler nonlinearity f (y) = |y|γsgn(y) , γ > 0, if we put F(u,v) =
|v|γsgn(v) , h1(t) = h(t) = t , k ≡ 1, then (4.43) is fulfilled provided γ � 1.

THEOREM 63. ([119, Theorem 1] - from 1980) If (4.43) holds, q(t) � 0 and for some
n > 2 ,

limsup
t→∞

1
n!tn−1

∫ t

t0
(t − s)n−1q(s)ds = ∞, (4.44)

then the nonlinear equation (4.42) is oscillatory.

On the one hand, Theorem 63 is a variant of Travis oscillation criterion of integral type not
involving the integral mean, see [95]. On the other hand, Kamenev’s oscillation criterion (4.41)
is comparable in some sense with (4.44).
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REMARK 22. Hamedani and Krenz in their paper [38] studied the second-order functional
differential equation x′′(t)+q(t) f (x(t),x(h(t))g(x′(t)) = 0 that especially for g(y) = 1 contains
the functional equation (4.42) considered in Trevis [95] and Yeh [119]. They established an
integral oscillation criterion for this equation but without using integral mean and hence, it is not
presented here. �

• In 1982 Takeshi Kura in [54] considered the sub-linear Emden-Fowler equation (4.3) and
he generalized Kamenev’s Theorem 57 in the following sense.

THEOREM 64. ([54, Theorem 1] - from 1982) Let 0 < γ < 1 and q ∈C([t0,∞),R) . If for
some β ∈ [0,γ ] ,

limsup
t→∞

1
t

∫ t

t0

∫ s

t0
τβ q(τ)dτds = ∞, (4.45)

then sub-linear Emden-Folwer equation (4.3) is oscillatory.

For β = 0 condition (4.45) becomes (4.32) and thus, Theorem 64 is a generalization of Kamenev’s
Theorem 57. The author illustrated Theorem 64 by (4.17): x′′ + tσ sin(t)|x|γsgn(x) = 0, 0 < γ <
1, and showed that all its solutions oscillate provided σ > −γ . Let us remark that Butler in [12]
conjectured that this equation is oscillatory if and only if σ > −γ .

• In 1982 Yeh in [120] studied the second-order nonlinear differential equations with damp-
ing term:

x′′ + p(t)x′ +q(t) f (x) = 0, (4.46)

where p(t),q(t), f (y) are continuous on their domains and q(t) may change its sign.

THEOREM 65. ([120, Theorem 1] - from 1982) Let p,q ∈ C([t0,∞),R) . Assume f (y)
satisfy (4.2) and (4.39). If for some integer n > 2 ,

limsup
t→∞

1
tn−1

∫ t

t0
(t− s)n−1sq(s)ds = ∞, (4.47)

and

lim
t→∞

1
tn−1

∫ t

t0
s
[
(t− s)

(
p(s)− 1

s

)
+n−1

]2
(t− s)n−3ds < ∞, (4.48)

then the damped equation (4.46) is oscillatory.

COMMENT 14. If p(t) ≡ 0, then (4.48) is not satisfied, and hence Theorem 65 does not
contain the undamped case. In order to show that, let chose a large enough t such that t0

t � 1
2n for

a fixed n � 3. Then for all τ � 1
2n , we have 1−nτ � 1

2 and 1− τ � 1
2n . Hence, by substitution

τ = s
t we obtain

1
tn−1

∫ t

t0
s
[
(t − s)

(
0− 1

s

)
+n−1

]2
(t − s)n−3ds

=
∫ 1

t0
t

1
τ
(1−nτ)2(1− τ)n−3dτ �

∫ 1
2n

t0
t

1
τ
(1−nτ)2(1− τ)n−3dτ

� 1
4

(
1− 1

2n

)n−3 ∫ 1
2n

t0
t

1
τ

dτ =
1
4

(
1− 1

2n

)n−3
ln

t
2nt0

→ ∞

as t → ∞ . Note that condition (4.47) is a little bit different from (4.41) because, instead of q(s) ,
the function sq(s) is appearing. �
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Theorem 65 was applied to the Euler differential equation

x′′ + 1
t
x′ + 1

t2
x = 0, t > 0, (4.49)

to show that all its solutions are oscillatory. Another way to verify the oscillation of equation
(4.49) is to check that x1(t) = cos(ln t) and x2(t) = sin(lnt) are two its solutions and using
Sturm’s separation theorem.

COMMENT 15. By Comment 12, the Emden-Fowler nonlinearity f (y) = |y|γsgny , γ > 1,
does not satisfy the required condition (4.39) and hence, Yeh’s Theorem 65 can not be applied to
the super-linear Emden-Fowler equation (4.3). �

• In 1983 Christos G. Philos in [75] studied oscillation of equation (4.1): x′′+q(t) f (x) = 0
in the sub-linear case.

THEOREM 66. ([75] - from 1983) Let q ∈ C([t0,∞),R) . Assume f (y) satisfy the basic
condition (4.2), the sub-linear condition (4.4) and there exist a nonnegative constant

I f = min

{
infy>0

[
f ′(y)F(y)

]
1+ infy>0

[
f ′(y)F(y)

] ,
infy<0

[
f ′(y)F(y)

]
1+ infy<0

[
f ′(y)F(y)

]}
, (4.50)

where F(y) =
∫ y
0 1/ f (v)dv. If for some β ∈ [0, I f ] condition (4.45) holds, then sub-linear equa-

tion (4.1) is oscillatory.

It is clear that Theorem 66 extends Kura’s Theorem 64 from the sub-linear Emden-Fowler equa-
tion to general sub-linear equation (4.1), where the Emden-Fowler exponent γ is replaced by I f .

• In 1984 Jurang Yan in his paper [115] studied the second-order linear differential equation
with damping:

(r(t)x′)′ + p(t)x′ +q(t)x = 0, t � t0, (4.51)

where p(t),q(t) may change sign and obtained the Kamenev-type oscillation criterion for (4.51).

THEOREM 67. ([115, Theorem 1] - from 1984) Let r(t) ≡ 1 and p,q ∈ C([t0,∞),R) . If
for some α ∈ (1,∞) and β ∈ [0,1) the functions p(t) and q(t) satisfy

limsup
t→∞

1
tα

∫ t

t0
(t− s)α sβ q(s)ds = ∞, (4.52)

limsup
t→∞

1
tα

∫ t

t0

[
s(t− s)p(s)+αs−β (t − s)

]2(t − s)α−2sβ−2ds < ∞, (4.53)

then damped linear equation (4.51) is oscillatory.

COMMENT 16. For p(t) ≡ 0 equation (4.51) becomes undamped linear equation (4.22).
Moreover, if we chose β = 0 and α = n−1, then conditions (4.52) and (4.53) reduce respectively
to Kamenev’s condition (4.41) and

limsup
t→∞

1
tα

∫ t

t0

(
αs)2(t− s)α−2s−2ds =

α2

α −1
lim
t→∞

(t− t0)α−1

tα = 0 < ∞.

Thus, Yan’s Theorem 67 extends Kamenev’s Theorem 61 from undamped to damped linear equa-
tion. �
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The author showed in [115, Remark 2] that the two-parametric equation

x′′ + sin(t)
tμ x′ + cos(t)

tν x = 0, t > 0, (4.54)

is oscillatory if 1 � μ < ∞ and 0 � ν < 1.

REMARK 23. It is known that for μ = ν = 0 all solutions of (4.54) are nonoscillatory,
because of Sturm’s separation theorem and the fact that x(t) = ecos(t) is an its nonoscillatory
solution, see also Section 5. �

In the same paper, the author considered the second-order nonlinear differential equation with
damping:

(r(t)x′)′ + p(t)x′ +q(t) f (x) = 0, t � t0, (4.55)

and generalized Theorem 67 from linear to the related nonlinear case.

THEOREM 68. ([115, Corollary 2] - from 1984) Let r(t) ≡ 1 and p,q ∈ C([t0,∞),R) .
Assume f (y) satisfy (4.39). If p(t) and q(t) satisfy (4.52) and (4.53), then the damped nonlinear
equation (4.55) is oscillatory.

With the help of Comment 16, one can conclude that especially for p(t)≡ 0 and β = 0, condition
(4.53) is fulfilled. Therefore, from Theorem 68 we can derive the following consequence.

THEOREM 69. Let r(t) ≡ 1 , p(t) ≡ 0 and q ∈C([t0,∞),R) . Assume f (y) satisfy (4.39).
If q(t) satisfy (4.52), then the nonlinear equation (4.55) is oscillatory.

• In 1986 Wong in his paper [103] continued his preceding results from [102] on the
Emden-Folwer equation (4.3): x′′ + q(t)|x|γ sgn(x) = 0 and gave the following oscillation cri-
terion based on Wong condition (4.36) and a variation of the classic Kamenev-type condition
(4.41) in the general case γ > 0.

THEOREM 70. ([103] - from 1986) Let γ > 0 and q∈C([t0,∞),R) . If q(t) satisfies (4.36)
and for some α > 1 ,

limsup
t→∞

1
tα

∫ t

t0
(t − s)αq(s)ds = ∞, (4.56)

then general Emden-Fowler equation (4.3) is oscillatory.

In Theorem 70 all three cases in the Emden-Fowler equation (4.3) are simultaneously studied:
sub-linear 0 < γ < 1, linear γ = 1 and super-linear γ > 1. In Kamenev’s Theorem 61, condition
(4.32) was replaced by (4.41) in the linear case of (4.3). However, in Wong’s Theorem 70, it was
made together in all three cases provided (4.36) holds.

• In 1986 Jurang Yan in his paper [116] extended his oscillation criterion given in Theorem
67 on the second-order linear differential equation with damping (4.51) from r(t)≡ 1 to arbitrary
r(t) > 0.

THEOREM 71. ([116, Theorem 1] - from 1986) Let r(t) > 0 and r, p,q ∈ C([t0,∞),R) .
Assume there exist a function ϕ ∈ C1([t0,∞),R) , ϕ > 0 on [t0,∞) , and a constant α ∈ (0,∞)
such that the functions r(t) , p(t) and q(t) satisfy
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limsup
t→∞

1
tα

∫ t

t0

[
(t− s)α ϕ(s)q(s)

− 1
4

[
(t− s)

p(s)ϕ(s)
r(s)

+αϕ(s)− (t − s)ϕ ′(s)
]2

(t− s)α−2 r(s)
ϕ(s)

]
ds = ∞. (4.57)

Then damped linear equation (4.51) is oscillatory.

As a consequence, the author showed that all solutions of the equation
(
t−1x′

)′ + sin(t)x′ +
t2 cos(t)x = 0 is oscillatory. Moreover, according to [116, Theorem 2] it was shown that all
solutions of the three-pamateric equation:

(
tλ x′

)′ + sin(t)
tμ x′ + cos(t)

tν x = 0, t > 0,

is oscillatory provided −1 � λ < 1, 1 � μ < ∞ , −1 � ν < 1 and −2ν +1 � λ . For λ = 0 this
damped linear equation contains the two-parametric equation (4.54) as a special case.

• In 1986 Halvorsen and Mingarelli generalized Coppel’s Theorem 56 so that the mean-
value zero of q(t) , i.e. condition (4.35) characterizes the oscillation of equation (4.34): x′′ +
λq(t)x = 0, as follows.

THEOREM 72. ([37, Theorem 3.1] - from 1986) Let q(t) �≡ 0 be an almost periodic func-
tion. Equation (4.34) is oscillatory for every λ �= 0 if and only if (4.35) holds.

Also, this theorem generalizes Stanek’s theorem published in [85] from the periodic to the almost
periodic case. On the oscillations of several kind of equations with periodic coefficients having
mean-value zero, we refer reader to Kwong and Wong [55] - from 2003, Sugie and Matsumura
[86] - from 2008, Došlý, Özbekler and Hilscher [21] - from 2012 and references therein.

• In 1989 Wong in his paper [106] studied a general equation (4.1): x′′ +q(t) f (x) = 0 in
the sub-linear case.

THEOREM 73. ([106] - from 1989) Let q ∈C([t0,∞),R) . Assume f (y) satisfy the basic
condition (4.2), the sub-linear condition (4.4) and for some constant c > 0 ,

F ′′(y)F(y)
F ′2(y)

� −1
c

for all y �= 0 , (4.58)

where F(y) =
∫ y
0 1/ f (v)dv. If there exists a positive concave function ϕ(t) such that ϕ ′ � 0 ,

ϕ ′′ � 0 , and

limsup
t→∞

1
t

∫ t

t0

∫ s

t0
ϕλ (τ)q(τ)dτds = ∞, (4.59)

where λ = 1/(1+c) < 1 , then sub-linear equation (4.1) is oscillatory.

It is clear that condition (4.58) can be writen in the following simpler equivalent form

f ′(y)F(y) � 1
c

for all y �= 0. (4.60)

Also, in particular for ϕ(t)≡ t , condition (4.59) becomes Kura’s condition (4.45) and thus, The-
orem 73 generalizes Kura’s Theorem 64. Especially for the sub-linear Emden-Fowler equation,
we can relate Kura’s Theorem 64, Philos’s Theorem 66 and Wong’s Theorem 73 in this way:
condition (4.58) is fulfilled in particular for f (y) = |y|γ sgn(y) = |y|γ−1y , f ′(y) = γ |y|γ−1 and
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c = (1− γ)/γ ; also, for λ = 1/(c+1) we have λ = γ ; hence, if we put for ϕ(t) ≡ 1 and λ = γ
into (4.59), then Theorem 73 verifies Theorem 64 with β = γ and Theorem 66 with β = λ = γ ,
since from (4.50) and (4.60) it follows I f = 1/(1 + c) = γ . Next, Theorem 73 was illustrated
with the equation

x′′ + tσ sin(t) |x|1/2(1+ |x|)sgnx = 0

and showed that all its solutions oscillate provided σ > 1/2.

• We know that Butler in his Theorem 62 proved that Wintner’s oscillation criterion (4.23),
besides linear equations, also remains valid for the Emden-Fowler equation (4.3) with γ > 1.
What is about oscillation of equation (4.3) with γ > 1 when the limit in (4.23) does not exists,
that is,

liminf
t→∞

1
t

∫ t

t0

∫ s

t0
q(τ)dτds < limsup

t→∞

1
t

∫ t

t0

∫ s

t0
q(τ)dτds. (4.61)

Obviously condition (4.61) is stronger than Hartman’s condition (4.25), because ”liminf” is
not supposed to be a finite real number. The answer was given in the following Wong’s result
published in 1989 in his paper [107] that was dedicated to G.J. Butler.

THEOREM 74. ([107] - from 1989) Let γ > 1 and q∈C([t0,∞),R) . If q(t) satisfies (4.36)
and (4.61), then the super-linear Emden-Fowler equation (4.3) is oscillatory.

The statement in (4.37) gives a possible connection of Wong’s conditions (4.36) and (4.61) with
Hartman’s condition (4.25).

Furthermore, in [107] Wong generalized his Theorem 70 in a way to replace condition
(4.36) by the related one:

liminf
t→∞

1
t

∫ t

t0

∫ s

t0
q(τ)dτds > −∞. (4.62)

This is presented in the following result.

THEOREM 75. ([107] - from 1989) Let γ > 0 and q∈C([t0,∞),R) . If q(t) satisfies (4.56)
and (4.62), then general Emden-Fowler equation (4.3) is oscillatory.

We illustrate Theorem 75 on the next example.

EXAMPLE 10. The Emden-Fowler equation

x′′ +
(− t2 sin(t)+4t cos(t)+2sin(t)+2

)|x|γsgn(x) = 0, t � t0, γ > 0, (4.63)

is oscillatory. Indeed, for q(t) = −t2 sin(t)+4t cos(t)+2sin(t)+2, we have:∫ t

t0
q(τ)dτ =

∫ t

t0

(
2τ sin(τ)+ τ2 cos(τ)+2τ

)′
dτ = 2t sin(t)+ t2 cos(t)+2t +c0,∫ t

t0

∫ s

t0
q(τ)dτds = t2 sin(t)+ t2 +c0t +c1,

where c0 = −2t0 sin(t0)− t20 cos(t0)−2t0 and c1 ∈ R depending only on t0 . Hence,

limsup
t→∞

1
t2

∫ t

t0
(t − s)2q(s)ds = c2 + limsup

t→∞

2t
3

= ∞,

liminf
t→∞

1
t

∫ t

t0

∫ s

t0
q(τ)dτds = liminf

t→∞

(
t(sin(t)+1)

)
+c0 + liminf

t→∞

c1

t
= c0 > −∞,

where c2 ∈ R . Thus, conditions (4.56) with α = 2 and (4.62) are fulfilled and hence, by Wong’s
Theorem 75 we conclude that equation (4.63) is oscillatory. �
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• In 1989 Yeh [121] studied the second-order nonlinear perturbed differential equations

(r(t)x′)′ + p(t)x′ + f (t,x) = g(t,x,x′), t � t0, (4.64)

and he gave the next oscillation criterion.

THEOREM 76. ([121, Theorem 1] - from 1989) Let r ∈C1([t0,∞),R) and r(t) > 0 , q,e ∈
C([t0,∞),R) and e(t) > 0 on [t0,∞) . Let f ∈C([t0,∞)×R,R) , g ∈C([t0,∞)×R

2,R) and for
all y �= 0 and v ∈ R ,

y f (t,y) � yq(t) f1(y) and yg(t,y,v) � e(t)yg1(y)g2(v),

where f1 ∈C1(R,R) and g1,g2 ∈C(R,R) such that

y f1(y) > 0 and yg1(y) > 0 for y �= 0,

0 < g2(v) � c for some constant c and all v ∈ R,

f ′1(y) � k > 0 and g1(y)/ f1(y) � K for y �= 0 and some K � 0.

If there exists a function ϕ ∈C1([t0,∞),(0,∞)) such that for some α > 0 ,

limsup
t→∞

1
tα

∫ t

t0
(t − s)α−2ϕ(s)

[
(t− s)2

(
q(s)−cKe(s)

)
− 1

4k
r(s)

[
(t− s)

( p(s)
r(s)

− ϕ ′(s)
ϕ(s)

)
+α

]2
]
ds = ∞, (4.65)

then nonlinear perturbed equation (4.64) is oscillatory.

This result extends an integral oscillation criterion due to Grace and Lalli [32, 1980] involving
the integral mean of Kamenev-type. On the other hand, in particular for f (t,y) = q(t)y and
g(t,y,v) ≡ 0 equation (4.64) becomes the damped linear equation (4.51) as well as k = 1 and
K = 0. Hence, it is easy to see that condition (4.65) becomes (4.57) and thus, Theorem 76
generalizes Yan’s Theorem 67.

• In 1989 Philos in [76] also studied the oscillation of second-order linear differential
equation (4.22): (r(t)x′)′ + q(t)x = 0 with r(t) ≡ 1 but in a framework of the so-called Philos
functions H(t,s) and h(t,s) . The first kind of such result was given in one of the most cited
results from the oscillation theory of the second-order differential equations.

THEOREM 77. ([76] - from 1989) Let r(t)≡ 1 and q ∈C([t0,∞),R) . Let D = {(t,s) : t �
s � t0} and H : D→ R be a continuous function such that H(t,t) = 0 for t � t0 , H(t,s) > 0 for
t > s � t0 and ∂H

∂ s be a continuous and nonpositive function on D0 = {(t,s) : t > s � t0} such
that the following function h : D0 → R is continuous:

− ∂H
∂ s

(t,s) = h(t,s)
√

H(t,s) for all (t,s) ∈ D0 . (4.66)

If

limsup
t→∞

1
H(t,t0)

∫ t

t0

[
H(t,s)q(s)− 1

4
h2(t,s)

]
ds = ∞, (4.67)

then linear equation (4.22) is oscillatory.
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A classic example for the function H(t,s) satisfying required assumptions of Theorem 77 is
H(t,s) = (t − s)α , α � 2. This theorem was extended by many authors to several types of the
second-order differential equations.

• In 1990 Grace and Lalli in [34] studied the oscillation of the Emden-Fowler equation
(4.3): x′′ +q(t)|x|γ sgn(x) = 0 with damped term:

(r(t)x′)′ + p(t)x′ +q(t)|x|γ sgn(x) = 0, γ > 0. (4.68)

He extending some previous Wong and Philos results on the oscillation of equation (4.3) in the
super-linear case from undapmed to dapmed equation.

THEOREM 78. ([34, Theorem 10] - from 1990) Let r(t) > 0 , r ∈ C1([t0,∞),R) , p,q ∈
C([t0,∞),R) , and γ > 1 . Let there exist a function ρ ∈C1([t0,∞),(0,∞)) such that:

r(t)ρ ′(t)− p(t)ρ(t) � 0 and
(
r(t)ρ ′(t)− p(t)ρ(t)

)′ � 0 for t � t0,

liminf
t→∞

∫ t

t0
ρ(s)q(s)ds > −∞ and lim

t→∞

∫ t

t0

1
r(s)ρ(s)

ds = ∞. (4.69)

If

limsup
t→∞

1∫ t
t0 h(s)ds

∫ t

t0

∫ s

t0
h(s)ρ(τ)q(τ)dτds = ∞, (4.70)

where h(t) = 1/[r(t)ρ(t)] , then damped super-linear Emden-Fowler equation (4.68) is oscilla-
tory.

In [34], several integral oscillation criteria were obtained including generalized integral mean
with weighted function in the sense of Coles presented above in his Theorem 55 but for more
general class of equations: (r(t)Ψ(x)x′)′ + p(t)x′ +q(t) f (x) = 0, see [34, Theorems 1-8], with
many useful examples, see [34, Theorems 1-8].

• In 1992, by combining both Philos’s Theorem 66 and Wong’s Theorem 73, Wong and
Yeh in [113] proved the following oscillation result for general equation (4.1): x′′+q(t) f (x) = 0
in the sub-linear case.

THEOREM 79. ([113] - from 1992) Let q ∈C([t0,∞),R) , and let f (y) satisfy (4.2), (4.4)
and (4.60). If there exists a positive concave function ϕ(t) such that for some α > 1 ,

limsup
t→∞

1
tα

∫ t

t0
(t − s)α ϕλ (s)q(s)ds = ∞, (4.71)

where λ ∈ [0, I f ] and I f is from (4.50), then sub-linear equation (4.1) is oscillatory.

• In 1992 Philos and Purnaras in [77] studied the oscillation of general super-linear equa-
tion (4.1).

THEOREM 80. ([77] - from 1992) Let q ∈ C([t0,∞),R) and let f (y) satisfy (4.2), (4.6)
and

min

{
inf
y>0

[
f ′(y)

∫ ∞

y

dz
f (z)

]
, inf

y<0

[
f ′(y)

∫ −∞

y

dz
f (z)

]}
> 1.

If q(t) satisfies (4.61) and for some integer n � 1 ,

liminf
t→∞

1
tn−1

∫ t

t0
(t− s)n−1q(s)ds > −∞, (4.72)

then super-linear equation (4.1) is oscillatory.
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This theorem extends Wong’s Theorem 74 from the super-linear Emden-Fowler equation to gen-
eral super-linear equation (4.1). Here the constant d appearing in Naito’s condition (4.7) is not
used. It seems that the condition n � 1 is too weak, since as usually n > 2 was supposed.

• In 1993 El-Sheik in [25] considered the oscillation of the second-order differential equa-
tion

(r(t)Ψ(x)x′)′ +q(t) f (x) = 0, t � t0, (4.73)

where r(t) , Ψ(y) , Ψ′(y) and q(t) are positive functions.

THEOREM 81. ([25, Theorem 3.2] - from 1993) Let r(t) > 0 and r,q ∈C1([t0,∞),(0,∞)) .
Assume f (y) satisfy (4.2) and f ′(y)/Ψ(y) � k > 0 and Ψ′(y) > 0 . Let

∫ ∞

0

(r(s)q(s))′

r(s)q(s)
ds < ∞.

If for some n � 3 the Kamenev condition (4.41) holds and

limsup
t→∞

1
tn−1

∫ t

t0
(t− s)n−3r(s)ds < ∞, (4.74)

then nonlinear equation (4.73) is oscillatory.

THEOREM 82. ([25, Theorem 3.3] - from 1993) Let r(t) > 0 , r,q ∈C([t0,∞),(0,∞)) . As-
sume f (y) satisfy (4.2) and there exist η ∈C1([t0,∞),R) such that η(t) � Ψ(y) > 0 , f ′(y)/η(t) �
K1 > 0 , and f ′(y) � 1 on [t0,∞)×R/{0} . Let

R(t) =
∫ t

0

1
r(s)η(s)

ds, t � t0.

If R(∞) exists and for some n � 3 the function q(t) satisfies

limsup
t→∞

1
Rn−1(t)

∫ t

t0

(
R(t)−R(s)

)n−1q(s)ds = ∞, (4.75)

then nonlinear equation (4.73) is oscillatory.

Besides equation (4.73), in [25] the oscillation of related differential equation with functional
argument τ(t) was also considered: (r(t)Ψ(x(t))x′(t))′ + q(t) f (x(τ(t)) = 0, t � t0 , where
τ(t) � t , see [25, Theorems 4.1 and 4.2].

• In 1993 Wong in his paper [105] studied the oscillation of general equation (4.1): x′′ +
q(t) f (x) = 0 in both sub- and super-linear cases.

THEOREM 83. ([105] - from 1993) Let q ∈C([t0,∞),R) . Assume f (y) satisfy (4.2) and
either sub-linear conditions (4.4)-(4.5) or super-linear conditions (4.6)-(4.7). If q(t) satisfies:

−∞ < liminf
t→∞

1
tα

∫ t

t0
(t− s)αq(s)ds < limsup

t→∞

1
tα

∫ t

t0
(t− s)αq(s)ds � ∞, (4.76)

for some α � 1 , then general equation (4.1) is oscillatory.
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Wong’s oscillation criterion (4.76) includes the integral mean (of convolution type) originally
considered in Kamenev’s Theorem 61 for linear case and Wong’s Theorem 70 for general case
of the Emden-Fowler equation. It is different from the integral mean appearing in Hartman’s
Theorem 52. However, the properties of and relation between ”liminf” and ”limsup” in (4.76)
are the same as in the Hartman’s condition (4.25). We suggest the reader to study the implication
or equivalence between Hartman’s and Wong’s criterions (4.25) and (4.76) respectively.

• In 1994 Manabu Naito in his paper [66] also studied the oscillation of general equation
(4.1).

THEOREM 84. ([66, Corollary 3] - from 1994) Let q ∈C([t0,∞),R) . Assume f (y) satisfy
(4.2) and either sub-linear conditions (4.4)-(4.5) or super-linear conditions (4.6)-(4.7). Let α ∈
R be such that

α � 1 in the sub-linear and α > d/(d−1) in the super-linear case,

where the constant d is from super-linear condition (4.7). Then general equation (4.1) is oscil-
latory provided q(t) satisfies (4.56) or

liminf
t→∞

1
tα

∫ t

t0
(t − s)αq(s)ds < limsup

t→∞

1
tα

∫ t

t0
(t− s)αq(s)ds. (4.77)

This theorem is closely related to Wong’s Theorem 83. If in the sublinear case condition (4.56)
holds, then Theorem 84 is a special case of Wong-Yeh’s Theorem 79; however, if (4.77) holds,
then Theorem 84 generalizes Wong’s Theorem 83 since (4.77) is larger than (4.76). In the super-
linear case, the parameter α in Theorem 84 depends on the constant d which is not the case in
Theorem 83, where α � 1 is a fixed real number.

• In 1995 Horng Jaan Li [58] and in 1996 Yuri V. Rogovchenko [79] studied the Philos-type
oscillation criterion for the second-order linear equation (4.22): (r(t)x′)′ +q(t)x = 0.

THEOREM 85. ([58, Theorem 2.1] - from 1995 and [79]- from 1996) Let r ∈C1([t0,∞),R)
and r(t) > 0 , q ∈C([t0,∞),R) . Let the sets D, D0 and functions H(t,s) , h(t,s) be defined as
in Theorem 77. If there exists a function ϕ ∈C1([t0,∞),R) such that

limsup
t→∞

1
H(t,t0)

∫ t

t0

[
H(t,s)ρ(s)− 1

4
a(s)r(s)h2(t,s)

]
ds = ∞, (4.78)

where
a(s) = e−2

∫ s
t0

ϕ(τ)dτ and ρ(s) = a(s)
[
q(s)+ r(s)ϕ2(s)− (r(s)ϕ(s))′

]
,

then linear equation (4.22) is oscillatory.

According to Rogovchenko’s observation given in [79], the conflicting hypothesis (C1) is re-
moved from the original [58, Theorem 2.1] and it is not appearing in Theorem 85. In contrast to
Philos’s Theorem 77, in Theorem 85 three new functions are included: ϕ(t) , a(t) and ρ(t) . In
particular for ϕ(t) ≡ 0, it is clear that a(t) ≡ 1 and ρ(t) = q(t) . Hence Theorem 85 generalizes
Philos’s Theorem 77.

If R(t) =
∫ t
t0 [1/r(s)]ds , then putting in Theorem 85 for H(t,s) =

[
R(t)−R(s)

]λ and ϕ ≡ 0,
Li in [58, Corollary 2.2] derived the following interesting conclusion.
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THEOREM 86. ([58, Corollary 2.2] - from 1995) Let r ∈C1([t0,∞),R) and r(t) > 0 , q ∈
C([t0,∞),R) . If for some λ > 1 ,

limsup
t→∞

1

Rλ (t)

∫ t

t0

[
R(t)−R(s)

]λ q(s)ds = ∞, (4.79)

then linear equation (4.22) is oscillatory.

• In 1998 Wan-Tong Li in his paper [59] considered the oscillation of a general class of
second-order differential equation:

(r(t)x′σ )′ +q(t) f (x) = 0, t � t0, (4.80)

where σ is any quotient of odd integers. In the case for σ > 1, he proved an integral oscillation
criterion given in [59, Theorem 3.1] not including the integral mean and hence, it is not presented
here. However, for σ = 1 the following Li’s criterion generalizes previous Theorem 85 from
linear to possible nonlinear case.

THEOREM 87. ([59, Theorem 3.2] - from 1998) Let r ∈ C1([t0,∞),R) , r(t) > 0 , σ = 1
and q ∈ C([t0,∞),R) . Let f (y) satisfy (4.2) and f ′(y) � μ > 0 for all y �= 0 . Let the sets
D, D0 and functions H(t,s) , h(t,s) be defined as in Theorem 77. If there exists a function
ϕ ∈C1([t0,∞),R) such that

limsup
t→∞

1
H(t,t0)

∫ t

t0

[
H(t,s)ρ(s)− 1

4μ
a(s)r(s)h2(t,s)

]
ds = ∞, (4.81)

where

a(s) = e−2μ
∫ s
t0

ϕ(τ)dτ and ρ(s) = a(s)
[
q(s)+ μr(s)ϕ2(s)− (r(s)ϕ(s))′

]
,

then the nonlinear equation (4.80) is oscillatory.

Now, it is clear that if f (y) ≡ y and μ = 1, then Theorem 87 includes Theorem 85 as a special
case. Analogously to the relation between Theorems 85 and 86, putting for R(t) =

∫ t
t0 1/r(s)ds

and H(t,s) =
(
R(t)− R(s)

)λ , from the previous theorem it follows that oscillation criterion
(4.79) also holds for equation (4.80) with σ = 1, see [59, Corollary 3.3] for more details. One
of the main results in [59] was illustrated with the differential equation

(tx′)′ +
λ

t ln2(t)
(x+x3) = 0, t > 1, (4.82)

and showed that (4.82) is oscillatory provided λ > 1/4. We suggest the reader to compare this
result with the related one for the linear equation (4.24) given in Example 5 above.

• In 1999 Qingkai Kong in his paper [51] considered similar kind of nonlinear equations
to equation (4.80):

(r(t)x′σ )′ +q(t)xσ = 0, t � t0, (4.83)

where σ is any quotient of odd integers and 1/r,q are locally integrable functions on [t0,∞) .
This equation is of half-linear type, since if x(t) is a solution of (4.83), then clearly cx(t) , for any
c ∈ R , is also a solution of (4.83). Analogously to the class H of functions H(t,s) introduced
in (2.53) in Kong’s interval oscillation criterion, see Theorem 88 for linear unforced differential
equation (2.1), one can introduce its half-linear case by the same (2.53) but with h1,h2 satisfying:

∂H
∂ t

(t,s) = h1(t,s)
(
H(t,s)

) σ
σ+1 and − ∂H

∂ s
(t,s) = h2(t,s)

(
H(t,s)

) σ
σ+1 . (4.84)

We see that Kong’s equality (2.54) is a linear analogous of (4.84) in particular for σ = 1 .
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THEOREM 88. ([51, Theorem 3.1] - from 1999) Let r(t) > 0 on [t0,∞) and 1/r,q ∈
Lloc([t0,∞),R) . If there exists a function H ∈ H with (4.84) such that for each a � t0 ,

limsup
t→∞

1
H(t,a)

∫ t

a

[
H(t,s)q(s)− 1

(σ +1)(σ+1) r(s)hσ+1
2 (t,s)

]
ds = ∞, (4.85)

then the half-linear equation (4.83) is oscillatory.

We can remark that condition (4.85) is a half-linear generalization of related conditions (4.78)
and (4.81) with r(t) ≡ 1 and ϕ ≡ 0. Also, for r(t) ≡ 1 and σ = 1, condition (4.85) becomes
Philos condition (4.67). It seems that Theorem 88 is the first oscillation criterion involving the in-
tegral mean for half-linear differential equations. From Theorem 88, Kong derived the following
interesting consequence.

THEOREM 89. ([51, Theorem 3.4] - from 1999) Let r(t) ≡ 1 and q ∈ Lloc([t0,∞),R) .
Then half-linear equation (4.83) is oscillatory provided for each a � t0 and some α > σ one of
the following statements holds:
i)

limsup
t→∞

1
tα

∫ t

a
(t− s)α q(s)ds = ∞;

ii)

limsup
t→∞

1
tα−σ

∫ t

a
(s−a)α q(s)ds >

ασ+1

(σ +1)(σ+1)(α −σ)
,

limsup
t→∞

1
tα−σ

∫ t

a
(t − s)αq(s)ds >

ασ+1

(σ +1)(σ+1)(α −σ)
;

iii)

limsup
t→∞

1
tα−σ

∫ t

a
(s−a)α [

q(s)+q(2t − s)
]
ds >

2ασ+1

(σ +1)(σ+1)(α −σ)
.

Obviously, Kong’s condition i) is a half-linear generalization of Kamenev’s condition (4.41) and
Wong’s condition (4.56).

• In 1999 Yuri V. Rogovchenko in his paper [80] studied the oscillation of second-order
nonlinear differential equation without delay argument:

x′′(t)+q(t) f (x(t))g(x′(t)) = 0, t � t0, (4.86)

and with the delay argument τ(t) :

x′′(t)+q(t) f (x(τ(t)))g(x′(t)) = 0, t � t0. (4.87)

The oscillation of these two classes of equations have been already considered by Grace in Lalli
in [33, Theorems 1 and 2] exploring some integral oscillation criteria not including the integral
mean and hence it is not presented here.

THEOREM 90. ([80, Theorem 1] - from 1999) Let q ∈C([t0,∞),R) and q(t) �≡ 0 on any
ray in [t0,∞) . Let f (y) satisfy (4.2), f ′(y) � K > 0 for all y �= 0 , and g(v) is continuous on R ,
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g(v) � C > 0 for all v �= 0 . Let the sets D, D0 and functions H(t,s) , h(t,s) be defined as in
Theorem 77. If there exists a function ϕ ∈C1([t0,∞),R) , ϕ(t) > 0 such that

limsup
t→∞

1
H(t,t0)

∫ t

t0

[
H(t,s)Cq(s)ϕ(s)− ϕ(s)

4K

(
h(t,s)− ϕ ′(s)

ϕ(s)

√
H(t,s)

)2
]
ds = ∞, (4.88)

then the nonlinear equation (4.86) is oscillatory.

Condition (4.88) can be divided into two parts so that the first one is infinite and the second one
is finite in the sense of limit superior, as it was done in the next result.

THEOREM 91. ([80, Corollary 1] - from 1999) Let q ∈C([t0,∞),R) and q(t) �= 0 on any
ray in [t0,∞) . Let f (y) satisfy (4.2), f ′(y) � K > 0 for all y �= 0 , and g(v) is continuous on R ,
g(v) � C > 0 for all v �= 0 . Let the sets D, D0 and functions H(t,s) , h(t,s) be defined as in
Theorem 77. If there exists a function ϕ ∈C1([t0,∞),R) , ϕ(t) > 0 such that

limsup
t→∞

1
H(t,t0)

∫ t

t0
H(t,s)q(s)ϕ(s)ds = ∞, (4.89)

and

limsup
t→∞

1
H(t,t0)

∫ t

t0
ϕ(s)

(
h(t,s)− ϕ ′(s)

ϕ(s)

√
H(t,s)

)2
ds < ∞, (4.90)

then the nonlinear equation (4.86) is oscillatory.

Previous theorems were illustrated to the following nonlinear equation:

x′′ +
1

(1+ sin2(t))(1+cos2(t))
x(1+x2)(1+x′2) = 0

which has two oscillatory solutions x1(t) = sin(t) and x2(t) = cos(t) . But, it is not enough to
conclude that this equation is oscillatory since for nonlinear equation Sturm’s separation theorem
does not hold in general. However, Theorem 90 proves that this equation is oscillatory, see [80,
Corollary 2]. Related oscillation criteria for the delayed equation (4.87) can be found in [80,
Theorem 3 and Corollary 4].

4.3. Summary for the sub-linear case

In this subsection we summarize all results of this section concerning the sub-linear equa-
tion (4.1):

year − author’s theorem, criteria for q(t) :

1971 − Kamenev’s Theorem 57, (4.32): limsupt→∞
1
t

∫ t
t0

∫ s
t0 q(τ)dτds = ∞ ;

1982 − Kura’s Theorem 64, (4.45): limsupt→∞
1
t

∫ t
t0

∫ s
t0 τβ q(τ)dτds = ∞ , β ∈ [0,γ ] , γ ∈ (0,1) ;

1982 − Yeh’s Theorem 65, (4.47): limsupt→∞
1

tn−1

∫ t
t0(t− s)n−1sq(s)ds = ∞ , n > 2;

1983 − Philos’s Theorem 66, (4.45) with β ∈ [0, I f ] and I f from (4.50);
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1986 − Wong’s Theorem 70, (4.36): −∞ < liminft→∞
∫ t
t0 q(s)ds < 0 and

(4.56): limsupt→∞
1
tα

∫ t
t0(t− s)α q(s)ds = ∞ , α > 1;

1989 − Wong’s Theorem 73,

(4.59): limsupt→∞
1
t

∫ t
t0

∫ s
t0 ϕλ (τ)q(τ)dτds = ∞ , λ = 1/(1+c) < 1 and ϕ > 0, ϕ ′ � 0, ϕ ′′ < 0;

1989 − Wong’s Theorem 75, (4.56) and (4.62): −∞ < liminft→∞
1
t

∫ t
t0

∫ s
t0 q(τ)dτds ;

1992 − Wong and Yeh’s Theorem 79, (4.71): limsupt→∞
1
tα

∫ t
t0(t − s)α ϕλ (s)q(s)ds = ∞ ,

where λ ∈ [0, I f ] and I f is from (4.50);

1993 − Wong’s Theorem 83,

(4.76): −∞ < liminft→∞
1
tα

∫ t
t0(t− s)αq(s)ds < limsupt→∞

1
tα

∫ t
t0(t− s)αq(s)ds � ∞ ;

1994 − Naito’s Theorem 84, (4.56) or

(4.77): liminft→∞
1
tα

∫ t
t0(t − s)αq(s)ds < limsupt→∞

1
tα

∫ t
t0(t − s)αq(s)ds ;

2000 − Wong’s Theorem 49, (4.11): limsupt→∞
1

h(t,t0)
∫ t
t0 h(t,s)q(s)ds = ∞ .

In all previous statements, where it appears, α > 1. In particular for h(t,s) = (t−s)α , α >
1, condition (4.11) becomes (4.56). Since h(t,s) = (t − s)α for α > 1 satisfies all assumptions
of Theorem 49, one can conclude that Theorem 49 generalizes each of previous results in which
(4.56) is appearing.

4.4. Summary for the super-linear case

Now, we make a summary concerning the super-linear case in the equation x′′+q(t) f (x) =
0. In the case when the nonlinear term f (y) satisfies (4.39), we always point out that the Emden-
Fowler super-nonlinearity is not included, see Comment 12.

Year − author’s theorem, f (y) includes or not the Emden-Fowler super-nonlinearity, the corre-
sponding criteria for q(t) :

1973 − Wong’s Theorem 58, the criteria for q(t) :

(4.32): limsupt→∞
1
t

∫ t
t0

∫ s
t0 q(τ)dτds = ∞ and (4.36): −∞ < liminft→∞

∫ t
t0 q(s)ds < 0;

1975 − Onose’s Theorem 59, the Emden-Fowler super-nonlinearity is not included,
the criteria for q(t) : (4.32) and (4.36);

1978 − Chen’s Theorem 60,
the criteria for q(t) : (4.32) and (4.36);
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1980 − Butler’s Theorem 62, the criteria for q(t) :

(4.23): limt→∞
1
t

∫ t
t0

∫ s
t0 q(τ)dτds = ∞ ;

1980 − Yeh’s Theorem 63, the criterion for q(t) :

(4.44): limsupt→∞
1

n!tn−1

∫ t
t0(t− s)n−1q(s)ds = ∞ ;

1984 − Yan’s Theorem 69, the Emden-Fowler super-nonlinearity is not included,
the criterion for q(t) :

(4.52): limsupt→∞
1
tα

∫ t
t0(t− s)α sβ q(s)ds = ∞ , for α > 1 and β = 0;

1989 − Wong’s Theorem 74, the criteria for q(t) :

(4.36) and (4.61): liminft→∞
1
t

∫ t
t0

∫ s
t0 q(τ)dτds < limsupt→∞

1
t

∫ t
t0

∫ s
t0 q(τ)dτds ;

1989 − Wong’s Theorem 75, the criteria for q(t) :

(4.56): limsupt→∞
1
tα

∫ t
t0(t− s)α q(s)ds = ∞ and (4.62): liminft→∞

1
t

∫ t
t0

∫ s
t0 q(τ)dτds > −∞ ;

1990 − Grace and Lalli’s Theorem 78, the criteria for q(t) :

(4.69): liminft→∞
∫ t
t0 ρ(s)q(s)ds > −∞ and

(4.70): limsupt→∞
1∫ t

t0
ρ−1(s)ds

∫ t
t0

∫ s
t0

ρ(τ)q(τ)
ρ(s) dτds = ∞ ;

1992 − Philos and Purnaras’s Theorem 80, the criteria for q(t) :

(4.61) and (4.72): liminft→∞
1

tn−1

∫ t
t0(t − s)n−1q(s)ds > −∞ ;

1993 − Wong’s Theorem 83, the criterion for q(t) :

(4.76): −∞ < liminft→∞
1
tα

∫ t
t0(t− s)αq(s)ds < limsupt→∞

1
tα

∫ t
t0(t− s)αq(s)ds � ∞ , α � 1;

1994 − Naito’s Theorem 84, the criterion for q(t) :

(4.56) or (4.77): liminft→∞
1
tα

∫ t
t0(t−s)αq(s)ds < limsupt→∞

1
tα

∫ t
t0(t−s)αq(s)ds , for some α >

d/(d−1) ;

2000 − Wong’s Theorem 50, the criteria for q(t) :

(4.15): limsupt→∞
1

h1(t,t0)
∫ t
t0 h1(t,s)q(s)ds = ∞ and

(4.16): −∞ < liminft→∞
1

h2(t,t0)
∫ t
t0 h2(t,s)q(s)ds < 0.
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5. Wong academic career

In very recently article [16] written by Professor Goong Chen, who is one of Editors-in-
Chief of the Journal of Mathematical Analysis and Applications, a dual career by James S.W.
Wong is presented: in the mathematics and business. At the end of this article, we present a brief
reviews to Wong academic career.

He has written a total of 151 papers. The first 81 papers appeared between 1964-1976 and
other 70 papers between 1980-2013. He had the fortune to collaborate with 34 fellow mathe-
maticians over a period of 40 years (1964-2013). Jointly with Professor Man-Kam Kwong, he
published more than 19 papers. One of their best papers was published in Journal of Differen-
tial Equations 238 (2007), 18–42, resolving the longstanding Kiguradze-Nehari conjecture in the
affirmative. This paper is an extension of Wong’s paper published in the inaugural issue of Anal-
ysis and Applications 1(2003), 71-79, which settled the Kiguaradz conjecture originated from his
1964 paper.

He received a B. Sc. in Physics and Mathematics from Baylor University in 1960 and a Ph.
D. in Mathematics from California Institute of Technology in 1964. He was appointed Professor
of Mathematics at the University of Iowa in 1970.

In 1974, he returned to Hong Kong, where he was first appointed as Honorary Research
Associate in the HKU, Department of Mathematics in 1980 and has served as Honorary Professor
since 2004. He has also served on the University Council, the Committee Review Committee,
and the Finance Committee since 1996. He has served on the Labour Advisory Board, the Textile
Advisory Board, the Council of the Hong Kong Baptist University, the Council for Academic
Accreditation, the Research Grants Council, and the Council of the Open University. He was
appointed as a Justice of the Peace in 1987.

In June 2012, he received the title of Honorary Editor of the journal ”Journal of Mathemat-
ical Analysis and Applications”, see:
http://www.sciencedirect.com/science/article/pii/S0022247X13004162.

In October 2013, he was among the eight distinguished recipients of the Honorary Univer-
sity Fellowships of the university of Hong-Kong, see:
http://www.hku.hk/press/news_detail_10256.html.

In February 2014, he will receive the title of Honorary Editor of the journal ”Differential
Equations and Applications”.

In May 2014, he will receive a Distinguished Caltech’s Alumni Award in California Insti-
tute of Technology. James S.W. Wong is the first math Ph.D. to receive this award as mathematics
professor since 1966 among a total of 237 recipients, there were only 4 with Ph.D. in Mathemat-
ics (3 professors of computer science, including prof. Donald E. Knuth at Stanford, and 1 of
electrical engineering).

Simultaneously with his academic career, Dr James S.W. Wong is a successful businessman,
industrialist, real estate developer and entrepreneur. He is the Chairman of Hon Kwok Land
Investment Co Ltd, Chinney Investments Ltd and Chinney Alliance Group Ltd.
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