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GLOBAL ATTRACTIVITY RESULTS FOR COMPARABLE SOLUTIONS

OF NONLINEAR HYBRID FRACTIONAL INTEGRAL EQUATIONS
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(Communicated by Sotiris K. Ntouyas)

Abstract. We present a couple of global attractivity and asymptotic stability results for the com-
parable solutions of a certain hybrid functional nonlinear fractional integral equation with a linear
perturbation of first kind on the unbounded intervals of real line under some weaker partially Lip-
schitz and partially compactness type conditions. We employ a new partially measure theoretic
fixed point theorem in our analysis and develop an algorithm for the solutions. We claim that the
results are new to the literature.

1. Introduction

The topic of fractional calculus and fractional differential and integral equations
is of current interest and have received significant attention of many mathematicians
all over the world because of their occurrence in several areas of physical sciences
(cf. Podlubny [13] and the references therein). The object of this paper is to discuss
attractivity and stability results for comparable solutions and develop an algorithm for
the following functional nonlinear fractional integral equation (in short HFIE)

x(t) = f (t,x(α(t)))+
1

Γ(q)

β (t)∫
0

k(t,s)
(t − s)1−q g(s,x(γ(s)))ds, t ∈ R+, (1.1)

where f : R+ ×R → R, k : R+ ×R+ → R+ , g : R+ ×R → R, α,β ,γ : R+ → R+
are continuous functions, 1 � q < 2 and Γ is the Euler gamma function.

By a solution of the HFIE (1.1) we mean a function x ∈ C(R+,R) that satisfies
the equation (1.1), where C(R+,R) is the space of continuous real-valued functions on
R+ .

The above nonlinear fractional integral equation in question has rather general
form and includes several classes of functional, integral and functional integral equa-
tions considered in the literature (cf. [1, 3, 6, 10, 11] and references therein). Let us
also mention that the functional integral equation considered in [3, 6] is a special case
of the equation (1.1), when α(t) = β (t) = γ(t) = t and q = 1. Note that the existence
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theorem for the HFIE (1.1) may be proved via a hybrid fixed point theorem on the lines
of Kranoselskii [10] under the mixed Lipschitz and compactness type conditions. But
in this case we do not get any information about the behavior of the solutions as well
as there is no way to approximate the solutions by successive iterations. It is with this
motivation, we present some qualitative analysis such as attractivity and stability of
comparable solutions along with an algorithm for the solutions of HFIE (1.1) defined
on unbounded interval of the real line.

Our investigations will be carried out in the partially ordered Banach space of
real functions which are defined, continuous and bounded on the right half real axis
R+ . The partially measure of noncompactness used in this paper allows us not only
to obtain the existence of comparable solutions of the mentioned functional integral
equation but also to characterize the comparable solutions in terms of uniform global
ultimate attractivity and to develop an algorithm for the solutions. See Appell [1],
Banas and Goebel [2] and Banas and Dhage [3]. This assertion means that all the
possible comparable solutions of the nonlinear fractional integral equation in question
are globally uniformly attractive in the sense of notion defined in the following section.

2. Auxiliary Results

Let (E,�,‖ · ‖) be a partially ordered normed linear space. It is known that E
is regular if {xn} is a nondecreasing (resp. nonincreasing) sequence in E such that
xn → x∗ as n → ∞ , then xn � x∗ (resp. xn � x∗ ) for all n ∈ N . The conditions guar-
anteeing the regularity of E may be found in Nieto and Lopez [12] and Heikkilä and
Lakshmikantham [9] and the references cited therein. The following definitions have
been introduced in Dhage [5] and are frequently used in the subsequent part of this
paper.

A subset S of E is called partially bounded if every chain C in S is bounded.
Again S is called uniformly partially bounded if all chains in S are bounded with a
unique constant.

Note that every bounded subset of a partially ordered normed linear space is uni-
formly partially bounded and uniformly partially bounded set in E is partially bounded,
but the converse implications may not be held.

DEFINITION 2.1. A mapping T : E → E is called isotonic or monotonic if it is
either monotone nondecreasing (resp. non-increasing), that is, if x � y implies T x �
T y (resp. T x � T y) for all x,y ∈ E .

DEFINITION 2.2. (Dhage [7, 8]) A mapping T : E → E is called partially con-
tinuous at a point a ∈ E if for ε > 0 there exists a δ > 0 such that ‖T x−T a‖ < ε
whenever x is comparable to a and ‖x−a‖ < δ . T called partially continuous on E
if it is partially continuous at every point of it. It is clear that if T is partially continu-
ous on E , then it is continuous on every chain C contained in E . T is called partially
bounded if T (C) is a bounded subset of E for all totally ordered sets or chains C in
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E . Finally, T is called uniformly partially bounded if T (C) is a uniformly bounded
subset of E for all totally ordered sets or chains C in E .

2.1. Partially measure of noncompactness

If C is a chain in E then the symbol C stands for the order-closure of C in E
defined by C = infC∪C∪ supC provided infC and supC exist. The supC is an el-
ement z ∈ E such that for every ε > 0 there exists a c ∈ C such that d(c,z) < ε and
x � z for all x ∈ C . Similarly, infC is defined in the same way. Then C is again a
chain, called the closed chain in E . Thus, C is the intersection of all closed chains con-
taining C . Moreover, we denote by Pcl(E) , Pbd(E) , Prcp(E) , Pch(E) , Pbd,ch(E) ,
Prcp,ch(E) the family of all nonempty and closed, bounded, relatively compact, chains,
bounded chains and relatively compact chains of E respectively.

We accept the following definition of partially measure of noncompactness in par-
tially ordered normed linear space given in Dhage [7].

DEFINITION 2.3. A mapping μ p : Pbd,ch(E) → R+ = [0,∞) is said to be a par-
tially measure of noncompactness in E if it satisfies the following conditions:

1o /0 	= (μ p)−1({0})⊂ Prcp,ch(E) ,

2o μ p(C) = μ p(C) ,

3o μ p is nondecreasing, i.e., if C1 ⊂C2 ⇒ μ p(C1) � μ p(C2) , and

4o If {Cn} is a sequence of closed chains from Pbd,ch(E) such that Cn+1 ⊂ Cn

(n = 1,2, ...) and if lim
n→∞

μ p(Cn) = 0, then the intersection set C∞ =
⋂∞

n=1Cn is
nonempty.

The partially measure μ p of noncompactness is called sublinear if it satisfies

5o μ p(C1 +C2) � μ p(C1)+ μ p(C2) for all C1,C2 ∈ Pbd,ch(E) , and

6o μ p(λC) = |λ |μ p(C) for λ ∈ R .

REMARK 2.1. The family of sets described in 1o is said to be the kernel of the
measure of noncompactness μ p and is defined as ker μ p =

{
C ∈ Pbd,ch(E)

∣∣μ p(C) =
0
}
. Clearly, ker μ p ⊂ Prcp,ch(E) . Observe that the intersection set C∞ from condition

4o is a member of the family ker μ p . In fact, since μ p(C∞) � μ p(Cn) for any n , we
infer that μ p(C∞) = 0. This yields that C∞ ∈ ker μ p . This simple observation will
be essential in our further investigation of measure theoretic fixed point theorems in
partially ordered normed linear spaces.

EXAMPLE 2.1. Define the functions α p,β p : Pbd,ch(E) → R+ by

α p(C) = inf

{
r > 0

∣∣∣ C =
n⋃

i=1

Ci, diam(Ci) � r∀ i

}
,
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where C ∈ Pbd,ch(E) and diam(Ci) = sup{‖x− y‖ : x,y ∈Ci} ; and

β p(C) = inf

{
r > 0

∣∣∣ C ⊂
n⋃

i=1

B(xi,r) for some xi ∈ E

}
,

where B(xi,r) = {x∈ E : ‖xi−x‖< r}. It is easy to prove that α p and β p are partially
measures of noncompactness called the partially Kuratowskii and ball or Hausdorff
measures of noncompactness in E respectively. The partially measures of noncom-
pactness α p and β p are full or complete in the sense that (μ p)−1({0}) = Prcp,ch(E) .

The above two partially Kuratowskii and Hausdorff measures of noncompactness
α p and β p are sublinear and enjoy the maximum property in E . The verification of
this claim is same as classical Kuratowskii and Hausdorff measures of noncompactness
and so we omit the details. In the following we prove some hybrid measure theoretic
fixed point theorems (in short FPTs) in partially ordered normed linear spaces for their
further use in the subsequent sections of the paper.

2.2. Measure theoretic FPTs

DEFINITION 2.4. A mapping T : E → E is called a partially nonlinear D -set-
contraction if there exists a upper semi-continuous nondecreasing function ψ : R+ →
R+ such that for any bounded chain C , T (C) is a bounded chain and μ p(T (C)) �
ψ(μ p(C)) , where ψ(r) < r , for r > 0. The function ψ is called a D -function of the
operator T on E .

It is proved in Dhage [6] that if ψ is a D -function, then ψn(t) = 0 for all t ∈ R+ .
We need the following definition in what follows.

DEFINITION 2.5. (Dhage [6]) The order relation � and the metric d on a non-
empty set E are said to be compatible if {xn} is a monotone, that is, monotone nonde-
creasing or monotone nonincreasing sequence in E and if a subsequence {xnk} of {xn}
converges monotonically to x∗ implies that the whole sequence {xn} converges mono-
tonically to x∗ . Similarly, given a partially ordered normed linear space (E,�,‖ · ‖) ,
the order relation � and the norm ‖ ·‖ are said to be compatible if � and the metric d
defined through the norm ‖ · ‖ are compatible.

The following applicable hybrid fixed point theorem for monotone mappings is
the key tool for proving the main existence and attractivity result for the HFIE (1.1).

THEOREM 2.1. Let S be a non-empty, closed and partially bounded subset of
a regular partially ordered complete normed linear space (E,�,‖ · ‖) such that the
order relation � and the norm ‖ · ‖ are compatible. Let T : S → S be a partially
continuous, nondecreasing and partially nonlinear D -set-contraction. If there exists
an element x0 ∈ S such that x0 � T x0 or x0 � Tx0 , then T has a fixed point x∗ and
the sequence {T nx0} of successive iterations converges monotonically to x∗ .
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Proof. The proof is given in Dhage [7]. Since the proof is not well-known, we give
the details of it. Assume first that there exists an element x0 ∈ S such that x0 � T x0 .
Define a sequence {xn} of points in E by

xn+1 = T xn, n = 0,1,2, . . . . (2.1)

Since T is nondecreasing and x0 � T x0 , we have that

x0 � x1 � x2 � ·· · � xn � ·· · . (2.2)

Denote Cn = {xn,xn+1, . . .} for n = 0,1,2, . . . . By construction, each Cn is a
bounded and closed chain in E and Cn = T (Cn−1), n = 0,1,2, . . . . Moreover,

C0 ⊃C1 ⊃ ·· · ⊃Cn ⊃ ·· · . (2.3)

Therefore, by nondecreasing nature of μ p we obtain

μ p(Cn)= μ p(T (Cn−1)) � ψ(μ p(Cn−1)) � ψ2(μ p(Cn−2))� · · ·� ψn(μ p(C0)). (2.4)

Taking the limit superior as n → ∞ in the above equality (2.4), in view of Lemma
3.1 we obtain that

lim
n→∞

μ p(Cn) � limsup
n→∞

ψn(μ p(C0)) = lim
n→∞

ψn(μ p(C0)) = 0. (2.5)

Hence, by condition (4o ) of μ p , C∞ =
⋂∞

n=1Cn 	= /0 and C∞ ∈ Prcp,ch(E).
From (2.5) it follows that for every ε > 0 there exists an n0 ∈ N such that μ p(Cn) < ε ,
∀ n � n0.

This shows that Cn0 and consequently C0 is a compact chain in E. Hence, {xn}
has a convergent subsequence. Further since the order relation � and the norm ‖ ·
‖ are compatible, the whole sequence {xn} = {T nx0} is convergent and converges
monotonically to a point, say x∗ ∈C0 . Since the ordered space E is regular, we have
that xn � x∗ for all n ∈ N . Finally, from the partial continuity of T , we get

T x∗ = T
(

lim
n→∞

xn

)
= lim

n→∞
T xn = lim

n→∞
xn+1 = x∗.

Similarly, if the condition x0 � T x0 holds, then following the above arguments it
is shown that T has a fixed point. This completes the proof. �

REMARK 2.2. The regularity of E and the partial continuity of T in above The-
orem 2.1 may be replaced with the stronger continuity condition of the operator T on
E .

COROLLARY 2.1. Let S be a non-empty, closed and partially bounded subset of a
regular partially ordered complete normed linear space (E,�,‖·‖) such that the order
relation � and the norm ‖·‖ are compatible. Let T : S→ S be a partially continuous,
nondecreasing and partially nonlinear k -set-contraction with k < 1 . If there exists an
element x0 ∈ S such that x0 � T x0 or x0 � T x0 , then T has a fixed point x∗ and the
sequence {T nx0} of successive iterations converges monotonically to x∗ .
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REMARK 2.3. If the set ST of all solutions to the operator equation T x = x is a
chain in partially ordered Banach space E , then all solutions belonging to S are com-
parable. Further, if μ p(ST ) > 0, then μ p(ST ) = μ p(T ST ) � ψ(μ p(ST )) < μ p(ST )
which is a contradiction. Consequently, ST ∈ ker μ p . This simple fact has been uti-
lized in the study of qualitative properties of dynamic systems under consideration.

REMARK 2.4. Suppose that the order relation � is introduced in E with the help
of an order cone K in the Banach space E by x � y ⇐⇒ y− x ∈ K (see Heikilla
and Lakshmikantham [9]). The element x0 ∈ E satisfying x0 �T x0 in above Theorem
2.1 is called a lower solution of the operator equation x = T x . If the operator equation
x = T x has more than one lower solution and set of all these lower solutions are com-
parable, then the corresponding set S of solutions to above operator equation is a chain
and hence all solutions in S are comparable (cf. Dhage [7]).

Before giving a further generalization of Theorem 3.1, we state a useful definition.

DEFINITION 2.6. A nondecreasing mapping T : E → E is called partially μ p -
condensing if for any bounded chain C in E , μ p(T (C)) < μ p(C) for μ p(C) > 0.

We remark that every partially compact and partially nonlinear D -set-contraction
mappings are partially condensing, however the reverse implications may not hold.

THEOREM 2.2. Let (E,�,‖ · ‖) be a regular partially ordered complete normed
linear space such that the order relation � and the norm ‖ · ‖ are compatible. Let
S be a non-empty, closed and partially bounded subset of E and let T : S → S be a
nondecreasing, partially continuous and partially condensing mapping. If there exists
an element x0 ∈ S such that x0 � T x0 or x0 � T x0 , then T has a fixed point x∗ and
the sequence {T nx0} of successive iterations converges monotonically to x∗ .

Proof. The proof is standard and hence we omit the details.

REMARK 2.5. We note that the proof of Theorems 2.1 and 2.2 do not make any
use of linear structure of the underlined normed linear space E , and therefore, Theo-
rems 2.1 and 2.2 also remain true in the setting of the partially ordered metric space
E . Thus, in view of this fact, we obtain the following fixed point results in partially
ordered metric spaces.

THEOREM 2.3. Let (E,�,d) be a regular partially ordered complete metric space
such that the order relation � and the metric d are compatible. Let S be a non-empty,
closed and partially bounded subset of E and let T : S → S be a nondecreasing, par-
tially continuous and partially condensing mapping. If there exists an element x0 ∈ S
such that x0 � T x0 or x0 � T x0 , then T has a fixed point x∗ and the sequence
{T nx0} of successive iterations converges monotonically to x∗ .

Note that Theorem 2.3 unified the following known hybrid fixed point principles
in partially ordered metric spaces which are also useful from the point of view of appli-
cations to several nonlinear equations of dynamic systems of nonlinear analysis.
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COROLLARY 2.2. (Dhage [6]) Let (E,�,d) be a regular partially ordered com-
plete metric space such that the order relation � and the metric d are compatible. Let
S be a non-empty, closed and partially bounded subset of E and let T : S → S be
a nondecreasing, partially completely continuous mapping. If there exists an element
x0 ∈ S such that x0 �T x0 or x0 �T x0 , then T has a fixed point x∗ and the sequence
{T nx0} of successive iterations converges monotonically to x∗ .

COROLLARY 2.3. (Dhage [6]) Let (E,�,d) be a partially ordered complete met-
ric space such that the order relation � and the metric d are compatible. Let S be a
non-empty, closed and partially bounded subset of E and let T : S → S be a nonde-
creasing, partially nonlinear D -contraction mapping. If there exists an element x0 ∈ S
such that x0 � T x0 or x0 � T x0 , then T has a fixed point x∗ and the sequence
{T nx0} of successive iterations converges monotonically to x∗ .

2.3. FPTs of Krasnoselskii and Dhage type

Before stating the main results, we need the following definitions in what follows..

DEFINITION 2.7. Let (E,�,‖ · ‖) be a partially ordered normed linear space. A
mapping T : E → E is called partially nonlinear D -Lipschitz if there exists a D -
function ψ : R+ → R+ such that

‖T x−T y‖ � ψ(‖x− y‖) (2.6)

for all comparable elements x,y ∈ E , where ψ(0) = 0. If ψ(r) = k r , k > 0, then T is
called a partially Lipschitz with a Lipschitz constant k . If k < 1, T is called a partially
contraction with contraction constant k . Finally, T is called nonlinear D -contraction
if it is a nonlinear D -Lipschitz with ψ(r) < r for r > 0.

Before going to the main fixed point result we prove a useful lemma which we
need in what follows.

LEMMA 2.1. Let
(
E,�,‖ · ‖) be a partially ordered complete normed linear

space. If T : E → E is a nondecreasing and partially nonlinear D -Lipschitz map-
ping, then for any bounded chain C in E , we have

α p(T C) � ψ(α p(C)) (2.7)

where α p is a partially Kurotowskii measure of noncompactness and ψ is an associ-
ated D -function of T on E .

Proof. The proof is similar to standard result for usual nonlinear D -Lipschitz
mappings with Kurotowskii measure of noncomactness α in the Banach space E . We
omit the details.
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DEFINITION 2.8. An operator T on a partially normed linear space E into itself
is called partially compact if T (C) is a relatively compact subset of E for all totally
ordered sets or chains C in E . T is called partially totally bounded if for any totally
ordered and bounded subset C of E , T (C) is a relatively compact subset of E . If T is
partially continuous and partially totally bounded, then it is called partially completely
continuous on E .

REMARK 2.6. Note that every compact mapping on a partially normed linear
space is partially compact and every partially compact mapping is partially totally
bounded, however the reverse implications do not hold. Again, every completely con-
tinuous mapping is partially completely continuous and every partially completely con-
tinuous mapping is partially continuous and partially totally bounded, but the converse
may not be true.

THEOREM 2.4. Let S be a non-empty, closed and partially bounded subset of a
regular partially ordered complete normed linear space

(
E,�,‖·‖) such that the order

relation � and the norm ‖ ·‖ in E are compatible. Let Ai : E → E and B j : S → E
for 1 � i � k and 1 � j � l , be two systems of nondecreasing operators such that for
each i and j ,

(a) Ai is partially nonlinear D -contraction,

(b) B j is partially completely continuous,

(c)
k

∑
i=1

Aix+
l

∑
j=1

B jx ∈ S for all x ∈ S ,

(d)
k

∑
i=1

ψAi(r) < r for r > 0 , and

(e) there exists an element x0 ∈ S such that

x0 �
k

∑
i=1

Aix0 +
l

∑
j=1

B jx0 or x0 �
k

∑
i=1

Aix0 +
l

∑
j=1

B jx0 .

Then the operator equation
k

∑
i=1

Aix+
l

∑
j=1

B jx = x (2.8)

has a solution x∗ in S and the sequence {xn} of successive iterations defined by

xn+1 =
k

∑
i=1

Aixn +
l

∑
j=1

B jxn,

for n = 0,1, . . . ; converges monotonically to x∗ .
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Proof. Define the operator T : S → E by

T x =
k

∑
i=1

Aix+
l

∑
j=1

B jx.

Then, using Lemma 2.1 it is proved that T is a α -condensing mapping on S into
itself. Now the desired result follows by a direct application of Theorem 2.1. �

Let (E,�,‖ · ‖) be a partially ordered normed linear algebra. Denote

E+ = {x ∈ E | x � θ} and K = {E+ ⊂ E | uv ∈ E+ for all u,v ∈ E+},
where θ is the zero element of E .

LEMMA 2.2. (Dhage [5]) If u1,u2,v1,v2 ∈K are such that u1 � v1 and u2 � v2 ,
then u1u2 � v1v2 .

DEFINITION 2.9. An operator T : E → E is said to be positive if the range
R(T ) of T is such that R(T ) ⊆ K .

For any two chains C1 and C2 in E , denote

C1C2 = {x ∈ E | x = c1c2, c1 ∈C1 and c2 ∈C2}.
Then we have the following lemma.

LEMMA 2.3. If C1 and C2 are two bounded chains in a partially ordered normed
linear algebra E , then

α p(C1C2) � ‖C2‖α p(C1),+‖C1‖α p(C2) (2.9)

where ‖C‖ = sup{‖c‖ | c ∈C} .

THEOREM 2.5. Let S be a non-empty, closed and partially bounded subset of a
regular partially ordered complete normed linear algebra

(
E,�,‖ · ‖) such that the

order relation � and the norm ‖ ·‖ in X are compatible. Let Ai : E → K , Bi : S →
K and C j : E → E for 1 � i � k and 1 � j � l , be three systems of nondecreasing
operators such that for each i and j ,

(a) Ai and C j are partially nonlinear D -Lipschitz with D -functions ψAi and ψCi

respectively,

(b) Bi is partially completely continuous,

(d)
k

∑
i=1

AixBix+
l

∑
j=1

C jx ∈ S for all x ∈ S ,

(c)
k

∑
i=1

MiψAi(r)+
l

∑
j=1

ψC j (r) < r , r > 0 , where Mi = ‖Bi(S)‖ , and
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(e) there exists an element x0 ∈ S such that

x0 �
k

∑
i=1

Aix0 Bix0 +
l

∑
j=1

C jx0 or x0 �
k

∑
i=1

Aix0 Bix0 +
l

∑
j=1

C jx0 .

Then the operator equation

k

∑
i=1

AixBix+
l

∑
j=1

C jx = x (2.10)

has a solution x∗ in S and the sequence {xn} of successive approximations defined by

xn+1 =
k

∑
i=1

Aixn Bixn +
l

∑
j=1

C jxn,

for n = 0,1, . . . ; converges monotonically to x∗ .

Proof. Define the operator T : S → E by

T x =
k

∑
i=1

AixBix+
l

∑
j=1

C jx.

Then, using Lemmas 2.1, 2.2 and 2.3 it is proved that T is a partially continuous
and α -condensing mapping on S into itself. Now the desired result follows by a direct
application of Theorem 2.1. �

3. Attractivity and Stability Results

Our considerations will be placed in the Banach space BC(R+,R) consisting of
all real functions x = x(t) defined, continuous and bounded on R+ . This space is
equipped with the standard supremum norm

||x|| = sup{|x(t)| : t ∈ R+}. (3.1)

Define the order relation � in BC(R+,R) as follows. Let x,y∈BC(R+,R) . Then
by x � y we mean x(t) � y(t) for all t ∈ R+ . It is clear that (BC(R+,R),�,‖ · ‖) is
regular and the order relation � and the norm ‖ · ‖ are compatible in BC(R+,R) .
Further (BC(R+,R),�) is also a lattice so that every pair of elements in it has a least
lower bound and a greatest upper bound. (cf. Nieto and Lopez [12]). See also Carl and
Heikkilä [4] and the references therein.

For our purpose we introduce a handy tool for the partial measure of noncompact-
ness in the space BC(R+,R) which is useful in the study of the solutions of certain
nonlinear integral equations. To define this partial measure, let us fix a nonempty and
bounded chain X of the space BC(R+,R) and a positive number T . For x ∈ X and
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ε � 0 denote by ωT (x,ε) the modulus of continuity of the function x on the interval
[0,T ] defined by

ωT (x,ε) = sup{|x(t)− x(s)| : t,s ∈ [0,T ], |t− s| � ε}.
Next, let us put

ωT (X ,ε) = sup{ωT (x,ε) : x ∈ X}, ωT
0 (X) = lim

ε→0
ωT (X ,ε), ω0(X) = lim

T→∞
ωT

0 (X).

The partially Hausdorff measure of noncompactness β p is very much useful in
applications to nonlinear differential and integral equations and it can be shown that
β p(X) = 1

2 ω0(X) for all bounded chain X in BC(R+,R) . Thus ω0 is a handy tool for
β p in BC(R+,R) . See Dhage [5] and the references therein for the details.

Now, for a fixed number t ∈ R+ and a fixed chain X in BC(R+,R) , let us denote

X(t) = {x(t) : x ∈ X}.
Again, for a fixed real number c, denote

X(t)− c = {x(t)− c : x ∈ X}
and

δb(X(t)) = |X(t)− c|= sup{|x(t)− c| : x ∈ X} .

Denote
δT

b (X(t)) = sup
t�T

δb(X(t)) = sup
t�T

|X(t)− c|

and
δb(X) = lim

T→∞
δT

b (X(t)) = limsup
t→∞

|X(t)− c|.

Similarly, let

δ (X(t)) = diamX(t) = sup{|x(t)− y(t)| : x,y ∈ X}.
Let us denote

δT (X(t)) = sup
t�T

δ (X(t)) = sup
t�T

diamX(t)

and
δc(X) = lim

T→∞
δT (X(t)) = limsup

t→∞
diam X(t).

Finally, consider the functions μ p
b and μ p

c defined on the family of bounded chains
in BC(R+,R) by the formula

μ p
b (X) = max

{
ω0(X) , δb(X)

}
(3.2)

and
μ p

c (X) = max
{

ω0(X) , δc(X)
}
. (3.3)
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It can be shown that the functions μ p
b and μ p

c are a partially measures of noncom-
pactness in the space BC(R+,R) . The components ω0 , δb and ω0 , δc are called the
characteristic values of the partially measures of noncompactness μ p

b and μ p
c respec-

tively in BC(R+,R) .

REMARK 3.1. The kernel ker μ p
c of the measure μ p

c consists of nonempty and
bounded chains X in BC(R+,R) such that functions from X are locally equicontinu-
ous on R+ and the thickness of the bundle formed by functions from X tends to zero
at infinity. This particular characteristic of ker μ p

c has been useful in establishing the
global attractivity of the comparable solutions. Similarly, the kernel ker μ p

b of the mea-
sure μ p

b consists of nonempty and bounded chains X in BC(R+,R) such that functions
from X are locally equicontinuous on R+ and the thickness of the bundle formed by
functions from X around the line x(t) = c tends to zero at infinity. This particular
characteristic of ker μ p

b has been useful in establishing the global asymptotic attrac-
tivity and stability of the comparable solutions for the considered functional fractional
integral equations.

In order to introduce further concepts used in the paper let us assume that Ω is a
nonempty chain of the space BC(R+,R) . Moreover, let Q be an operator defined on
Ω with values in BC(R+,R) . Consider the operator equation of the form

x(t) = Qx(t), t ∈ R+. (3.4)

DEFINITION 3.1. We say that comparable solutions of the equation (3.2) are glob-
ally attractive if for arbitrary comparable solutions x = x(t) and y = y(t) of the equa-
tion (3.2) in the space BC(R+,R) we have that

lim
t→∞

[
x(t)− y(t)

]
= 0. (3.5)

In the case when limit (3.2) is uniform with respect to the set of comparable solutions,
i.e., when for each ε > 0 there exists T > 0 such that

|x(t)− y(t)|� ε (3.6)

for all x,y ∈ BC(R+,R) being the comparable solutions of (3.2) and for t � T , we will
say that the comparable solutions of the operator equation (3.2) are uniformly globally
ultimately attractive defined on R+ .

The equation (1.1) will be considered under the following assumptions:

(H0 ) The functions α,β ,γ : R+ →R+ are continuous and satisfy α(t) � t and β (t) �
t for all t ∈ R+ .

(H1 ) The function k is continuous and nonnegative on R+×R+ .

(H2 ) The function F : R+ → R+ defined by F(t) = | f (t,0)| is bounded on R+ with
F0 = sup

t�0
F(t) .
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(H3 ) There exist constants L > 0 and K > 0 such that

0 � f (t,x)− f (t,y) � L(x− y)
K +(x− y)

for all t ∈ R and x,y ∈ R with x � y . Moreover L � K.

(H4 ) There exists a number c ∈ R such that f (t,c) = c for all t ∈ R+ .

(H5 ) g(t,x) is nondecreasing in x for each t ∈ R+ .

(H6 ) There exists an element u ∈C(J,R) such that

u(t) � f (t,u(α(t)))+
1

Γ(q)

∫ β (t))

t0

k(t,s)
(t − s)1−q g(s,u(γ(s))))ds,

for all t ∈ R+ .

(H7 ) There exists a function b : R+ → R+ such that |g(t,x)| � b(t) for all t ∈ R+

and x ∈ R . Moreover, we assume that lim
t→∞

β (t)∫
0

k(t,s)
(t− s)1−q b(s)ds = 0 .

The hypotheses (H0 ) through (H7 ) are standard and have been widely used in the
literature on nonlinear differential and integral equations. The special case of the hy-
pothesis (H3 ) with L < K is considered recently in Nieto and Lopez [12]. Now we
formulate the main existence result for the integral equation (1.1) under above men-
tioned natural conditions.

THEOREM 3.1. Assume that the hypotheses (H0 )-(H3 ) and (H5 )-(H7 ) hold. Then
the functional fractional integral equation (1.1) has at least one solution x∗ in the space
BC(R+,R) and the sequence {xn} of successive approximations defined by

xn(t) = f (t,xn−1(α(t)))+
1

Γ(q)

∫ β (t)

0

k(t,s)
(t− s)1−q g(s,xn−1(γ(s)))ds, t ∈ R+, (3.7)

for each n ∈ N with x0 = u converges monotonically to x∗ . Moreover, the comparable
solutions of the equation (1.1) are uniformly globally ultimately attractive defined on
R+ .

Proof. We seek the solutions of the HFIE (1.1) in the space BC(R+,R). Consider the
operator Q defined on the space E by the formula

Qx(t) = f (t,x(α(t)))+
1

Γ(q)

β (t)∫
0

k(t,s)
(t − s)1−q g(s,x(γ(s)))ds, t ∈ R+. (3.8)

Observe that in view of our assumptions, for any function x ∈ E the function Qx is
continuous on R+ . As a result, Q defines a mapping Q : E → E . We show that Q
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satisfies all the conditions of Theorem 3.1 on E . This will be achieved in a series of
following steps:

Step I: Q is nondecreasing on E .

Let x,y ∈ E be such that x � y . Then by hypothesis (H3 ) and (H5 ), we obtain

Qx(t) = f (t,x(α(t)))+
1

Γ(q)

∫ β (t)

0

k(t,s)
(t − s)1−q g(s,x(γ(s)))ds

� f (t,y(α(t)))+
1

Γ(q)

∫ β (t)

0

k(t,s)
(t − s)1−q g(s,y(γ(s)))ds

= Qy(t)

for all t ∈ R+ . This shows that Q is a nondecreasing operator on E .

Step II: Q maps a closed and partially bounded set into itself.

Define an open ball B(x0,r) , where r = ‖x0‖+L+F0 + V
Γ(q) . Let X be a chain

in E and let x ∈ X be arbitrary. Since the function v : R+ → R defined by

v(t) =
∫ β (t)

0

k(t,s)
(t − s)1−q b(s)ds (3.9)

is continuous and in view of hypothesis (H7 ), the number V = supt�0 v(t) exists. More-
over if x � θ , then for arbitrarily fixed t ∈ R+ we obtain:

|x0(t)−Qx(t)|� |x0(t)|+ | f (t,x(α(t)))|+ 1
Γ(q)

∫ β (t)

0

k(t,s)
(t− s)1−q |g(s,x(s))|ds

� |x0(t)|+ | f (t,x(α(t)))− f (t,0)|+ | f (t,0)|+ 1
Γ(q)

∫ β (t)

0

k(t,s)
(t − s)1−q b(s)ds

� |x0(t)|+ L |x(α(t))|
K + |x(α(t))| +F(t)+

v(t)
Γ(q)

� ‖x0‖+L+F0 +
V

Γ(q)
= r. (3.10)

Similarly, if x � θ , then it can be shown that |x0(t)−Qx(t)|� r for all t ∈ R+ . Taking
the supremum over t , we obtain ‖x0 −Qx‖ � r for all x ∈ X . This means that the
operator Q transforms any bounded chain X in E into a bounded chain in E . More
precisely, we infer that the operator Q transforms a chain X belonging to E into the
chain Q(X) contained in the ball B(x0,r) . In particular, Q defines a mapping Q :
Pch(B(x0,r))) → Pch(B(x0,r))) and that Q is partially bounded on S = B(x0,r)
into itself. Therefore, if Q has any fixed point x∗ in E , then it must belong to S =
B(x0,r) . As a result, any solution of the HFIE (1.1) existing in S is a global solution
defined on R+ .

Step III: Q is partially continuous on S .
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Now we show that the operator Q is partially continuous on the ball B(x0,r) . To
do this, let us fix arbitrarily ε > 0 and let X be a chain in B(x0,r) . Take x,y ∈ X ⊂
B(x0,r) such that x � y and ||x− y||� ε . Then,

|Qx(t)−Qy(t)| � ∣∣ f (t,x(α(t)))− f (t,y(α(t)))
∣∣

+
1

Γ(q)

∣∣∣∣
∫ β (t)

0

k(t,s)
(t− s)1−q g(s,x(γ(s)))ds−

∫ β (t)

0

k(t,s)
(t − s)1−q g(s,y(γ(s)))ds

∣∣∣∣
�

∣∣ f (t,x(α(t)))− f (t,y(α(t)))
∣∣+ 1

Γ(q)

∫ β (t)

0

k(t,s)
(t− s)1−q |g(s,x(γ(s)))|ds

+
1

Γ(q)

∫ β (t)

0

k(t,s)
(t− s)1−q |g(s,y(γ(s)))|ds

� L|x(α(t))− y(α(t))|
K + |x(α(t))− y(α(t))| +

2
Γ(q)

∫ β (t)

0

k(t,s)
(t− s)1−q b(s)ds

� L‖x− y‖
K +‖x− y‖ +

2
Γ(q)

v(t)

< Lε +
2

Γ(q)
v(t).

Hence, in virtue of hypothesis (H7 ) we infer that there exists T > 0 such tha v(t) �
ε

2/Γ(q)
for t � T . Thus, for t � T we derive that

|Qx(t)−Qy(t)|< (L+1)ε . (3.11)

Further, let us assume that t ∈ [0,T ] . Then, evaluating as above we get:

|Qx(t)−Qy(t)|� | f (t,x(α(t)))− f (t,y(α(t)))|
∣∣∣

+
1

Γ(q)

∫ β (t)

0

k(t,s)
(t− s)1−q [|g(s,x(γ(s)))−g(s,y(γ(s)))|]ds

� L|x(α(t))− y(α(t))|
K + |x(α(t))− y(α(t))|
+

1
Γ(q)

∫ t

0

k(t,s)
(t− s)1−q

[|g(s,x(γ(s)))−g(s,y(γ(s)))|]ds

< ε +
CTq

Γ(q+1)
ωT

r (g,ε) , (3.12)

where we have denoted

C = sup{k(t,s) : t,s ∈ [0,T ]},

and

ωT
r (g,ε) = sup{|g(s,x)−g(s,y)| : t,s ∈ [0,T ], x,y ∈ [−r,r], |x− y|� ε}.



180 BAPURAO C. DHAGE

Obviously, in view of continuity of β , we have that βT < ∞ . Moreover, from
the uniform continuity of the function g(s,x) on the set [0,T ]× [−r,r] we derive that
ωT

r (g,ε) → 0 as ε → 0. Now, linking (3.10), (3.12) and the above established facts we
conclude that the operator Q maps partially continuously the ball B(x0,r) into itself.

Step IV: Q is a nonlinear D -set-contraction w.r.t. the characteristic value ω0 .

Further on let us take a chain X belonging to the ball B(x0,r) . Next, fix arbitrarily
T > 0 and ε > 0. Let us choose x ∈ X and t1,t2 ∈ [0,T ] with |t2 − t1| � ε . Without
loss of generality we may assume that x(α(t1)) � x(α(t2)) . Then, taking into account
our assumptions, we get:

|Qx(t1)−Qx(t2)| �
∣∣ f (t1,x(α(t1)))− f (t2,x(α(t2)))

∣∣
+

1
Γ(q)

∣∣∣∣
∫ β (t1)

0

k(t1,s)
(t1 − s)1−q g(s,x(γ(s)))ds−

∫ β (t2)

0

k(t2,s)
(t2 − s)1−q g(s,x(γ(s)))ds

∣∣∣∣
�

∣∣ f (t1,x(α(t1)))− f (t2,x(α(t2)))
∣∣

+
1

Γ(q)

∣∣∣∣
∫ β (t1)

0

k(t1,s)
(t1 − s)1−q g(s,x(γ(s)))ds−

∫ β (t1)

0

k(t2,s)
(t2 − s)1−q g(s,x(γ(s)))ds

∣∣∣∣
+

1
Γ(q)

∣∣∣∣
∫ β (t1)

0

k(t2,s)
(t2 − s)1−q g(s,x(γ(s)))ds−

∫ β (t2)

0

k(t2,s)
(t2 − s)1−q g(s,x(γ(s)))ds

∣∣∣∣
�

∣∣ f (t1,x(α(t1)))− f (t2,x(α(t2)))
∣∣

+
1

Γ(q)

∫ β (t1)

0

∣∣∣ k(t1,s)
(t1 − s)1−q −

k(t2,s)
(t2 − s)1−q

∣∣∣ |g(s,x(γ(s)))|ds

+
1

Γ(q)

∣∣∣∣
∫ β (t1)

β (t2)

k(t2,s)
(t2 − s)1−q |g(s,x(γ(s)))|ds

∣∣∣∣
�

∣∣ f (t1,x(α(t1)))− f (t2,x(α(t2)))
∣∣

+
1

Γ(q)

∫ βT

0

∣∣∣ k(t1,s)
(t1 − s)1−q −

k(t2,s)
(t2 − s)1−q

∣∣∣b(s)ds+
GT

r

Γ(q)
|β (t1)−β (t2)|.

(3.13)

where GT
r = sup{|g(t,s,x)| : t ∈ [0,T ],s ∈ [0,βT ],x ∈ [−r,r]} which does exists in view

of the fact that the function g(t,s,x) = k(t,s)
(t−s)1−q g(s,x) is continuous on compact [0,T ]×

[0,βT ]× [−r,r] . Now from (3.13) we obtain,

|Qx(t2)−Qx(t1)| �
∣∣ f (t1,x(α(t1)))− f (t2,x(α(t1)))

∣∣+ L |x(α(t1))− x(α(t2))|
K + |x(α(t1))− x(α(t2))|

+
1

Γ(q)

∫ βT

0

∣∣∣ k(t1,s)
(t1− s)1−q −

k(t2,s)
(t2− s)1−q

∣∣∣b(s)ds

+
GT

r

Γ(q)
|β (t1)−β (t2)|

� LωT (x,ωT (α,ε))
K + ωT (x,ωT (α,ε))

+ ωT
r ( f ,ε)
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+
1

Γ(q)

∫ βT

0

∣∣∣ k(t1,s)
(t1− s)1−q −

k(t2,s)
(t2− s)1−q

∣∣∣b(s)ds+
GT

r

Γ(q)
ωT (β ,ε)

(3.14)

where we have denoted

ωT (α,ε) = sup{|α(t2)−α(t1)| : t1,t2 ∈ [0,T ], |t2− t1| � ε},
ωT (v,ε) = sup{|β (t2)−β (t1)| : t1,t2 ∈ [0,T ], |t2− t1| � ε},

and

ωT
r ( f ,ε) = sup{| f (t2,x)− f (t1,x)| : t1,t2 ∈ [0,T ], |t2 − t1| � ε, x ∈ [−r,r]}.

From the above estimate we derive the following one:

ωT (Q(X),ε) � LωT (X ,ωT (α,ε))
K + ωT (X ,ωT (α,ε))

+ ωT
r ( f ,ε)

+
1

Γ(q)

∫ βT

0

∣∣∣ k(t1,s)
(t1− s)1−q −

k(t2,s)
(t2− s)1−q

∣∣∣b(s)ds+
GT

r

Γ(q)
ωT (β ,ε). (3.15)

Observe that ωT
r ( f ,ε) → 0 and

∣∣∣ k(t1,s)
(t1−s)1−q − k(t2,s)

(t2−s)1−q

∣∣∣ → 0 as ε → 0, which is

a simple consequence of the uniform continuity of the functions f and (t − s)q−1 on
the sets [0,T ]× [−r,r] and [0,T ]× [0,βT ] respectively. Moreover, from the uniform
continuity of α, β on [0,T ] , it follows that ωT (α,ε) → 0, ωT (β ,ε) → 0 as ε →
0. Thus, linking the established facts with the estimate (3.13), we get ωT

0 (Q(X)) �
L ωT

0 (X)
K + ωT

0 (X)
. Consequently, we obtain

ω0(Q(X)) � L ω0(X)
K + ω0(X)

. (3.16)

Step V: Q is a nonlinear D -set-contraction w.r.t. characteristic value δc .

Now, taking into account our assumptions, for arbitrarily fixed t ∈ R+ and for
x,y ∈ X with x � y , we deduce the following estimate (cf. the estimate in Step III):

|(Qx)(t)− (Qy)(t)| � | f (t,x(α(t)))− f (t,y(α(t)))|+2
1

Γ(q)

∫ β (t)

0

k(t,s)
(t− s)1−q b(s)ds

� L|x(α(t))− y(α(t))|
K + |x(α(t))− y(α(t))| +

2v(t)
Γ(q)

.

From the above inequality it follows that

diam(QX(t)) � Ldiam(X(α(t)))
K +diam(X(α(t)))

+
2v(t)
Γ(q)

.

for each t ∈ R+ . Therefore, taking the limit superior over t → ∞ , we obtain
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δc(QX) � L limsupt→∞ diam(X(α(t)))
K + limsupt→∞ diam(X(α(t)))

� Lδc(X)
K + δc(X)

. (3.17)

Step VI: Q is a partially nonlinear D -set-contraction on S.

Further, using the measure of noncompactness μ p
c defined by the formula (3.3)

and keeping in mind the estimates (3.16) and (3.17), we obtain

μ p
c (QX) = max

{
ω0(QX) , δc(QX)

}
� max

{
L ω0(X)

K + ω0(X)
,

Lδc(X)
K + δc(X)

}

� Lμ p
c (X)

K + μ p
c (X)

. (3.18)

This shows that Q is a partially nonlinear D -set-contraction on S with D -function

ψ(r) =
Lr

K + r
. Again, by hypothesis (H6 ), there exists an element x0 = u∈ S such that

x0 � Qx0 , that is, x0 is a lower solution of the HFIE (1.1) defined on R+ .

Thus Q satisfies all the conditions of Theorem 2.1 on S . Hence we apply it to the
operator equation Qx = x and deduce that the operator Q has a fixed point x∗ in the
ball B(x0,r) . Obviously x∗ is a solution of the functional integral equation (1.1) and
the sequence {xn} defined by (3.7) converges monotonically to x∗ . Moreover, taking
into account that the image of every chain X under the operator Q is again a chain
Q(X) contained in the ball B(x0,r) we infer that the set F (Q) of all fixed points of
Q is contained in B(x0,r) . If the set F (Q) contains all comparable solutions of the
equation (1.1), then we conclude from Remark 2.3 that the set F (Q) also belongs to
the family ker μ p

c . Now, taking into account the description of sets belonging to ker μ p
c

(given in Section 3) we deduce that all comparable solutions of the equation (1.1) are
uniformly globally ultimately attractive on R+ . This completes the proof. �

Similarly, we can prove the following result concerning the asymptotic stability of
the comparable solutions.

THEOREM 3.2. Assume that the hypotheses (H0 ) through (H7 ) hold. Then the
functional HFIE (1.1) has at least one solution x∗ in the space BC(R+,R) and the
sequence {xn} of successive approximations defined by (3.7) converges monotonically
to x∗ . Moreover, the comparable solutions of the equation (1.1) are uniformly globally
ultimately asymptotically stable to the line x(t) = c defined on R+ .

Proof. As in Theorem 3.1, we seek the solutions of the HFIE (1.1) in the space E =
BC(R+,R). Define the closed bounded set S = B(x0,r) and define the operator Q on
S into itself by (3.8). Then proceeding as in the Step IV of the proof of Theorem 3.1
it can be proved that the inequality (3.16) is held. Next, we show that Q is a nonlinear
D -set-contraction with respect to the characteristic value δa . Let X be a set in S . Now,
taking into account our assumptions, for arbitrarily fixed t ∈ R+ and for x ∈ X with
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x � c , we deduce the following estimate:

|(Qx)(t)− c|� | f (t,x(α(t)))− f (t,c)|+ 1
Γ(q)

∫ β (t)

0

k(t,s)
(t− s)1−q b(s)ds

� L |x(α(t))− c|
K + |x(α(t))− c| +

v(t)
Γ(q)

.

From the above inequality it follows that

|QX(t)− c|� L |X(α(t))− c|
K + |X(α(t))− c| +

v(t)
Γ(q)

for each t ∈ R+ . Therefore, taking limit superior over t → ∞ , we obtain

δb(QX) = limsup
t→∞

L |X(α(t))− c|
K + |X(α(t))− c|

� L limsupt→∞ |X(t)− c|
K + limsupt→∞ |X(t)− c|

=
Lδb(X)

K + δb(X)
. (3.19)

Further, using the measure of noncompactness μ p
b defined by the formula (3.2)

and keeping in mind the estimates (3.16) and (3.19), we obtain

μ p
b (QX) = max{ω0(QX) , δb(QX)}

� max

{
L ω0(X)

K + ω0(X)
,

Lδb(X)
K + δb(X)

}

� Lμ p
b (X)

K + μ p
b (X)

. (3.20)

This shows that Q is a nonlinear D -set-contraction on S with a D -function

ψ(r) =
Lr

K + r
. Again, by hypothesis (H6 ), there exists an element x0 = u ∈ S such

that x0 � Qx0 , that is, x0 is a lower solution of the HFIE (1.1) defined on R+ . The
rest of the proof is similar to Theorem 3.1 and now we conclude from Remark 2.3
that the set F (Q) belongs to the family ker μ p

b . Now, taking into account the de-
scription of sets belonging to ker μ p

b (given in Section 3) we deduce that the equation
(1.1) has a solution x∗ and the sequence {xn} of successive iterations defined by (3.7)
converges monotonically to x∗ . Moreover, all comparable solutions of the HFIE (1.1)
are uniformly globally asymptotically stable to the line x(t) = c defined on R+ . This
completes the proof. �

If c = 0 in Theorem 3.2, it reduces to the existence result concerning the asymp-
totic stability of the solutions to zero and all comparable solutions if exist have the same
property.
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REMARK 3.2. The conclusion of Theorems 3.1 and 3.2 also remains true if we
replace the hypothesis (H3 ) with the following one:

(H’3 ) There exists a continuous and nondecreasing function φ : R+ → R+ such that

0 � f (t,x)− f (t,y) � φ(x− y)

for all x,y ∈ R , x � y , where φ(r) < r for r > 0.

In the following we give a numerical example to illustrate the abstract theory de-
veloped in this paper.

EXAMPLE 3.1. Consider the nonlinear hybrid fractional integral equation with
linear perturbation of first type,

x(t) = tan−1 x(2t)+
1

Γ(3/2)

∫ t

0

(t − s)1/2

t2 +1
g(s,x(3s))ds (3.21)

for all t ∈ R+ , where g : R+ ×R → R is a function defined by

g(t,x) =

⎧⎨
⎩

1, if x � 1,

2x
x+1

, if x > 1.

We shall show that all the hypotheses of Theorem 3.1 are satisfied by the functions
involved in HFIE (3.21). Here, α(t) = 2t , β (t) = t and γ(t) = 3t and so, α, β , γ are
continuous on R+ into itself and satisfy α(t) � t and β (t) � t for all t ∈ R+ . Thus,
hypothesis (H0 ) is satisfied.

Again, f (t,x) = tan−1 x so that f is nondecreasing in x and continuous on R+ ×
R . The kernel k(t,s) is given by k(t,s) = 1

t2+1
. Obviously k is continuous and non-

negative on R+ ×R+ and so (H1 ) holds. Next, g(t,x) is defines a continuous and
nondecreasing function in x for each t ∈ R+ . Moreover, f (t,0) = 0. So the hypothe-
ses (H2 ), (H4 ) and (H5 ) are held.

Now, we show that f is partially Lipschitz on R+ ×R . Let x,y ∈ R with x � y .
Then,

0 � f (t,x)− f (t,y) = tan−1 x− tan−1 y =
1

1+ ξ 2 (x− y)

for all y< ξ < x , and so hypothesis (H’3 ) is satisfied with φ(r) =
r

1+ ξ 2 for 0< ξ < r .

Furthermore, |g(t,x)| � 2 for all t ∈ R+ and R . Therefore,

v(t) = 2
∫ t

0

(t − s)
1
2

t2 +1
·1ds =

4
3
· t

3
2

t2 +1
.

Therefore,

lim
t→∞

v(t) = lim
t→∞

4
3

t
3
2

t2 +1
= 0,



Differ. Equ. Appl. 6 (2014), 165–186. 185

and so hypothesis (H7 ) of Theorem 3.1 is satisfied.

Finally, it is easy to prove that u ≡ 0 is a lower solution of the HFIE (3.21) on
R+ and hence the hypothesis (H6 ) is held. Thus all the conditions of Theorem 3.1 are
satisfied and by a direct application, we conclude that the HFIE (3.21) has a solution x∗
and the sequence {xn} of successive approximations defined by

xn+1(t) = tan−1 xn(2t)+
1

Γ(3/2)

∫ t

0

(t − s)1/2

t2 +1
g(s,xn(3s))ds, (3.22)

for all t ∈R+ convergesmonotonically to x∗ , where x0 = 0. Moreover, the comparable
solutions of the HFIE (3.21) are uniformly asymptotically attractive and stable to zero
defined on R+ .

REMARK 3.3. The existence theorems proved in Section 3 may be extended with
appropriate modifications to the linearly perturbed generalized nonlinear hybrid frac-
tional integral equation,

x(t) = f (t,x(α1(t)), . . . ,x(αn(t)))+
1

Γ(q)

∫ β (t)

0

k(t,s)
(t− s)1−q g(s,x(γ1(s)), . . . ,γn(s)))ds

(3.23)
for all t ∈ R+ , where αi,β ,γi : R+ → R+ , i = 1,2, . . . ,n, k : R+ ×R+ → R ,
f ,g : R+×R

n → R are continuous functions and 1 � q < 2.

REMARK 3.4. The existence theorem for the HFIE (1.1) may be proved using
Theorem 2.4 under weaker Carathéodory condition. Finally, we remark that the study of
the present paper may be extended to other types of nonlinear hybrid integral equations
with different linear and quadratic perturbations of first and second type.

4. Conclusion

In this paper we have been able to weaken the Lipschitz condition to partially Lip-
schitz condition and continuity to partially continuity of the nonlinearities which oth-
erwise are considered to be very strong conditions in the existence theory for nonlinear
differential and integral equations. However, in this situation we needed an additional
assumption of the monotonicity on the nonlinearities involved in the considered integral
equation in order to guarantee the required characterization of asymptotic attractivity
or asymptotic stability of the comparable solutions defined on unbounded interval of
real line. The advantage of present approach over the previous ones lies in the fact that
we have been able to develop an algorithm for the solutions of the considered integral
equations which otherwise is not possible via classical approach of measure of non-
compactness described in Banas and Goebel [2] and several related papers. Another
interesting feature of our work is that we generally need the uniqueness of the solution
for predicting the behavior of the dynamic systems related to the considered nonlinear
fractional integral equation, however with the present approach it is possible for us to
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discuss the qualitative behavior even though there exist a number of solutions of the
dynamic systems in question. Finally, while concluding this paper we mention that the
results presented here are for a linearly perturbed Volterra fractional integral equation,
however analogous study can also be made for any nonlinear fractional integral equa-
tion related to global asymptotic attractivity and stability using the similar arguments
with appropriate modifications.
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