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Abstract. The aim of this paper is to study the existence of asymptotically stable solutions for a
mixed functional integral equation in N variables. This is done by using a fixed point theorem of
Krasnosel’skii type in the Fréchet space and the new integral inequalities with explicit estimate.
In order to illustrate the results obtained here, an example is given.

1. Introduction

In this paper, we establish the existence of asymptotically stable solutions for the
mixed functional integral equation in N variables of the form

u(x) = V

(
x,u(x),

∫
Bx

V1 (x,y,u(σ1(y)))dy

)
+
∫

R
N
+

F (x,y,u(σ2(y)))dy, (1.1)

where x ∈ R
N
+ = {(x1, ...,xN) ∈ R

N : x1 � 0, ...,xN � 0} ,

V : R
N
+ ×E2 → E, V1 : Δ×E → E; F : R

2N
+ ×E → E,

σ1, σ2 : R
N
+ → R

N
+ are continuous,

Δ = {(x,y) ∈ R
2N
+ : y ∈ Bx}, Bx = [0,x1]× ...× [0,xN],

the functions σ1, σ2 : R
N
+ → R

N
+ are continuous with σ1(x) ∈ Bx, ∀x ∈ R

N
+,

E is a Banach space with norm |·| .
It is well known that, nonlinear integral equations and nonlinear functional inte-

gral equations have been some topics of great interest in the field of nonlinear analysis
for a long time. Since the pioneering work of Volterra up to our days, integral equa-
tions have attracted the interest of scientists not only because of their mathematical
context but also because of their miscellaneous applications in various fields of science
and technology, see [18]. The special cases of (1.1) occur in mechanics, population
dynamics, engineering systems, the theory of ”adiabatic tubular chemical reactors”,
etc. For the details of such problems, it can be found in, for example, Corduneanu [6]
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or Deimling [7]. It also can be found some applications of integral or integrodiffer-
ential equations to various problems occurring in contemporary research, such as the
following integrodifferential equation is encountered in the mathematical description
of coagulation process [6], under certain simplifying assumptions

f (t,x) = f0(x)+
1
2

∫ t

0

∫ x

0
φ(x− y,y) f (s,x− y) f (s,y)dyds

−
∫ t

0

∫ ∞

0
f (s,x)φ(x,y) f (s,y)dyds.

In general, existence results of integral equations have been obtained via the fun-
damental methods in which the fixed point theorems are often applied, see [1] – [18]
and the references given therein. Recently, using the technique of the measure of non-
compactness and the Darbo fixed point theorem, Z. Liu et al. [10] have proved the
existence and asymptotic stability of solutions for the equation

x(t) = f

(
t, x(t),

∫ t

0
u(t,s,x(a(s)),x(b(s))) ds

)
, t ∈ R+.

In [2], using a fixed point theorem of Krasnosel’skii, Avramescu and Vladimirescu
have proved the existence of asymptotically stable solutions to the following integral
equation

u(t) = q(t)+
∫ t

0
K(t,s,u(s))ds+

∫ ∞

0
G(t,s,u(s))ds, t ∈ R+,

where the functions given with real values are supposed to be continuous satisfying
suitable conditions. In case the Banach space E is arbitrary, recently in [14], [15], the
existence of asymptotically stable solutions to the following integral equations

x(t) = q(t)+ f (t,x(t))+
∫ t

0
V (t,s,x(s))ds+

∫ ∞

0
G(t,s,x(s))ds, t ∈ R+,

or

u(x,y) = q(x,y)+ f (x,y,u(x,y))+
∫ x

0

∫ y

0
V (x,y,s,t,u(s,t))dsdt

+
∫ ∞

0

∫ ∞

0
F (x,y,s,t,u(s,t))dsdt, (x,y) ∈ R

2
+,

also have been proved by using the fixed point theorem of Krasnosel’skii type as fol-
lows.

THEOREM 1. [12]. Let (X , |·|n) be a Fréchet space and let U, C : X → X be two
operators. Assume that

(i) U is a k−contraction operator, k ∈ [0,1) (depending on n), with respect to a
family of seminorms ‖·‖n equivalent with the family |·|n ;

(ii) C is completely continuous;

(iii) lim
|x|n→∞

|Cx|n
|x|n = 0, ∀n ∈ N.

Then U +C has a fixed point.
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In [11], Lungu and Rus established some results relative to existence, unique-
ness, integral inequalities and data dependence for solutions of the following functional
Volterra-Fredholm integral equation in two variables with deviating argument in a Ba-
nach space by Picard operators technique

u(x,y) = g(x,y,h(u)(x,y))+
∫ x

0

∫ y

0
K (x,y,s,t,u(s, t))dsdt, (x,y) ∈ R

2
+.

In [16], based on the applications of the Banach fixed point theorem coupled with
Bielecki type norm and the integral inequality with explicit estimates, B. G. Pachpatte
studied some basic properties of solutions of the Fredholm type integral equation in two
variables as follows

u(x,y) = f (x,y)+
∫ a

0

∫ b

0
g(x,y,s,t,u(s,t),D1u(s, t),D2u(s,t))dtds.

With the same methods, in [17], the existence, uniqueness and other properties of
solutions of certain Volterra integral and integrodifferential equations in two variables
were considered.

Applying the Banach fixed point theorem, in [8], El-Borai et al. have proved
the existence of a unique solution of a nonlinear integral equation of type Volterra-
Hammerstein in n−dimensional of the form

μφ(x, t) = f (x,t)+ λ
∫ t

0

∫
Ω

F(t,τ)K(x,y)γ (τ,y,φ(y,τ))dydτ,

where x = (x1, ...,xn), y = (y1, ...,yn); μ , λ are constants. After that, in [1], M. A.
Abdou et al. investigated the following mixed nonlinear integral equation of the second
kind in n−dimensional

μφ(x, t) = λ
∫

Ω
k(x,y)γ (t,y,φ(y,t))dy+ λ

∫ t

0

∫
Ω

G(t,τ)k(x,y)γ (τ,y,φ(y,τ))dydτ

+λ
∫ t

0
F(t,τ)φ(x,τ)dτ + f (x,t),

where x = (x1, ...,xn), y = (y1, ...,yn) . Also using the Banach fixed point theorem, the
existence of a unique solution of this equation was proved.

This paper consists of four sections and the existence of solutions, the existence
of asymptotically stable solutions for (1.1) will be presented in sections 2, 3. The
main tools are Theorem 1.1, Propositions 2.1, 2.2, and the new integral inequalities, see
Lemma 3.1 as below. Finally, we give an illustrated example. The results obtained here
may be considered as the generalizations of those in [10], [14].

2. The Existence of Solutions

Let X = C(RN
+;E) be the space of all continuous functions on R

N
+ to E which be

equipped with the numerable family of seminorms

|u|n = sup
x∈[0,n]N

|u(x)| , n � 1.
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Then X is complete with the metric

d(u,v) = ∑∞
n=1 2−n |u− v|n

1+ |u− v|n
and X is the Fréchet space [13]. Consider in X the other family of seminorms ‖·‖n
defined by

‖u‖n = |u|γn
+ |u|hn

, n � 1,

where

|u|γn
= sup

x∈[0,n]N , |x|1�γn

|u(x)| ,

|u|hn
= sup

x∈[0,n]N , |x|1�γn

e−hn(|x|1−γn) |u(x)| ,

|x|1 = x1 + ...+ xN,

γn ∈ (0,n) and hn > 0 are arbitrary numbers. ‖·‖n and |·|n are equivalent because

e−hn(nN−γn) |u|n � ‖u‖n � 2 |u|n , ∀u ∈ X , ∀n � 1.

Based on the construct of such (X , |·|n), the following are valid. It is useful
to prove existence of solutions for some nonlinear functional integral equations in the
space of all continuous functions on R

N
+ with values in a general Banach space. So

is to (1.1). For an exhaustive knowledge, we refer the reader to the work [6], wherein
many methods in order to solve of nonlinear integral equations in abstract spaces can
be found and applications were given.

PROPOSITION 2.1. (Banach, see [3], [4]) Let (X , |·|n) be a Fréchet space and
let Φ : X → X be an Ln−contraction on X with respect to a family of seminorms ‖·‖n
equivalent with |·|n . Then Φ has a unique fixed point in X .

The details of the proof can be found in Appendix of [13].

PROPOSITION 2.2. Let X = C(RN
+;E) be the Fréchet space defined as above and

A be a subset of X . For each n ∈ N, let Xn = C([0,n]N ;E) be the Banach space of
all continuous functions u : [0,n]N → E with the norm

|u|n = sup
x∈[0,n]N

|u(x)|

and An = {u|[0,n]N : u ∈ A}.
The set A in X is relatively compact if and only if for each n ∈ N, An is equicon-

tinuous in Xn and for every x ∈ [0,n]N , the set An(x) = {u(x) : u ∈ An} is relatively
compact in E .

The proof of Proposition 2.2 is similar to that in Appendix of [12], it follows from
the Ascoli-Arzela’s Theorem, (see [9], p. 211).

We suppose that the following hypotheses are satisfied:
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(A1) There exist a constant L ∈ [0,1) and a continuous function ω0 : R
N
+ → R+

such that

|V (x;u,v)−V (x; u, v)| � L |u− u|+ ω0(x) |v− v | , ∀x ∈ R
N
+, ∀u,v, u, v ∈ E;

(A2) There exists a continuous function ω1 : Δ → R+ such that

|V1 (x,y;u)−V1 (x,y; u)| � ω1(x,y) |u− u| , ∀(x,y) ∈ Δ, ∀u, u ∈ E;

(A3) F is completely continuous with the property: for all bounded subsets I1, I2
of R

N
+ and for any bounded subset J of E, for all ε > 0, there exists δ > 0, such that

∀x, x ∈ I1, |x− x |1 < δ =⇒ |F(x,y;u)−F(x ,y;u)| < ε, ∀(y,u) ∈ I2× J;

(A4) There exists a continuous function ω2 : R2N
+ →R+ such that for each bounded

subset I of R
N
+ , the following conditions hold:∫

R
N
+

sup
x∈I

ω2(x,y)dy < ∞,

and
|F (x,y;u)| � ω2(x,y),∀(x,y;u) ∈ I×R

N
+×E;

(A5) σ1, σ2 ∈C(RN
+;RN

+), with σ1(x) ∈ Bx, for all x ∈ R
N
+ and

lim
η→0+

∫
y∈[0,n]N , |σ1(y)|1�η

dy = 0, ∀n ∈ N.

REMARK 1. − Assumption (A5) can be valid when σ1(x) = x or σ1(x) = ax,
0 < a < 1. Indeed,

(i) In the case of σ1(x) = x. We have∫
y∈[0,n]N , |y|1�η

dy

�
∫

R
N
+, |y|1�η

dy =
∫

...

∫
R

N
+, y1+...+yN�η

dy1...dyN

=
∫ η

0
dy1

∫ η−y1

0
dy2...

∫ η−y1−y2−...−yN−1

0
dyN

=
∫ η

0
dy1

∫ η−y1

0
dy2...

∫ η−y1−y2−...−yN−2

0
(η − y1− y2− ...− yN−1)dyN−1

=
∫ η

0
dy1

∫ η−y1

0
dy2...

∫ η−y1−y2−...−yN−3

0

(η − y1− y2− ...− yN−2)
2

2
dyN−2

=
∫ η

0
dy1

∫ η−y1

0
dy2...

∫ η−y1−y2−...−yN−4

0

(η − y1− y2− ...− yN−3)
3

3!
dyN−3

=
∫ η

0
dy1

∫ η−y1

0
dy2...

∫ η−y1−y2−...−yN−5

0

(η − y1− y2− ...− yN−4)
4

4!
dyN−4
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...

=
∫ η

0
dy1

∫ η−y1

0
dy2...

∫ η−y1−y2−...−yN−k−1

0

(η − y1− y2− ...− yN−k)
k

k!
dyN−k

...

=
∫ η

0
dy1

∫ η−y1

0

(η − y1− y2)
N−2

(N −2)!
dy2

=
∫ η

0

(η − y1)
N−1

(N−1)!
dy1 =

ηN

N!
→ 0, as η → 0+.

(ii) In the case of σ1(x) = ax, 0 < a < 1, it is clear that

∫
y∈[0,n]N , |ay|1�η

dy =
∫

y∈[0,n]N , |y|1� η
a

dy �
(η

a

)N
N!

=
ηN

N!aN → 0 as η → 0+.

THEOREM 2. Let (A1)− (A5) hold. Then the equation (1.1) has a solution on
R

N
+.

Proof. First, we consider the equation

u(x) = V

(
x,u(x),

∫
Bx

V1 (x,y,u(σ1(y)))dy

)
, x ∈ R

N
+, (2.1)

and show that it has a unique solution u = ξ . Writing (2.1) in the form

u(x) = Φu(x), x ∈ R
N
+, (2.2)

where

Φu(x) = V

(
x,u(x),

∫
Bx

V1 (x,y,u(σ1(y)))dy

)
, (x,u) ∈ R

N
+×X . (2.3)

For all u, v ∈ X , assumptions (A1), (A2) lead to

|Φu(x)−Φv(x)| � L |u(x)− v(x)|+ ω0(x)
∫

Bx

ω1(x,y) |u(σ1(y))− v(σ1(y))|dy.

Let n∈ N be fixed. For all x ∈ [0,n]N , |x|1 � γn, with γn ∈ (0,n) chosen later. By
σ1(x) ∈ Bx, ∀x ∈ [0,n]N , we can estimate as follows

|Φu(x)−Φv(x)| � L |u− v|γn
+ ωn

( |x|1
N

)N

|u− v|γn
�
(

L+ ωn
γN
n

NN

)
|u− v|γn

,

in which ⎧⎪⎪⎨
⎪⎪⎩

ωn = ω̃0nω̃1n, ω̃0n = sup {ω0(x) : x ∈ [0,n]N},
ω̃1n = sup {ω1(x,y) : (x,y) ∈ Δn},
Δn = {(x,y) ∈ [0,n]2N : y ∈ Bx}.
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So

|Φu−Φv|γn
�
(

L+ ωn
γN
n

NN

)
|u− v|γn

.

Furthermore, for all x ∈ [0,n]N , |x|1 � γn, we have

|Φu(x)−Φv(x)| � L |u(x)− v(x)|+ ωn

∫
Bx

|u(σ1(y))− v(σ1(y))|dy

= L |u(x)− v(x)|+
∫
Bx, |σ1(y)|1�γn

|u(σ1(y))− v(σ1(y))|dy

+
∫

Bx, |σ1(y)|1�γn

|u(σ1(y))− v(σ1(y))|dy.

By the inequalities⎧⎪⎪⎨
⎪⎪⎩

0 < e−hn(|x|1−γn) � 1, ∀x ∈ [0,n]N , |x|1 � γn,

|σ1(x)|1 � |x|1, ∀x ∈ R
N
+,

|σ1(y)|1 � |y|1 � |x|1, ∀y ∈ Bx,

with hn > 0 is also chosen later, we get

|Φu(x)−Φv(x)|e−hn(|x|1−γn)

� Le−hn(|x|1−γn) |u(x)− v(x)|
+ ωne

−hn(|x|1−γn)[
∫

Bx, |σ1(y)|1�γn

|u(σ1(y))− v(σ1(y))|dy

+
∫
Bx, |σ1(y)|1�γn

|u(σ1(y))− v(σ1(y))|dy]

� L |u− v|hn

+ ωn

∫
Bx, |σ1(y)|1�γn

ehn(|σ1(y)|1−|x|1)e−hn(|σ1(y)|1−γn) |u(σ1(y))− v(σ1(y))|dy

+ ωne
−hn(|x|1−γn)

∫
Bx, |σ1(y)|1�γn

|u(σ1(y))− v(σ1(y))|dy

� L |u− v|hn
+ ωn |u− v|hn

∫
Bx, |σ1(y)|1�γn

ehn(|σ1(y)|1−|x|1)dy

+ ωne
−hn(|x|1−γn) |u− v|γn

∫
Bx, |σ1(y)|1�γn

dy

≡ L |u− v|hn
+ ωn |u− v|hn

J1 + ωne
−hn(|x|1−γn) |u− v|γn

J2.

On the other hand

J1 =
∫

Bx, |σ1(y)|1�γn

ehn(|σ1(y)|1−|x|1)dy

�
∫

Bx, |σ1(y)|1�γn

ehn(|y|1−|x|1)dy �
∫

Bx

ehn(|y|1−|x|1)dy
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= e−hn|x|1
∫ x1

0

∫ x2

0
...

∫ xN

0
ehn(y1+y2+...+yN)dy1dy2...dyN

= e−hn|x|1
∫ x1

0
ehny1dy1

∫ x2

0
ehny2dy2...

∫ xN

0
ehnyN dyN

=
1
hN

n
e−hn|x|1

(
ehnx1 −1

)(
ehnx2 −1

)
...
(
ehnxN −1

)

=
1
hN

n

(
1− e−hnx1

)(
1− e−hnx2

)
...
(
1− e−hnxN

)
� 1

hN
n

.

By (A5), for all x ∈ [0,n]N , the following property is valid

J2 =
∫

Bx, |σ1(y)|1�γn

dy �
∫

y∈[0,n]N , |σ1(y)|1�γn

dy = ϕn(γn) → 0, as γn → 0+.

Hence

|Φu(x)−Φv(x)|e−hn(|x|1−γn)

� L |u− v|hn
+ ωn |u− v|hn

∫
Bx, |σ1(y)|1�γn

ehn(|σ1(y)|1−|x|1)dy

+ ωne
−hn(|x|1−γn) |u− v|γn

∫
Bx, |σ1(y)|1�γn

dy

≡ L |u− v|hn
+ ωn |u− v|hn

J1 + ωne
−hn(|x|1−γn) |u− v|γn

J2

� L |u− v|hn
+ ωn |u− v|hn

1
hN

n
+ ωn |u− v|γn

ϕn(γn)

=
(

L+ ωn
1
hN

n

)
|u− v|hn

+ ωnϕn(γn) |u− v|γn
.

So

|Φu−Φv|hn
�
(

L+ ωn
1
hN

n

)
|u− v|hn

+ ωnϕn(γn) |u− v|γn
.

Consequently,

‖Φu−Φv‖n = |Φu−Φv|γn
+ |Φu−Φv|hn

�
(

L+ ωn
γN
n

NN

)
|u− v|γn

+
(

L+ ωn
1
hN

n

)
|u− v|hn

+ ωnϕn(γn) |u− v|γn

=
(

L+ ωn
γN
n

NN + ωnϕn(γn)
)
|u− v|γn

+
(

L+ ωn
1
hN

n

)
|u− v|hn

� Ln ‖u− v‖n , (2.4)

where

Ln = max

{
L+ ωn

γN
n

NN + ωnϕn(γn), L+ ωn
1
hN

n

}
.

Choosing hn , γn such that

hn > N

√
1

1−L
ωn and 0 < γn < n, 0 <

γN
n

NN + ϕn(γn) <
1−L
ωn

,
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then Ln < 1, so Φ is a Ln− contraction operator on (X , ‖·‖n). Apply Proposition 2.1,
Φ has a unique fixed point u = ξ . Hence, u = ξ is a unique solution of (2.1). With the
transformation u = v+ ξ , we can write the equation (1.1) in the form

v(x) = Uv(x)+Cv(x), x ∈ R
N
+, (2.5)

where⎧⎨
⎩

Uv(x) = −ξ (x)+V
(
x,v(x)+ ξ (x),

∫
Bx

V1 (x,y,v(σ1(y))+ ξ (σ1(y)))dy
)
,

Cv(x) =
∫
R

N
+

F (x,y,v(σ2(y))+ ξ (σ2(y)) )dy, x ∈ R
N
+.

(2.6)

The operator U is a Ln−contraction, with respect to a family of seminorms ‖·‖n .
Indeed, fixed an arbitrary positive integer n ∈ N. We have

Uv(x)−Uṽ(x) = V

(
x,v(x)+ ξ (x),

∫
Bx

V1 (x,y,v(σ1(y))+ ξ (σ1(y)))dy

)

−V

(
x, ṽ(x)+ ξ (x),

∫
Bx

V1 (x,y, ṽ(σ1(y))+ ξ (σ1(y)))dy

)
.

For all x ∈ [0,n]N , |x|1 � γn,

|Uv(x)−Uṽ(x)| � L |v(x)− ṽ(x)|+ ω0(x)
∫

Bx

ω1(x,y) |v(σ1(y))− ṽ(σ1(y))|dy

�
(

L+ ωn
γN
n

NN

)
|v− ṽ|γn

,

leads to

|Uv−Uṽ|γn
�
(

L+ ωn
γN
n

NN

)
|v− ṽ|γn

.

For all x ∈ [0,n]N , |x|1 � γn,

|Uv(x)−Uṽ(x)|e−hn(|x|1−γn) � ωnϕn(γn) |v− ṽ|γn
+
(

L+ ωn
1
hN

n

)
|v− ṽ|hn

,

so

|Uv−Uṽ|hn
� ωnϕn(γn) |v− ṽ|γn

+
(

L+ ωn
1
hN

n

)
|v− ṽ|hn

.

This implies that
‖Uv−Uṽ‖n � Ln ‖v− ṽ‖n .

and then U is a Ln−contraction operator with respect to ‖·‖n .
The operator C : X → X is completely continuous. It can be proved by using

(A3)− (A5), via the dominated convergence theorem and Proposition 2.2. The details
are as follows.

(i) For any v0 ∈ X , let {vm} be a sequence in X such that lim
m→∞

vm = v0.
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Let n ∈ N be fixed. For any given ε > 0, because∫
R

N
+

sup
x∈[0,n]N

ω2(x,y)dy < ∞,

there exists Tn ∈ N such that∫
R

N
+\Sn

ω2(x,y)dy �
∫

R
N
+\Sn

sup
x∈[0,n]N

ω2(x,y)dy <
ε
4
, ∀x ∈ [0,n]N . (2.7)

where Sn = {y ∈ R
N
+ : y2

1 + y2
2 + ...+ y2

N � T 2
n }.

Put K = {vm(σ2(y)) + ξ (σ2(y)) : y ∈ Sn, m ∈ Z+}, then K is compact in E.
Indeed, let

{
(vmj + ξ )(σ2(y j))

}
j

be a sequence in K. We can assume that lim
j→∞

y j =

y0 and that lim
j→∞

vmj + ξ = v0 + ξ . We have

∣∣(vmj + ξ )(σ2(y j))− (v0 + ξ )(σ2(y0))
∣∣

�
∣∣(vmj + ξ )(σ2(y j))− (v0 + ξ )(σ2(y j))

∣∣
+
∣∣(v0 + ξ )(σ2(y j))− (v0 + ξ )(σ2(y0))

∣∣
�
∣∣vmj − v0

∣∣
Tn

+
∣∣(v0 + ξ )(σ2(y j))− (v0 + ξ )(σ2(y0))

∣∣ ,
which shows that lim

j→∞
(vmj + ξ )(σ2(y j)) = (v0 + ξ )(σ2(y0)) in E. It means that K is

compact in E.
For ε > 0 be given as above, by F is continuous on the compact set [0,n]N ×Sn×

K, there exists δ > 0 such that for every u, u ∈ K, |u− u| < δ ,

|F(x,y;u)−F(x,y; u)| < ε
2mes(Sn)

, ∀(x,y) ∈ [0,n]N ×Sn.

By lim
m→∞

sup
y∈Sn

|(vm + ξ )(σ2(y))− (v0 + ξ )(σ2(y))| = 0, there exists m0 such that

for m > m0,
|(vm + ξ )(σ2(y))− (v0 + ξ )(σ2(y))| < δ , ∀y ∈ Sn.

Hence, for all x ∈ [0,n]N , for all m > m0, we obtain

|Cvm(x)−Cv0(x)| �
∫

Sn

|F (x,y;(vm + ξ )(σ2(y)) )−F (x,y;(v0 + ξ )(σ2(y)) ) |dy

+2
∫

R
N
+\Sn

ω2(x,y)dy

< mes(Sn)× ε
2mes(Sn)

+2
ε
4

= ε,

so |Cvm −Cv0|n < ε, for all m > m0, it means that C is continuous.
(ii) Let Ω be a bounded subset of X . We have to prove that for n ∈ N,
(a) The set (CΩ)n is equicontinuous in Xn.
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(b) For every x ∈ [0,n]N , the set (CΩ)n(x) = {Cv|[0,n]N (x) : v ∈ Ω} is relatively
compact in E. Let n ∈ N be fixed. Consider any ε > 0 given. Then, (2.7) holds with
Tn ∈ N as above.

Proof of (a) : For any v ∈ Ω, for all x, x ∈ [0,n]N ,

|Cv(x)−Cv(x)| �
∫

Sn

∣∣∣F(x,y;(v+ ξ )(σ2(y))
)

−F
(
x,y;(v+ ξ )(σ2(y))

)∣∣∣dy

+
∫

R
N
+\Sn

(ω2(x,y)+ ω2(x ,y))dy. (2.8)

According to (2.7), (2.8) and (A4), (CΩ)n is equicontinuous on Xn.
Proof of (b) : Let {Cvk|[0,n]N (x)}k, vk ∈ Ω, be a sequence in (CΩ)n(x). We need

show that there exists a convergent subsequence of {Cvk|[0,n]N (x)}k.
Put

S = {(v+ ξ )(σ2(y)) : v ∈ Ω, y ∈ Sn}.
Then S is bounded in E and consequently the set F([0,n]N ×Sn×S) is relatively

compact in E, since F is completely continuous.
The sequence {F (x,y;(vk + ξ )(σ2(y)))}k belongs to F([0,n]N ×Sn×S), so there

exists a subsequence
{

F
(
x,y;(vkj + ξ )(σ2(y))

)}
j
and Ψ(x,y) ∈ E , such that

∣∣∣F (x,y;(vkj + ξ )(σ2(y))
)
−Ψ(x,y)

∣∣∣→ 0 as j → ∞. (2.9)

Morever, by (A5), we get∣∣∣F (x,y;(vkj + ξ )(σ2(y))
)∣∣∣� ω2(x,y), ∀(x,y) ∈ [0,n]N ×Sn.

Thus∣∣∣F(x,y;(vkj + ξ )(σ2(y)))−Ψ(x,y)
∣∣∣

�
∣∣∣F(x,y;(vkj + ξ )(σ2(y)))

∣∣∣+ |Ψ(x,y)|
� 2ω2(x,y), ∀(x,y) ∈ [0,n]N ×Sn, (2.10)

ω2(x, ·) ∈ L1 (Sn) .

Using the dominated convergence theorem, (2.9) and (2.10) lead to∫
Sn

∣∣∣F (x,y;(vkj + ξ )(σ2(y))
)
−Ψ(x,y)

∣∣∣dy → 0, as j → ∞.

It means that, for given ε > 0, there exists j0 such that for j > j0,∫
Sn

∣∣∣F (x,y;(vkj + ξ )(σ2(y))
)
−Ψ(x,y)

∣∣∣dy <
ε
2
.



198 LE THI PHUONG NGOC AND NGUYEN THANH LONG

Consequently, for j > j0,∣∣∣∣Cvkj (x)−
∫

Sn

Ψ(x,y)dy

∣∣∣∣ =
∣∣∣∣
∫

R
N
+

F
(
x,y;(vkj + ξ )(σ2(y))

)
dy−

∫
Sn

Ψ(x,y)dy

∣∣∣∣
�
∣∣∣∣
∫

Sn

F
(
x,y;(vkj + ξ )(σ2(y))

)
dy−

∫
Sn

Ψ(x,y)dy

∣∣∣∣
+
∣∣∣∣
∫

R
N
+\Sn

F
(
x,y;(vkj + ξ )(σ2(y))

)
dy

∣∣∣∣
�
∫

Sn

∣∣∣F (x,y;(vkj + ξ )(σ2(y))
)
−Ψ(x,y)

∣∣∣dy

+
∫

R
N
+\Sn

∣∣∣F (x,y;(vkj + ξ )(σ2(y))
)∣∣∣dy

� ε
2

+
∫

R
N
+\Sn

ω2(x,y)dy <
ε
2

+
ε
4

< ε.

Note that
{
Cvkj (x)

}
j

is a subsequence of {Cvk(x)}k . Then, (CΩ)n(x) is rela-

tively compact in E.
Applying Proposition 2.2 , C(Ω) is relatively compact in X . Therefore, C is com-

pletely continuous.
Finally, we show that ∀n ∈ N,

lim
|v|n→∞

|Cv|n
|v|n

= 0. (2.11)

By (A4), for all x ∈ [0,n]N , we get

|Cv(x)| �
∫

R
N
+

|F (x,y;(v+ ξ )(σ2(y)) )|dy �
∫

R
N
+

sup
x∈[0,n]N

ω2(x,y)dy < ∞.

It follows that (2.11) holds.
Applying Theorem 1, the operator U +C has a fixed point v in X . So, Equation

(1.1) has a solution u = v+ ξ on R
N
+. Theorem 2 is proved.

3. The Existence of Asymptotically Stable Solutions

Based on the notion of asymptotically stable solutions to the functional equation
mentioned in [2] with citations and notes, we use the following definition and also note
that it is stated on spaces of functions defined on R

N
+ not necessarily bounded.

DEFINITION. A function ũ is said to be an asymptotically stable solution of (1.1)
if for any solution u of (1.1),

lim
|x|1→+∞

|u(x)− ũ(x)| = 0. (3.1)
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In this section, we assume (A1)− (A5) hold. Then, by Theorem 2, (1.1) has a
solution on R

N
+. On the other hand, if u is a solution of (1.1) then v = u− ξ satisfies

(2.5). This implies that for all x ∈ R
N
+,

|v(x)| � |Uv(x)|+ |Cv(x)| , (3.2)

where Uv(x), Cv(x) as in (2.6). Using (A1)− (A5) and note that

ξ (x) = V

(
x,ξ (x),

∫
Bx

V1 (x,y,ξ (σ1(y)))dy

)
, (3.3)

we obtain for all x ∈ R
N
+,

|v(x)| � L |v(x)|+ ω0(x)
∫

Bx

ω1(x,y)|v(σ1(y))|dy+
∫

R
N
+

ω2(x,y)dy. (3.4)

It implies that

|v(x)| �
∫

Bx

r(x,y)|v(σ1(y))|dy+a(x), (3.5)

with

a(x) =
1

1−L

∫
R

N
+

ω2(x,y)dy, r(x,y) =
1

1−L
ω0(x)ω1(x,y). (3.6)

We need prove the following auxiliary result.

LEMMA 1. Let w, a ∈C(RN
+;R+), and r ∈C(Δ;R+), r(x,y) � r(x,0) � r(0,0),

∀y ∈ Bx, ∀x ∈ R
N
+, and σ1 ∈C(RN

+;RN
+), σ1(x) ∈ Bx, ∀x ∈ R

N
+. If

w(x) �
∫

Bx

r(x,y)w(σ1(y))dy+a(x), (3.7)

for all x ∈ R
N
+, then

(i) w(x) � a(x)+ r (x)
∞

∑
k=0

( r (0)x1...xN )k

(k!)N

∫
Bx

a(y)dy, (3.8)

(ii) w(x) � a(x)+ r (x)exp( r (0)x1...xN)
∫

Bx

a(y)dy,

for all x ∈ R
N
+, where a(x), r (x) are defined by

a(x) = a(x)+a(σ1(x)), r (x) = r(x,0)+ r(σ1(x),0). (3.9)

Proof.
By Bσ1(x) ⊂ Bx, r(x,y) � r(x,0), ∀y ∈ Bx, ∀x ∈ R

N
+,

w(x) � a(x)+ r(x,0)
∫

Bx

w(σ1(y))dy, (3.10)
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w(σ1(x)) � a(σ1(x))+ r(σ1(x),0)
∫

Bσ1(x)

w(σ1(y))dy (3.11)

� a(σ1(x))+ r(σ1(x),0)
∫

Bx

w(σ1(y))dy,

then
w(x) � a(x)+ r (x)

∫
Bx

w(σ1(y))dy � a(x)+ r (x)
∫

Bx

w(y)dy, (3.12)

where
w(x) = w(x)+w(σ1(x)). (3.13)

Put
Aw(x) = r (x)

∫
Bx

w(y)dy, ∀w ∈C(RN
+;R+). (3.14)

It follows from (3.12) and (3.14) that

w(x) � a(x)+Aw(x) � a(x)+A(a +Aw)(x) (3.15)

= a(x)+Aa(x)+A2w(x) � ... � a(x)+
n−1

∑
k=0

Ak+1a(x)+An+1w(x).

By induction, we obtain

Ak+1a(x) � r (x)
(r (0)x1...xN)k

(k!)N

∫
Bx

a(y)dy. (3.16)

So

w(x) � w(x) � a(x)+
n−1

∑
k=0

Ak+1a(x)+An+1w(x) (3.17)

� a(x)+ r (x)
n−1

∑
k=0

(r (0)x1...xN)k

(k!)N

∫
Bx

a(y)dy+
(r (0)x1...xN)n

(n!)N
r (x)

∫
Bx

w(y)dy.

For X0 > 0 is given, we have∣∣∣∣∣ (r (0)x1...xN)k

(k!)N

∣∣∣∣∣�
(
r (0)XN

0

)k
(k!)N , ∀x ∈ [0,X0]N , ∀k ∈ N. (3.18)

The positive series ∑∞
k=0

(r(0)XN
0 )k

(k!)N
converges and then ∑∞

k=0
(r(0)x1...xN )k

(k!)N
converges

uniformly on [0,X0]N . By the continuity of the function x 	−→ (r(0)x1...xN)k

(k!)N
on [0,X0]N ,

the sum of the series ∑∞
k=0

(r(0)x1...xN)k

(k!)N
is continuous on [0,X0]N . On the other hand,

X0 > 0 is arbitrary, so the sum of this series is continuous on R
N
+. Note that

(r (0)x1...xN)n

(n!)N
→ 0 as n → ∞ for all x ∈ R

N
+,
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it implies from (3.17) that

w(x) � w(x) � a(x)+ r (x)
∞

∑
k=0

(r (0)x1...xN)k

(k!)N

∫
Bx

a(y)dy, for all x ∈ R
N
+. (3.19)

The inequality (3.8)(i) is proved. Then the inequality (3.8)(ii) follows by

0 � (r (0)x1...xN)k

(k!)N � (r (0)x1...xN)k

k!
, ∀x ∈ R

N
+. (3.20)

Consequently

∞

∑
k=0

(r (0)x1...xN)k

(k!)N �
∞

∑
k=0

(r (0)x1...xN)k

k!
= exp(r (0)x1...xN ) , ∀x ∈ R

N
+. (3.21)

Thus

w(x) � w(x) � a(x)+ r (x)exp(r (0)x1...xN )
∫

Bx

a(y)dy, for all x ∈ R
N
+. (3.22)

Using (3.8) (ii) with w(x) = |v(x)| , we obtain

|v(x)| � a(x)+ r (x)exp(r (0)x1...xN )
∫

Bx

a(y)dy, (3.23)

for all x ∈ R
N
+, where r (x), a(x) are defined by

a(x) = a(x)+a(σ1(x)), (3.24)

r (x) = r(x,0)+ r(σ1(x),0),

a(x) =
1

1−L

∫
R

N
+

ω2(x,y)dy,

r(x,y) =
1

1−L
ω0(x)ω1(x,y),

Then, we obtain the main theorem in this section.

THEOREM 3. Let (A1)− (A5) hold. If

lim
|x|1→+∞

[
a(x)+ r (x)exp(r (0)x1...xN )

∫
Bx

a(y)dy

]
= 0, (3.25)

where r (x), a(x) are defined as in (3.24), then every solution u to (1.1) is an asymp-
totically stable solution.

Furthermore,
lim

|x|1→+∞
|u(x)− ξ (x)|= 0. (3.26)
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Remark 2. We present an example in which ω0, ω1, ω2, σ1 satisfying the as-
sumption (3.25) given as above. Let⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω1(x,y) =
√

(1−L)α1√
1+β1 exp(γ1|x|N1 )+β2|y|λ1

1

,

ω0(x) = ω1(x,0) =
√

(1−L)α1√
1+β1 exp(γ1|x|N1 )

,

ω2(x,y) = exp(−γ2|x|1)
1+|y|λ2

2

,

|y|2 =
√

y2
1 + ...+ y2

N, σ1(x) = θ1x,

where α1, β1, β2, γ1, γ2, λ1, λ2, θ1 are positive constants with λ1 > N, λ2 > N,
0 < θ1 � 1, γ1 > 2α1

NN (1+β1)θ1
.

(i) Calculating the functions r(x,y), a(x) :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r(x,y) = 1
1−Lω0(x)ω1(x,y) = α1√

1+β1 exp(γ1|x|N1 )+β2|y|N+1
1

√
1+β1 exp(γ1|x|N1 )

;

r(x,y) � r(x,0) = α1
1+β1 exp(γ1|x|N1 ) � r(0,0) = α1

1+β1
,

a(x) = 1
1−L

∫
R

N
+

ω2(x,y)dy = exp(−γ2|x|1)
1−L

∫
R

N
+

dy

1+|y|λ2
2

= exp(−γ2|x|1)
1−L ωN

∫ ∞
0

rN−1dy
1+rλ2

= α2 exp(−γ2 |x|1) ,

α2 = ωN
1−L

∫ ∞
0

rN−1dy
1+rλ2

,

where ωN is the area of unit sphere in R
N .

(ii) Calculating the functions a(x),
∫
Bx

a(y)dy, r (x) :

a(x) = a(x)+a(σ1(x)) = α2 [exp(−γ2 |x|1)+ exp(−γ2 |θ1x|1)]
� 2α2 exp(−θ1γ2 |x|1) → 0, as |x|1 → +∞;

∫
Bx

a(y)dy � 2α2

(θ1γ2)
N (1− e−θ1γ2x1)...(1− e−θ1γ2xN ) � 2α2

(θ1γ2)
N , ∀x ∈ R

N
+;

r (x) = r(x,0)+ r(σ1(x),0) =
α1

1+ β1 exp
(

γ1 |x|N1
) +

α1

1+ β1 exp
(

γ1 |θ1x|N1
)

� 2α1

1+ β1 exp
(

θ1γ1 |x|N1
) � 2α1

β1
exp
(
−θ1γ1 |x|N1

)
;

and

r (0) =
2α1

1+ β1
.
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It follows that

r (x)exp(r (0)x1...xN ) � 2α1

β1
exp
(
−θ1γ1 |x|N1

)
exp

(
2α1

1+ β1

|x|N1
NN

)

=
2α1

β1
exp

(
−
[

θ1γ1 − 2α1

NN(1+ β1)

]
|x|N1

)
→ 0,

as |x|1 → +∞ , since γ1 > 2α1
NN (1+β1)θ1

. Then (3.25) holds.

4. An Example

Let us illustrate the results obtained by means of an example. Let E =C([0,1];R)
be the Banach space of all continuous functions v : [0,1]→ R with the norm

‖v‖ = sup
0�t�1

|v(t)| , v ∈ E.

Then, for all u ∈ X = C(R2
+;E), for any x ∈ R

2
+ , u(x) is an element of E and we

denote
u(x)(t) = u(x,t), 0 � t � 1.

Consider (1.1) in form

u(x) = V

(
x,u(x),

∫
Bx

V1 (x,y,u(σ1(y)))dy

)

+
∫

R
2
+

F (x,y,u(σ2(y)))dy, x ∈ R
2
+, (4.1)

where σi(x) = σ ix, 0 < σ i � 1, i = 1,2; Bx = [0,x1]× [0,x2]. Giving the continuous
functions V, V1, F as follows.

(i) Function V : R
2
+ ×E2 → E,

V (x,u,v)(t) = 2(1−k1)u∗(x,t)+k1 |u(t)|+e−γ|x|21 |v(t)| , 0 � t � 1, (x,u,v)∈R
2
+×E2,

with u∗(x, t) = 1
t+e|x|1

and γ, k1 are given constants such that 0 < k1 < 1, γ > π
(1−k1)σ

2
1
.

(ii) Function V1 : Δ×E → E,

V1(x,y,u)(t) = e−2|y|1u∗(x,t)sin

(
π

u(t)
u∗(σ1(y),t)

)
,

0 � t � 1, (x,y,u) ∈ Δ×E, Δ = {(x,y) ∈ R
2
+×R

2
+ : y ∈ Bx}.

(iii) Function F : R
2
+×R

2
+×E → E,

F(x,y,u)(t) = 4(k1−1)e−2|y|1u∗(x,t)sin

(
π
2

∫ 1

0

u(s)
u∗(σ2(y),s)

ds

)
,
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0 � t � 1, (x,y,u) ∈ R
2
+×R

2
+×E.

We prove that (A1)− (A5) hold. It is easy to see that (A5) holds, see Remark 1.
– Assumption (A1) holds, by for all (x,u,v), (x, u, v) ∈ R

2
+×E2, ∀t ∈ [0,1],

‖V (x,u,v)−V(x, u, v)‖ � k1 ‖u− u‖+ ω0(x)‖v− v‖ , ∀(x,u,v), (x, u, v) ∈ R
2
+×E2,

with ω0(x) = e−γ|x|21 .
– Assumption (A2) holds, for all (x,y,u), (x,y, u) ∈ Δ×E, Δ = {(x,y) ∈ R

2
+ ×

R
2
+ : y ∈ Bx}, ∀t ∈ [0,1],

|V1(x,y,u)(t)−V1(x,y, u)(t)| � e−2|y|1u∗(x,t)
π

u∗(σ1(y),t)
|u(t)− u(t)|

� πe−2|y|1 t + e|σ1(y)|1
t + e|x|1

‖u− u‖

� πe−|y|1 te−|y|1 + e|σ1(y)|1−|y|1
t + e|x|1

‖u− u‖

� 2πe−|x|1−|y|1 ‖u− u‖
= ω1(x,y)‖u− u‖ ,

in which
ω1(x,y) = 2πe−|x|1−|y|1 .

– Assumption (A3) is also fulfilled. Indeed, First, we can show F : R
2
+ ×R

2
+ ×

E → E is continuous.
Next, we show F : R

2
+ ×R

2
+ ×E → E is compact. Let B is bounded in R

2
+ ×

R
2
+×E, we deduce from

F(x,y,u)(t) = 4(k1−1)e−2|y|1u∗(x,t)sin

(
π
2

∫ 1

0

u(s)
u∗(σ2(y),s)

ds

)
,

‖F(x,y,u)‖ � ω2(x,y) = 4(1− k1)e−|x|1−2|y|1

� 4(1− k1) ≡ M, ∀(x,y,u) ∈ B,

that F(B) is uniformly bounded in E . For all t1, t2 ∈ [0,1], ∀(x,y,u) ∈ B,

F(x,y,u)(t1)−F(x,y,u)(t2)

= 4(k1−1)e−2|y|1 t2 − t1(
t1 + e|x|1

)(
t2 + e|x|1

) sin

(
π
2

∫ 1

0

u(s)
u∗(σ2(y),s)

ds

)
,

so

|F(x,y,u)(t1)−F(x,y,u)(t2)| � 4(1− k1)e−2|y|1 |t2 − t1|(
t1 + e|x|1

)(
t2 + e|x|1

)
� 4(1− k1) |t2− t1| ,
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it implies that F(B) is equicontinuous.
Finally, for all bounded subsets I1, I2 of R

2
+ and for any bounded subset J of E,

for all ε > 0, there exists δ > 0, such that

∀x, x ∈ I1, |x− x |1 < δ =⇒ |F(x,y;u)−F(x ,y;u)| < ε, ∀(y,u) ∈ I2× J;

We get the above property since

‖F(x,y,u)−F(x ,y,u)‖ � 4(1− k1) |x− x|1 ,

∀x, x ∈ I1, ∀(y,u) ∈ I2× J. Indeed,

F(x,y,u)(t)−F(x ,y,u)(t)

= 4(k1 −1)e−2|y|1 [u∗(x,t)−u∗(x ,t)]sin
(

π
2

∫ 1

0

u(s)
u∗(σ2(y),s)

ds

)

= 4(k1 −1)e−2|y|1 e|x|1 − e|x|1
(t + e|x|1)(t + e|x|1)

sin

(
π
2

∫ 1

0

u(s)
u∗(σ2(y),s)

ds

)
,

so

|F(x,y,u)(t)−F(x ,y,u)(t)| � 4(1− k1)e−2|y|1
∣∣e|x|1 − e|x|1

∣∣
(t + e|x|1)(t + e|x|1)

� 4(1− k1)e−2|y|1 ||x|1−|x|1|
� 4(1− k1) |x − x|1 .

Assumption (A4) is also clearly, by for all bounded subset I ⊂ R
2
+ , ∀(x,y;u) ∈

I×R
2
+×E , ∀t ∈ [0,1],

|F (x,y;u)(t)| � 4(1− k1)e−2|y|1u∗(x,t) � 4(1− k1)e−2|y|1
t + e|x|1

� 4(1− k1)e−|x|1−2|y|1 = ω2(x,y),∫
R

2
+

sup
x∈I

ω2(x,y)dy � 4(1− k1)
∫

R
2
+

e−2|y|1dy = 1− k1 < ∞,

since
∫
R2

+
e−2|y|1dy = 1

4 .

On the other hand, the condition (3.25) is true. Indeed,

ω0(x) = e−γ|x|21 ,

ω1(x,y) = 2πe−|x|1−|y|1 ,

ω2(x,y) = 4(1− k1)e−|x|1−2|y|1 .

(i) a(x) → 0 as |x|1 → +∞ :

a(x) =
1

1− k1

∫
R2

+

ω2(x,y)dy
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=
1

1− k1
4(1− k1)e−|x|1

∫
R2

+

e−2|y|1dy = e−|x|1 , ∀x ∈ R
2
+;

and
a(x) = a(x)+a(σ1(x)) = e−|x|1 + e−σ1|x|1 → 0.

(ii) r (x)exp(r (0)x1x2 )
∫
Bx

a(y)dy → 0 as |x|1 → +∞ :
(ii1 )

∫
Bx

a(y)dy is bounded:

∫
Bx

a(y)dy =
∫

Bx

e−|y|1dy+
∫
Bx

e−σ1|y|1dy

= (1− e−x1)(1− e−x2)+
1

σ2
1

(1− e−σ1x1)(1− e−σ1x2)

� 1+
1

σ2
1

� C3,

(ii2 ) r (x)exp(r (0)x1x2 ) → 0 as |x|1 → +∞ :

r(x,y) =
1

1− k1
ω0(x)ω1(x,y) =

2π
1− k1

e−γ|x|21−|x|1−|y|1 ,

r (x) = r(x,0)+ r(σ1(x),0) =
2π

1− k1

[
e−γ|x|21−|x|1 + e−γσ2

1|x|21−σ1|x|1
]

� 4π
1− k1

e−γσ2
1|x|21 ,

r (0) =
4π

1− k1
,

r (x)exp(r (0)x1x2 ) � 4π
1− k1

e−γσ2
1|x|21 exp

(
r (0)

1
4
|x|21

)

=
4π

1− k1
e−γσ2

1|x|21 exp

(
π

1− k1
|x|21

)

=
4π

1− k1
exp

[
−
(

γ − π
(1− k1)σ

2
1

)
σ2

1 |x|21
]
→ 0

as |x|1 → +∞ , since γ − π
(1−k1)σ

2
1

> 0.

The result is

r (x)exp(r (0)x1x2 )
∫

Bx

a(y)dy → 0 as |x|1 → +∞ ,

(3.25) follows. Theorems 3 holds for (4.1). For more details, it is not difficult to show
that the following equation

ξ (t) = V

(
x,ξ (x),

∫
Bx

V1 (x,y,ξ (σ1(y)))dy

)
, x ∈ R

2
+
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has a unique solution ξ defined by

ξ : R
2
+ → E, ξ (x)(t) = ξ (x,t) =

2

t + e|x|1
, ∀t ∈ [0,1], (4.2)

and

u∗ : R
2
+ → E, u∗(x)(t) = u∗(x,t) =

1

t + e|x|1
, ∀t ∈ [0,1], (4.3)

is the solution of (4.1). Furthermore

lim
|x|1→∞

‖u∗(x)− ξ (x)‖ = lim
|x|1→∞

e−|x|1 = 0.

Consequently, ξ and u∗ as in (4.2), (4.3) are asymptotically stable solutions of
(4.1).
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