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(Communicated by Ferruccio Colombini)

Abstract. We study the initial- boundary value problem for the complex pseudodifferential equa-
tion of Sobolev type on a half-line{

∂t u+λ |u|σ u+Ku = 0, x ∈ R+, t > 0,
u(0,x) = u0 (x) , x ∈ R+,

where 0 < σ < 1, λ ∈ C ,

Ku =
1

2πi

∫ i∞

−i∞
epxK(p)û(t, p)dp.

the symbol K(p) is defined as

K(p) = (−1)n+1p2n
n

∏
j=1

(p2 −a2
j )
−1,

n ∈ N, Reaj > 0, j = 1,2...,n, θ (x). . The aim of this paper is to prove the global existence
of solutions to the inital-boundary value problem and to find the main term of the asymptotic
representation of solutions in the subcritical case,when the nonlinear term of the equation has
the time decay rate less then that of the linear terms.

1. Introduction

We consider the initial-boundary value problem on a half-line for the nonlinear
pseudodifferential equation{

∂t u(t,x)+N (u)+Ku = 0, x ∈ R+, t > 0,
u(0,x) = u0 (x) , x ∈ R+,

(1.1)

with a subcritical nonlinearity N (u) = λ |u|σ u, 0 < σ < n, λ ∈ C . Here the pseu-
dodifferential operator K is defined as

Ku =
1

2π i

∫ i∞

−i∞
expK(p)û(t, p)dp,
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with a rational symbol

K(p) = (−1)n+1p2n
n

∏
j=1

(p2−a2
j)
−1,

n ∈ N, Rea j > 0, j = 1, ...,n and φ̂ is the Laplace transform of φ defined by

φ̂ (p) =
∫

R+
e−xpφ (x)dx.

Equation (1.1) is a pseudodifferential form of wave equations for media with a strong
spatial dispersion, which appear in the nonlinear theory of the quasy-stationary pro-
cesses in the electric media (see [12]). For example, the equation of the form(

1− ∂ 2
x

)
ut = uxx −λ

(
1− ∂ 2

x

) |u|2 u (1.2)

describes the creation, propagation, and collapse of so-called electric domains in semi-
conductors. In the case of the whole line we can invert the operator

(
1− ∂ 2

x

)
, so that

we arrive to equation (1.1) with a symbol K(p) = p2

p2−1
. Note that in the case of the

Cauchy problem equation (1.2) is equivalent to its pseudodifferential form (1.1). For
results concerning the Cauchy problem for nonlinear pseudoparabolic type equations
see [3], [4],[5], [14], [15]. The large time asymptotic of solutions to the Cauchy prob-
lem was obtained in papers [10], [13]. Recently much attention was drown to the study
of the global existence and large time asymptotic behavior of solutions to the Cauchy
problems for nonlinear equations in the subcritical case , when the nonlinearity has a
slow time decay property comparing with the linear part of the equation (see papers [1],
[2], [7], [11] and literature cited therein).

One of the most important developments in the theory of pseudodifferential oper-
ators is a generalization of the Cauchy problem to the case of the initial-boundary value
problem on a half-line. The boundary value problems are more natural for applications,
however their mathematical investigations are more complicated. It is necessary to an-
swer the question: how many boundary values should be given in the problem for its
solvability and the uniqueness of the solution?

For the general theory of nonlinear pseudodifferential equations on a half-line with
analytic symbol we refer to the book [6]. As far as we know there are few results in
the case of subcritical nonlinear pseudodifferential equations with analytic symbol on
a half-line (see papers [8], [9] and literature cited therein). We give a review of these
works. In the paper [8] it was studied subcritical nonlinear nonlocal equations on a
half-line

∂t u+ β |u|ρ u+Ku = 0, x > 0, t > 0, (1.3)

where β ∈ C and the order of nonlinearity ρ ∈ (0,α) . The linear operator K is a
pseudodifferential operator defined by the inverse Laplace transform as follows

Ku =
1

2π i

∫ i∞

−i∞
epxEα pα

(
û(p,t)−

[α ]

∑
j=1

∂ j−1
x u(0,t)

p j

)
dp. (1.4)
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Note that the symbol K(p) = Eα pα is analytic in a right-half complex plane. It was
obtained that for small initial data in L1 solution of Dirichlet problem for equation
(1.3) has the same time decay in L∞ norm comparing with case of the corresponding
Cauchy problem. Also the main term of the asymptotic depend on the mean value of
the solution . Explicit asymptotics for solution of Kuramoto-Sivashinsky-type equation
on a half-line in the case of inhomogeneous symbol K(p) = p2 − p4 and nonlinearity
N (u,ux) = uσuρ

x ,ρ � 10,σ � 0 was obtained in paper [9]. It was proved that for small

initial data in L1,2∩ L∞ solutions decay as t−1− 1
ρ+σ−1 in L∞ and the main term of the

asymptotic depend on the first moment of the solution.
In this paper we present a further development of the theory of subcritical nonlin-

ear pseudodifferential equations on a half-line with a nonanalytic symbol, considering
the case of rational symbol

K(p) = (−1)n+1p2n
n

∏
j=1

(p2−a2
j)
−1.

We prove global in time existence of solutions to the initial-boundary value problem
and find the asymptotic behavior of solutions for large time. The main difficulty in the
study of equation (1.1) on a half-line is that its symbol K(p) is nonanalytic, therefore
we can not apply the methods of book [6] directly. To prove the well-posedness of
problem (1.1) we use the integral representation for sectionally analytic function and a
theory of singular integro-differential equations with Hilbert kernel. Thus we show that
we do not need any boundary data in problem (1.1), whereas if we rewrite equation (1.1)
in the pseudoparabolic form, then n boundary data should be posed in the problem for
its correct solvability (see [6]). For example, to prove the well-posedness for equation
(1.2) we need to put one boundary datum, whereas no boundary value is necessary in
the case of equation (1.1). Since very often model equations of mathematical physics
are derived only by using the corresponding dispersion relation (see, e.g. [16]) and have
a pseudodifferential form, we address a very interesting question to Physicist: which
problem is more adequate for describing the physical phenomena?

Now we state the main result of this paper. By C(I;B) we denote the space of
continuous functions from a time interval I to the Banach space B . The usual Lebesgue
space is denote by Lp , 1 � p � ∞ , the weighted Lebesgue space L1,a is defined by

Lp,a =
{

φ ∈ Lp(R+);‖φ‖Lp,a = ‖〈x〉a φ‖Lp < ∞
}

,

where 〈x〉 =
√

1+ |x|2, a � 0. Denote

θ =
∣∣∣∣∫

R+
xu0(x)dx

∣∣∣∣ ,
G̃(x) =

1
π i

∫ i∞

−i∞
e(−1)n+1p2n

epxpdp

and
η = Reλ

∫
R+

xN (G̃(x))dx > 0.
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THEOREM 1. Let η > 0. Assume that the initial data u0 ∈ L∞ ∩ L1,1+a, a ∈
(0,1) are sufficiently small ‖u0‖L∞ + ‖u0‖L1,1+a � ε, and n(1− εn+1η) < σ < n.
Then the initial-boundary value problem (1.1) has a unique global solution u(t,x) ∈
C
(
[0,∞);L∞ ∩L1,1+a

)
. Furthermore there exist some constant A , a real constant w

and a function V ∈ L1,1+a∩L∞ such that∥∥∥(u(t)−At−
μ
σ − 1

n eiω logtV
(
·t− 1

2n

))∥∥∥
L∞

� Ct−
μ
σ − 1

n−γ , (1.5)

where μ = 1− σ
n , γ = 1

2 min(a,n−σ) .

We organize the rest of our paper as follows. In Section 2 we obtain some prelim-
inary estimates for the Green operator and prove the well-posedness of the linearized
problem (1.1). Section 3 is devoted to the proof of Theorem 1.1.

2. Preliminary lemmas

Let φ(q) be a complex function, which obeys the Hölder condition for all finite q
and tends to a definite limit φ(∞) as q → ∞ . Then Cauchy type integral

F(z) =
1

2π i

∫ i∞

−i∞

φ(q)
q− z

dq

constitutes a function analytic in the left and right semi-planes. Here and below this
functions will be denoted F+(z) and F−(z) , respectively. This functions have the
limiting values F+(p) and F−(p) at all points of imaginary axis Re p = 0, on ap-
proaching the contour from the left and from the right, respectively. These limiting
values are expressed by Sokhotzki-Plemelj formula

F+(p)−F−(p) = φ(p). (2.1)

All the integrals are understood in the sense of the principal values. Now we consider
the linear initial boundary-value problem on a half-line{

∂tu+Ku = f (t,x), x ∈ R+, t ∈ R+,
u(0,x) = u0 (x) , x ∈ R+.

(2.2)

Denote by G (t)

G (t)φ = L −1
{

e−K(p)t
(

φ̂ (p)− φ̂ (−p)
)}

. (2.3)

THEOREM 2. Let

u0 ∈ L1 (
R

+) , f (t,x) ∈ C0(R+,L1 ∩C).

Then solution of (2.2) has the following form

u(t,x) = G (t)u0 +
∫ t

0
G (t − τ) f (τ)dτ.
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Proof. To derive an integral representation for the solutions of the problem (2.2)
we suppose that there exists a solution u(t,x) of problem (2.2), which is continued by
zero outside of x > 0 :

u(t,x) = 0 for all x < 0.

Let φ(p) be a function of the complex variable p , which obeys the Hölder condition
for all finite p and tends to 0 as p →±i∞ . We define the operator

Pφ(z) = − 1
2π i

∫ i∞

−i∞

1
q− z

φ(q)dq.

We have for the Laplace transform

L {Ku} = P{K(p)L {u}} .

Since L {u} is analytic for all Re q > 0 we have

û(t, p) = L {u} = Pû(t, p). (2.4)

Taking Laplace transform with respect to the space variable we get{
P

(
∂t û(t,q)+K(q)û(t,q)− f̂ (t,q)

)
dq = 0, x ∈ R

+,t > 0,

û(0, p) = û0 (p) , x ∈ R+.
(2.5)

We rewrite the equation (2.5) in the form

∂t û(t, p)+K(p)û(t, p)− f̂ (t, p) = Ψ(t, p), (2.6)

with some function Ψ(t, p) = O(〈p〉−1) such that

P
−{Ψ(t, p)} = 0. (2.7)

Applying the Laplace transformation with respect to time variable to problem (2.6) we
find for Re p > 0

̂̂u(ξ , p)= 1
K(p)+ξ

(
û0(p)+ ̂̂f (ξ , p)+ Ψ̂(ξ , p)

)
. (2.8)

Here the functions ̂̂u(ξ , p),Ψ̂(ξ , p) and ̂̂f (ξ , p) are the Laplace transforms for û(t, p) ,
Ψ(t, p) and f̂ (t, p) with respect to time, respectively. We will find the function Ψ̂(ξ , p)
using the analytic properties of function ̂̂u in the right-half complex planes Re p > 0
and Re ξ > 0. We have for Re p = 0 the sufficient condition

̂̂u(ξ , p) = − 1
π i

VP
∫ i∞

−i∞

1
q− p

̂̂u(ξ ,q)dq. (2.9)
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Here and below PV means the Cauchy principal value of the singular integral. Taking
into account the assumed condition (2.7) and making use of Sokhotzki-Plemelj formula
(2.1) we perform the condition (2.9) in the form of nonhomogeneousRiemann problem

Ω+(ξ , p) =
K(p)+ ξ

ξ
Ω−(ξ , p)−K(p)Λ+(ξ , p), (2.10)

where the sectionally analytic functions functions Ω(z,ξ ) and Λ(z,ξ ) given by formu-
las

Ω(ξ ,z) =
1

2π i

∫ i∞

−i∞

1
q− z

K(q)
K(q)+ ξ

Ψ̂(ξ , p)dq, (2.11)

Λ(ξ ,z) =
1

2π i

∫ i∞

−i∞

1
q− z

1
K(q)+ ξ

(
û0(q)+ ̂̂f (ξ , p)

)
dq. (2.12)

It is required to find two functions for some fixed point ξ , Re ξ > 0: Ω+(z,ξ ) , analytic
in Re z < 0 and Ω−(z,ξ ) , analytic in Re z > 0, which satisfy on the contour Re
p = 0 the relation (2.10).Note that bearing in mind formula (2.11) we can find unknown
function Φ̂(p,ξ ) which involved in the formula (2.8) by the relation

Ψ̂(ξ , p) =
K(p)+ ξ

K(p)
(
Ω+(ξ , p)−Ω−(ξ , p)

)
. (2.13)

We introduce the function
W = K(p)+ ξ .

There are exist n roots φ j(ξ ) of the equation K(p) = −ξ , such that Reφ j(ξ ) > 0
for all Reξ > 0, and limξ→∞ φ j(ξ ) = a j . Therefore the function W (p,ξ ) can be
represented as the ratio of the functions Y+(p) and Y−(p) constituting the boundary
values of functions, Y+(z) and Y−(z) , analytic in the left and right complex semi-plane
and having in these domains no zero

W (ξ , p) =
Y+(ξ , p)
Y−(ξ , p)

. (2.14)

These functions are given by formula

Y+(ξ , p) =
n

∏
j=1

(ξ +1)(p−φ j(ξ ))
(p−a j)

,

Y−(ξ , p) =
n

∏
j=1

(p+a j)
(ξ +1)(p+ φ j(ξ ))

Replacing in equation (2.10) the coefficient of the Riemann problem W (ξ , p) by (2.14)
we reduce the nonhomogeneous Riemann problem (2.10) in the form

Ω+(ξ , p)
Y+(ξ , p)

=
Ω−(ξ , p)
Y−(ξ , p)

− 1
Y+ K(p)Λ+(ξ , p). (2.15)
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Since 1
Y+ K(p)Λ+(ξ , p) satisfies on Re p = 0 the Hölder condition, it can be uniquely

represented in the form of the difference of the functions U+(ξ , p) and U−(ξ , p) ,
constituting the boundary values of the analytic function U(ξ ,z) , given by formula

U(ξ ,z) =
1

2π i

∫ i∞

−i∞

1
q− z

1
Y+ K(p)Λ+(ξ , p)dq. (2.16)

Therefore the problem (2.15) takes the form

Ω+
1 (ξ , p)

Y+(ξ , p)
+U+(ξ , p) =

Ω−
1 (ξ , p)

Y−(ξ , p)
+U−(ξ , p).

The last relation indicates that the function
Ω+

1
Y+ +U+ , analytic in Re z < 0, and the

function
Ω−

1
Y− +U− , analytic in Rez > 0, constitute the analytic continuation of each

other through the contour Re z = 0. Consequently, they are branches of unique analytic
function in the entire plane,which has zero in the point z = ∞ .According to Liouville
theorem this function is zero. Thus we get

Ω+ =−Y+U+, (2.17)

Ω−=− ξY−U−.

From (2.17) under (2.14) the difference limiting values of solution of (2.10) are given
by formula

Ω+−Ω− = − K(p)
K(p)+ ξ

Y+U+ (2.18)

Replacing the difference Ω+−Ω− in the relation (2.13) by formula (2.18) we get

Ψ̂(ξ , p) = −Y+U+.

It is easily to observe that Ψ̂(ξ , p) is boundary value of the function analytic in the
left complex semi-plane and therefore satisfies our basic assumption (2.7). Having
determined the function Ψ̂(ξ , p)from (2.8) we determine required function ̂̂u

̂̂u =
1

K(p)+ ξ

(
û0(p)+ ̂̂f (ξ , p)−Y+U+

)
. (2.19)

Via (2.1) we rewrite last formula in the form

̂̂u = −Y−Ũ−, (2.20)

where

Ũ−(ξ ,z) =
1

2π i

∫
1

q− z
1

Y+ (û0(q)+ ̂̂f (ξ ,q)).

Note that the function ̂̂u is the limiting value of an analytic function in Re z > 0.

Note the fundamental importance of the proven fact, that the solution ̂̂u constitutes
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an analytic function in Re z > 0 and, as a consequence, its inverse Laplace transform
vanish for all x < 0. Taking inverse Laplace transform of (2.20) with respect to time
and inverse Fourier transform with respect to space variables we obtain

u(t,x) =
∫ ∞

0
G(t,x,y)u0(y)dy+ (2.21)

+
∫ t

0
dτ
∫ ∞

0
G(t− τ,x,y) f (τ,y)dτ,

where

G(t,x,y) = − 1
2π i

1
2π i

∫ i∞

−i∞
eξ t
∫ i∞

−i∞
epxY−(ξ , p)I−(ξ , p,y),

I(ξ ,z,y) =
1

2π i

∫ i∞

−i∞

e−qy

q− z
1

Y+(ξ ,q)
dq.

Using Sokhotzki-Plemelj formula and Cauchy Theorem we get

G(t,x,y) =
1

2π i

∫ i∞

−i∞
epx−K(p)te−pydp+F(t,x,y). (2.22)

where

F(t,x,y) = − 1
2π i

1
2π i

∫ i∞

−i∞
dξ eξ t

∫ i∞

−i∞
epxY−(p,ξ )I+(p,ξ ,y)dp.

Since by definition Y+(ξ ,z) is analytic in Re z < 0 via Cauchy Theorem we have

J+(ξ , p,y) =
1

2π i
lim

z→p,Rez<0

∫ i∞

−i∞

eqy

q− z
1

Y+(ξ ,q)
dq (2.23)

=
ey

Y+(ξ , p)
.

In another hand making the change of variable q → −q and using obvious identity
1

Y+(−q,ξ ) = Y−(q,ξ ) we obtain

∫ i∞

−i∞

eqy

q− z
1

Y+(ξ ,q)
dq (2.24)

= −
∫ i∞

−i∞

e−qy

q+ z
1

Y+(ξ ,−q)
dq

= −
∫ i∞

−i∞

e−qy

q+ z
Y−(ξ ,q)dq.

Via estimates (2.23) and (2.24) we rewrite the function F(t,x,y) in the form

(2.25)

F(t,x,y) = − 1
2π i

∫ i∞

−i∞
ep(x+y)−K(p)te−pydp+ F̃(t,x,y),
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where

F̃(t,x,y) =
1

2π i
1

2π i

∫ i∞

−i∞
dξ eξ t

∫ i∞

−i∞
epxY−(ξ , p)Ĩ+(ξ , p,y)dp,

Ĩ(z,ξ ,y) =
1

2π i

∫ i∞

−i∞

e−qy

q− z
1

Y+(ξ ,q)

(
1−Y−(ξ ,q)Y+(ξ ,q)

q− z
q+ z

)
dq

= O(z−1).

Now we prove that F̃(t,x,y) is identically zero. Indeed, taking residue in point p =
−φ j(ξ ) we get

1
2π i

∫ i∞

−i∞
epxY−(ξ , p)Ĩ+(ξ , p,y)dp (2.26)

=
1

2π i

∫ i∞

−i∞
epxY+(ξ , p)

1
K(p)+ ξ

Ĩ+(ξ , p,y)dp

=
n

∑
j=1

e−φ j(ξ )xY+(ξ ,−φ j(ξ ))
1

K′(−φ j)
Ĩ+(ξ ,−φ j,y).

Since by the definition K(−φl) = K(φl) = −ξ we get

1
K′(−φl)

= −φ ′
l (ξ ).

Substituting formula (2.26) into definition of F̃(t,x,y) and changing variable −φ j(ξ ) =
p we obtain

F̃(t,x,y) =
1

2π i

n

∑
j=1

∫ i∞

−i∞
dξ φ ′

j(ξ )eξ t e−φ j(ξ )xY+(ξ ,−φ j(ξ ))Ĩ+(ξ ,−φ j,y)

=
1

2π i

n

∑
j=1

∫
Γ j

d pe−K(p)tepxY+(−K(p), p)Ĩ+(−K(p), p,y),

where for ξ ∈ (−i∞, i∞)

Γ j =
{
z = −φ j(ξ ) ∈ C, Re z < 0,ReK(z) = 0

}
.

Note that by definition
Y+(−K(p), p) = 0

and therefore
F̃(t,x,y) = 0. (2.27)

Thus from (2.21) via (2.22) and (2.25) we have for solution u(t,x)

u(t,x) = G (t)u0 +
∫ t

0
G (t− τ) f (τ)dτ, (2.28)
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where the Green operator G (t) is given by (2.3). Proposition is proved.
We introduce operator G0 (t) is given by

G0 (t)φ =
∫ +∞

0
G1 (t,x,y)φ (y)dy,

where the kernel

G1 (t,x,y) = t−
1
2n

1
2π i

∫ i∞

−i∞
e(−1)n+1z2n

(ez(x−y)t−
1
2n − ez(x+y)t−

1
2n )dz.

Denote
G0 (t,x) = ∂yG1 (t,x,y)

∣∣
y=0 = t−

1
n G̃(xt−

1
2n ), (2.29)

where

G̃(x) =
1
π i

∫ i∞

−i∞
e(−1)n+1z2n+zxt−

1
2n zdz.

From [7] we easily get the following

LEMMA 1. Let φ ∈ Lr

‖G0 (t)φ‖Lq � C 〈t〉
1
2n

(
1
q− 1

r

)
‖φ‖Lr ,

is true for all t > 0, 1 � q � ∞ ,1 � r � ∞ . Furthermore we assume that φ ∈ L1,1+a,
then the estimate∥∥∥(·)b (G0 (t)φ −ϑG0 (t))

∥∥∥
Lq

� Ct−
1
n+ 1

2q + b−a
2 ‖φ‖L1,1+a

is valid for all t > 0, where 1 � q � ∞, b ∈ [0,1+a] and

ϑ =
∫ +∞

0
xφ (x)dx.

We now collect some preliminary estimates of the Green operator G (t) defined
by (2.3), in the norms ‖φ‖Lr and ‖φ‖L1,1+w , where w ∈ (0,1) , 1 � r � ∞.

LEMMA 2. Suppose that the function φ ∈ L∞ (R+) ∩ L1,1+a (R+) , where a ∈
(0,1) . Then the estimates

‖G (t)φ‖Lr � C 〈t〉−
1
2n

(
1
r1
− 1

r

)
‖φ‖Lr1 + e−t ‖φ‖Lr ,

‖G (t)φ −ϑG0 (t)‖L∞ � Ct−
1
n− a

2n ‖φ‖L1,1+a + e−t ‖φ‖L∞ ,

and ∥∥∥(·)b (G (t)φ −ϑG0)
∥∥∥

L1
� Ct−

1
2n + b−a

2n ‖φ‖L1,1+a + e−t ‖φ‖L1

are valid for all t > 0, where 1 � r � r1 � ∞ ,0 < b � a.



Differ. Equ. Appl. 6 (2014), 209–232. 219

Proof. Note that the Green operator G (t) can be represented as

G (t)φ = G0 (t)φ + e−tφ +R1 (t)φ , (2.30)

where the remainder

R1 (t)φ =
∫ +∞

0
(R1 (t,x− y)−R1 (t,x+ y))φ (y)dy

with a kernel

R1 (t,x) =
1

2π i

∫ i∞

−i∞
epxR̂1 (t, p)dp,

where
R̂1 (t, p) = e−K(p)t − eCt p2n − e−t,

where C = (−1)n+1. From Lemma 1 the operator G0 (t) satisfies the estimates of the
Lemma .

Now we estimate the remainder R1 (t) . We represent

R̂1 (t, p) = e−K(p)t
(
1− e−tCp2n+K(p)t

)
− e−t

for all |p| � 1, and

R̂1 (t, p) = −e−Ctp2n
+ e−t

(
e(1−K(p))t −1

)
for all |p| � 1, then we see that∣∣∣∂ j

pR̂1 (t, p)
∣∣∣� C 〈t〉 j

2−1 e
1
2Ctp2n

+C 〈t〉1+ 1
n e−t (1− p2n)−3

for all Re p = 0, t > 0, 0 � j � 4. Therefore we have

|R1 (t,x)| � C
〈
x〈t〉− 1

2

〉−4 〈t〉− 1
2n−1 +C 〈x〉−4 〈t〉1+ 1

n e−t

� C
〈
x〈t〉− 1

2n

〉−4 〈t〉− 1
2n−1

for all x ∈ R, t > 0. Applying this estimate by the Young inequality we find

‖R1 (t)φ‖Lr � C 〈t〉−
1
2n

(
1
q− 1

r

)
−1 ‖φ‖Lq

for all 1 � q � r � ∞ and

‖R1 (t)φ‖L1,w � C 〈t〉− 1
n

(
〈t〉 w

2n ‖φ‖L1 +‖φ‖L1,w

)
for all t > 0. Now by representation (2.30) the estimates of the lemma follow. Lemma
2 is proved.
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3. Proof of Theorem 1

We rewrite the initial-boundary value problem (1.1) as the following integral equa-
tion

u(t) = G (t)u0−
∫ t

0
G (t − τ)N (u(τ))dτ, (3.1)

where the Green operator G of the corresponding linear problem and N (u)= λ |u|σ u.
By standard method we can prove the local existence of weak solutions to the

initial boundary-value problem (1.1) (see, for example, [7])

THEOREM 3. Let u0 ∈L1,1+a (R+)∩L∞ (R+) , a � 0. Then for some T > 0 there
exists an unique solution u ∈ C

(
[0,T ] ;L1,1+a (R+)∩L∞ (R+)

)
to the problem (1.1).

By Theorem 3, it follows that the global solution (if it exists) is unique. Indeed,
suppose that there exist two global solutions with the same initial data, which are dif-
ferent at some time t > 0. By virtue of the continuity of solutions with respect to time,
we can find a maximal time segment [0,T ] , where the solutions are equal, but for t > T
they are different. Now we apply the local existence theorem taking the initial time
T and obtain that these solutions coincide on some interval [T,T1] , which gives us a
contradiction with the fact that T is a maximal time until which the solutions coincide.
So our main purpose in the proof of Theorem 1 is to show the global in time existence
of solutions. Denote

‖g‖Z = (‖g(t)‖L∞ +‖g(t)‖L1,1+a) ,

and
‖φ‖X = sup

t>0

(
〈t〉 1

n ‖φ (t)‖L∞ + 〈t〉− a
2n ‖φ (t)‖L1,1+a

)
,

where a ∈ (0,1) . Note that the L1 - norm is estimated by the norm X

‖φ (t)‖L1 =
∫ 〈t〉 1

n

0
|φ (t,x)|dx+

∫ +∞

〈t〉 1
n
|1+ x|−1−α |x|1+α |φ (t,x)|dx (3.2)

� C 〈t〉 1
n ‖φ (t)‖L∞ +C 〈t〉− a

2n ‖φ (t)‖L1,1+a � C‖φ‖X .

In the next lemma we estimate the Green operator in our basic norm X .

LEMMA 3. Let the function f (t,x) have a zero first moment
∫ +∞
0 x f (t,x)dx = 0 .

Then the following inequality∥∥∥∥∫ t

0
G (t− τ) f (τ)dτ

∥∥∥∥
X

� C‖〈t〉 f‖X

is valid , provided that the right-hand side is finite.

Proof. In view of Lemma 2 we get∥∥∥∥∫ t

0
G (t− τ) f (τ)dτ

∥∥∥∥
L∞

+
∥∥∥∥∫ t

0
G (t− τ) f (τ)dτ

∥∥∥∥
L1,1+a
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� C‖〈t〉 f‖X � C‖〈t〉 f‖X

for all 0 � t � 1. We now consider t > 1. By virtue of Lemma 2 we obtain∥∥∥∥∫ t

0
G (t− τ) f (τ)dτ

∥∥∥∥
L∞

� C
∫ t

2

0
(t− τ)−

1
n− a

2n (‖ f (τ)‖L∞ +‖ f (τ)‖L1,1+a)dτ

+C
∫ t

t
2

‖ f (τ)‖L∞ dτ,

hence using the definition of the norm X we get∥∥∥∥∫ t

0
G (t− τ) f (τ)dτ

∥∥∥∥
L∞

� C‖〈t〉 f‖X

∫ t
2

0
(t− τ)−

1
n− a

2n 〈τ〉 a
2n−1 dτ

+C‖〈t〉 f‖X

∫ t

t
2

〈τ〉− 1
n−1 dτ

� Ct−
1
n ‖〈t〉 f‖X

and similarly ∥∥∥∥∫ t

0
G (t − τ) f (τ)dτ

∥∥∥∥
L1,1+a

� C
∫ t

0
‖ f (τ)‖L1,1+a dτ � C‖〈t〉 f‖X

∫ t

0
τ

a
2n−1dτ

� Ct
a
2n ‖〈t〉 f‖X

for all t > 4. Hence the result of the lemma follows. Lemma 3 is proved.
From Lemmas 1 and 2 we easily get the following estimates∥∥∥G0(·t− 1

2 )
∥∥∥

X
� C, (3.3)

∥∥∥∥〈t〉 a
2

(
G0 (t)φ −G0(·,t)

∫
R+

xφ(x)dx

)∥∥∥∥
X

(3.4)

+
∥∥∥〈t〉 a

2 (G (t)−G0 (t))φ
∥∥∥

X
� C‖φ‖Z .

Also by direct calculation we have for μ = 1−σ 1
n∥∥t1−μx(N (u1)−N (u2))

∥∥
X � C‖(u1−u2)‖X (‖u1‖σ

X +‖u2‖σ
X). (3.5)

We make a change of the dependent variable u(t,x) = v(t,x)e−ϕ(t)+iψ(t) in equation
(1.1). Then for the new function v(t,x) we get the following equation

∂t v+ eϕ(t)−iψ(t)N (ve−ϕ(t)+iψ(t))+K(v)− (ϕ ′ − iψ ′)v = 0.
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Since for any z ∈ C

ezN (ve−z) = e−σ RezN (v),

we have
eϕ(t)−iψ(t)N (ve−ϕ(t)+iψ(t)) = e−σϕN (v).

We assume that ∫
R+

x
(
e−σϕN (v)− (ϕ ′ − iψ ′)v

)
dx = 0.

Then since ∫
R+

xKvdx = ∂p(K(p)v̂(t, p))
∣∣
p=0 = 0

the first moment value of new function v(t,x) satisfies a conservation law:

d
dt

∫
R+

xv(t,x)dx = 0,

hence
∫
R+ xv(t,x)dx =

∫
R+ xv0 (t,x)dx for all t > 0. We can choose ϕ(0) = 0 and

ψ (0) = arg û0 (0) such that∫
R+

xv0 (t,x)dx =
∣∣∣∣∫

R+
xu0 (t,x)dx

∣∣∣∣= θ > 0.

Thus we consider the problem for the new dependent variables (v(t,x) ,ϕ (t))⎧⎨⎩
∂t v+Kv = −e−σϕ (N (v)− v

θ
∫
R+ xN (v)dx

)
∂tϕ (t) = 1

θ e−σϕ Re
∫
R+ xN (v)dx,

v(0,x) = v0 (x) , ϕ(0) = 0,
(3.6)

where
v0 (x) = u0(x)exp(−iarg û0 (0))

and

ψ (t) = arg û0 (0)− 1
θ

∫ t

0
e−σϕ Im

∫
R+

xN (v)dx. (3.7)

We denote h(t) = eσϕ and write (3.6) as{
∂t v+Kv = f (v,h) , v(0,x) = v0 (x) ,
∂t h = σ

θ Re
∫
R+ xN (v)dx, h(0) = 1,

(3.8)

where

f (v,h) = −h−1 (t)
(

N (v)− v
θ

∫
R+

xN (v)dx

)
.

We note that the first moment value of the nonlinearity f (v,h) = 0 for all t > 0. We
now prove the existence of the solution (v(t,x) ,h(t)) for the problem (3.8) by the
successive approximations (vm (t,x) ,hm (t)) , m = 1,2, ..., defined as follows{

∂t vm +Kvm = f (vm−1,hm−1) , vm (0,x) = v0 (x) ,
hm = 1+ σ

θ
∫ t
0 dτ Re

∫
R+ xN (vm)dx

(3.9)
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for all m � 2, where
v1 = G (t)v0.

Denote by

δ =
σθ σ

μ
η , (3.10)

where

η = Reλ
∫

R+
xN (G̃(x))dx > 0,μ = 1− σ

n
.

Here G̃(x) is defined as

G̃(x) =
1
π i

∫ i∞

−i∞
e(−1)n+1z2n+zxzdz.

Note that by condition of Theorem

n(1− εn+1η) < σ < n

and therefore
δ > ε−1. (3.11)

We now prove by induction the following estimates for all m � 1, t > 0

‖vm‖X � Cε, ‖vm (t)−G (t)v0‖X � Cεσ+1, (3.12)

|hm (t)| > Cδ tμ

and ∫
R+

xvmdx = θ ,
∫

R+
x fmdx = 0. (3.13)

Via (3.3) and (3.4) , we have

‖G (t)v0‖X � Cε ,

‖v1−G (t)v0‖X � Cεσ+1.

Also using (3.10) we get

h1(t) = 1+ σθ σ
∫ t

0
dτ Re

∫
R+

xN (G0(x,t))dx

= 1+ σθ ση
∫ t

0
τ−

σ
n dτ

= 1+ tμδ .

Therefore estimates (3.12) are valid for m = 1. Also since∫
R+

xG v0dx =
∫

R+
xv0dx
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we easily obtain (3.13) is valid for m = 1. Now we assume that estimates (3.12)-(3.13)
are true with m replaced by m−1. The integral equation associated with (3.9) is written
as {

vm (t) = G (t)v0 +
∫ t
0 G (t− τ) f (vm−1 (τ) ,hm−1 (τ))dτ,

hm (t) = 1+ σ
θ
∫ t
0 dτ Re

∫
R+ xN (vm)dx.

(3.14)

We have ∥∥t1−μN (u)
∥∥

X � C‖u‖σ+1
X

and ∥∥∥∥t1−μu
∫

R+
xN (u)dx

∥∥∥∥
X

�
∥∥t1−μxN (u)

∥∥
L1 ‖u‖X � C‖u‖σ+2

X

Therefore due to (3.12) and (3.11) we get

‖t f (vm−1 (τ) ,hm−1 (τ))‖X

� 1
|hm−1| t

μ
(

εσ+1 +
1
θ

εσ+2
)

� ε
tμ tμ

(
εσ+1 +

1
θ

εσ+2
)

� εσ+1

Since f (vm−1 (τ) ,hm−1 (τ)) have the zero the first moment value, from Lemma 3 we
get∥∥∥∥∫ t

0
G (t− τ) f (vm−1 (τ) ,hm−1 (τ))dτ

∥∥∥∥
X

� ‖t f (vm−1 (τ) ,hm−1 (τ))‖X � Cεσ+1

� Cε.

It follows that
‖vm‖X � Cε,‖vm (t)−G (t)v0‖X � Cεσ+1 (3.15)

We have
hm (t) = δ tμ +Rm,

where

Rm =
σ
θ

∫ t

0
dτx(N (vm)−N (G (τ)v0))

+
σ
θ

∫ t

0
dτx(N (G (τ)v0)−N (G0 (τ)v0))

+
σ
θ

∫ t

0
dτx(N (G (τ)v0)−N (θG0(τ,x))) .

Via (3.2) and (3.5) we obtain∣∣∣∣∫ t

0
dτ
∫

R+
x(N (u1)−N (u2))dx

∣∣∣∣ (3.16)

�
∥∥〈t〉γ (u1−u2)

∥∥
X (‖u1‖σ

X +‖u2‖σ
X)
∫ t

0
τ−1+μ 〈τ〉−γ

�
∥∥〈t〉γ (u1−u2)

∥∥
X (‖u1‖σ

X +‖u2‖σ
X)

1
μ − γ

tμ−γ .
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Therefore using (3.15) and
∥∥〈t〉γ1 (G (τ)v0−G0 (τ)v0)

∥∥
X � Cε we get from (3.16)

|Rm| < Cεσ+1 〈t〉μ .

Hence
|hm (t)| > Cδ tμ

for all t > 1.Also integrating vm = M (vm−1) with respect to x ∈ R+ we get∫
R+

xvm (t,x)dx =
∫

R+
xG (t)v0dx−

∫
R+

xdx
∫ t

0
G (t− τ) fm−1 (τ)dτ

= θ .

Therefore∫
R+

x fm (t,x)dx =
∫

R+

(
xN (vm)− vm (t,x)

θ

∫
R+

xN (vm)dx

)
dx = 0.

Thus by induction we see that estimates (3.12)-(3.13) are valid for all m � 1. In the
same way by induction we can prove that

‖vm − vm−1‖X � 1
4
‖vm−1− vm−2‖X ,

and

sup
t>0

δ tμ |hm (t)−hm−1 (t)| � 1
4
‖vm−1 − vm−2‖X

+
1
4

sup
t>0

δ tμ |hm−1 (t)−hm−2 (t)|

for all m > 2. Therefore taking the limit m → ∞, we obtain a unique solution

lim
m→∞

vm (t,x) = v(t,x) ∈ X,

lim
m→∞

hm (t) = h(t) = e(σ−1)ϕ(t) ∈ C(0,∞)

satisfying equations{
v(t) = G (t)v0 +

∫ t
0 G (t− τ) f (v(τ) ,h(τ))dτ,

h(t) = 1+ σ
θ
∫ t
0 dτ Re

∫
R+ xN (v)dx,

and estimates for t > 1

‖v(t)−G (t)v0‖X � Cεσ+1,‖v(t)‖X � Cε (3.17)

|h(t)| > Cδ tμ ,δ > ε−1.
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We now compute the asymptotics of the solution. First we show the existence of solu-
tions to the integral equation

V (ξ )=V0 (ξ )− 1
β

∫ 1

0

dz

z1+ 1
2n (1− z)

1
n

∫
R+

G1

(
ξ

(1− z)
1
2n

,
yz

1
2n

(1− z)
1
2n

)
F (y)dy, (3.18)

where V0 (ξ ) = G0 (ξ ) , and

F (y) = N (V (y))−V (y)
∫

R+
ξN (V (ξ ))dξ ,

β =
σ
μ

∫
R+

ξN (V (ξ ))dξ .

We define successive approximations Vk+1 = R (Vk) for k = 0,1,2, ... , where

R (Vk)(ξ ) = V0 (ξ )− 1
βk

∫ 1

0

dz

z1+ 1
2n (1− z)

1
n

∫
R+

G1

(
ξ

(1− z)
1
2n

,
yz

1
2n

(1− z)
1
2n

)
Fk (y)dy,

Fk (y) = N (Vk (y))−Vk (y)
∫

R+
ξN (Vk (ξ ))dξ and

βk =
σ
μ

Re
∫

R+
ξN (Vk (ξ ))dξ .

By induction we prove the estimates

‖Vk −V0‖Z � Cε, ‖Vk‖Z � C, βk � Cε−1,

and

‖Vk+1−Vk‖Z � 1
2
‖Vk −Vk−1‖Z (3.19)

for all k � 1. Firstly we have to show that∫
R+

yFk (y)dy = 0 and
∫

R+
yVk (y)dy = 1. (3.20)

Since
∫
R+ yV0 (y)dy = 1 by the definition of Fk (y) , we see that (3.20) is true for k = 0.

We assume that (3.20) holds for some k. Then we have∫
R+

ξVk+1 (ξ )dξ = 1− 1
βk

∫ 1

0

dz

z1+ 1
2n (1− z)

1
2n

∫
R+

ξdξ

×
∫

R+
G1

(
ξ

(1− z)
1
2n

,
yz

1
2n

(1− z)
1
2n

)
Fk (y)dy = 0

hence it follows that
∫
R+ Fk+1 (y)dy = 0. Thus we get (3.20) for any k. Estimates

(3.19)-(3.20) are valid for k = 0. Changing τ = tz and y1 = τ
1
2n y and using∥∥∥t−1V ((·) t 1

2n )
∥∥∥

X
= ‖V (·)‖Z
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we get

‖Vk+1−V0‖Z

=
C
βk

∥∥∥∥∥
∫ 1

0

dz

z1+ 1
2n (1− z)

1
n

∫
R+

G1

(
ξ

(1− z)
1
2n

,
yz

1
2n

(1− z)
1
2n

)
Fk (y)dy

∥∥∥∥∥
Z

� C
βk

∥∥∥∥∫ t

0
τ−μG0 (t− τ)τ−

σ
n Fk

(
·τ− 1

2n

)
dτ
∥∥∥∥

X
.

Since ∥∥∥∥∫ t

0
τ−μG0 (t− τ)τ−

σ
n Fk

(
·τ− 1

2n

)
dτ
∥∥∥∥

X
� C

∥∥∥t1−μ− σ
n Fk(·t−

1
2n )
∥∥∥

X

and ∥∥∥t1−μ− σ
n Fk(·t− 1

2n )
∥∥∥

X
� C

∥∥∥t− 1
nVk(·t− 1

2n )
∥∥∥σ+1

X

� C‖Vk(·)‖σ+1
Z

we get
‖Vk+1−V0‖Z � Cε.

By condition of Theorem n(1− εn+1η) < σ < n and therefore μ = (1− σ
n ) > εσ+1.

Thus we have

βk =
σ
μ

Re
∫

R+
ξN (Vk (ξ ))dξ

=
σ
μ

Re
∫

R+
ξN (G0(ξ ))dξ +

σ
μ

O(εσ ) > ε−1.

Therefore (3.19)-(3.20) are true for any k . Using (3.5) we have∥∥t1−μx(N (u1)−N (u2))
∥∥

X

+
∥∥∥∥t1−μ

(
u1

∫
R+

xN (u1)dx−u2

∫
R+

xN (u2)dx

)∥∥∥∥
X

� C‖(u1−u2)‖X (‖u1‖σ
X +‖u2‖σ

X). (3.21)

Thus in the same manner we obtain

‖Vk+1−Vk‖Z � 1
2
‖Vk (·)−Vk−1 (·)‖Z

and therefore estimate (3.19) is valid for any k � 1. Hence R is a contraction mapping
and there exists a unique solution V (ξ ) to integral equation (3.18).

We are now in a position to prove asymptotics of solutions v . We prove by induc-
tion ∥∥∥〈t〉γ

(
vk (t)− t−

1
n θVk

(
(·)t− 1

2n

))∥∥∥
X

< Cε, (3.22)



228 ELENA I. KAIKINA AND HECTOR F. RUIZ PAREDES

where γ > 0 is small. The estimate (3.22) is true for k = 0 since∥∥∥〈t〉γ
(
v0 (t)− t−

1
n θV0

(
(·)t− 1

2n

))∥∥∥
X

=
∥∥〈t〉γ (G (t)v0−θG0 (t))

∥∥
X � Cε. (3.23)

We assume that (3.22) is valid for some k . Due to (3.16) we have∣∣∣∣∫ t

0
dτ
∫

R+
x(N (u1)−N (u2))dx

∣∣∣∣� C
μ

tμ ‖(u1−u2)‖X (‖u1‖σ
X +‖u2‖σ

X)

and therefore for t > 0,μ > εσ+1

∫ t

0
dτ
∫

R+
x
∣∣∣N (vk)−N

(
t−

1
n θVk

(
xt−

1
2n

))∣∣∣
L1

� C
μ

tμ−γ
(
‖vk‖X + θτ−

1
n ‖Vk‖X

)σ ∥∥∥〈t〉γ
(
vk (τ, ·)−θτ−

1
nVk

(
·τ− 1

2n

))∥∥∥
X

� Cεσ+1tμ−γ .

Then it follows that for t > 1

|hk (t)−θ σβkt
μ | =

∣∣∣∣1+
σ
θ

Re
∫ t

0

∫
R+

xN (vk)dxdτ

− tμ σθ σ+1

μ
Re
∫

R+
ξN (Vk (ξ ))dξ

∣∣∣∣
=
∣∣∣∣1+

σ
θ

Re
∫ t

0

(∫
R+

∫
R+

xN (vk)dxdτ

−θ σ+1τ−
1
n+μ

∫
R+

ξN (Vk(ξ ))dξ
)
dτ
∣∣∣∣

� 1+
C
θ

∫ t

0

∫
Rn

x
∣∣∣N (vk)−N

(
θτ−

1
nVk

(
xt−

1
2n

))∣∣∣dxdτ

� 1+Cεσ tμ−γ . (3.24)

Changing variables such that τ = zt and ξ τ−
1
2n = y we have

1
βk

∫ t

0
τσ−1G0 (t− τ)τ−(σ−1)Fk

(
·τ− 1

2n

)
dτ

=
t−

1
n

βk

∫ 1

0

dz

z1+ 1
2n (1− z)

1
2n

∫
R+

dyG1

(
(·)

(1− z)
1
2n

,
yz

1
2n

(1− z)
1
2n

)
Fk (y)dy

= t−
1
n

(
V0

(
xt−

1
2n

)
−Vk+1

(
xt−

1
2n

))
.

Therefore we obtain∥∥∥〈t〉γ
(

θ t−
1
nVk+1

(
·t− 1

2n

)
− vk+1 (t)

)∥∥∥
X
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� C

∥∥∥∥〈t〉γ
(

θ t−
1
nVk+1

(
·t− 1

2n

)
−G0 (t)v0 +

∫ t

0
h−1

k (τ)G0 (t− τ) fk (τ)dτ
)∥∥∥∥

X

+C

∥∥∥∥〈t〉γ
∫ t

0
h−1

k (τ) (G (t − τ)−G0 (t− τ)) fk (τ)dτ
∥∥∥∥

X

+C
∥∥〈t〉γ (G (t)v0 −G0 (t)v0)

∥∥
X

� C
∥∥∥〈t〉γ

(
θ t−

1
nV0

(
·t− 1

2n

)
−G0 (t)v0

)∥∥∥
X

+C

∥∥∥∥〈t〉γ
∫ t

0

(
h−1

k (τ)− θ−σ

βk
τ−μ

)
G0 (t− τ) fk (τ)dτ

∥∥∥∥
X

+
C

βkθ σ−1

∥∥∥∥〈t〉γ
∫ t

0
G0 (t − τ)

(
fk (τ)− θ σ+1

τ(σ+1) Fk

(
·τ− 1

2n

))
τ−μdτ

∥∥∥∥
X

+C
∥∥〈t〉γ (G (t)v0 −G0 (t)v0)

∥∥
X

+C

∥∥∥∥〈t〉γ
∫ t

0
h−1

k (τ) (G (t − τ)−G0 (t− τ)) fk (τ)dτ
∥∥∥∥

X

≡ I1 + I2 + I3 + I4 + I5.

From (3.23) we have I1 � Cε. We rewrite

I2 = C

∥∥∥∥〈t〉γ
∫ t

0

(
h−1

k (τ)− θ−σ+1

βk
τ−μ

)
G0 (t− τ) fk (τ)dτ

∥∥∥∥
X

� C

∥∥∥∥〈t〉γ
∫ t

0
τ−μ

∣∣∣∣τμ − θ−σ+1

βk
hk (τ)

∣∣∣∣h−1
k (τ)G0 (t− τ) fk (τ)dτ

∥∥∥∥
X

.

Using (3.24) we get

θ−σ+1

βk
hk (τ) = tμ +

θ−σ+1

βk
O(1+Cεσ−1tμ−γ)

and therefore we obtain

I2 �
∥∥∥∥〈t〉γ

∫ t

0
τ−μ

(
θ−σ

βk
+ ετμ−γ

)
×h−1

k (τ)G0 (t− τ) fk (τ)dτ
∥∥∥∥

X

� Cε−σ+2

∥∥∥∥〈t〉γ
∫ t

0
τ−γh−1

k (τ)G0 (t− τ) fk (τ)dτ
∥∥∥∥

X
.

Since
∫
R+ x fk (τ)dx = 0 from Lemma 3 we have for γ � 0∥∥∥∥〈t〉γ

∫ t

0
τ−γ 〈τ〉−μ G0(t− τ) fk (τ)dτ

∥∥∥∥
X

� C
∥∥t1−μ fk (t,x)

∥∥
X

and using
∥∥t1−μ fk (t,x)

∥∥
X � Cεσ we obtain

I2 � Cε.
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By condition (3.21) and the estimate (3.22) we have∥∥∥∥t1−μ 〈t〉−γ
(

fk (t)− θ σ+1

τ(σ+1) Fk

(
·t− 1

2n

))∥∥∥∥
X

� Cεσ

and ∫
R+

(
fk (τ,x)− θ σ+1

τ(σ+1) Fk

(
·t− 1

2n

))
dx = 0.

Therefore by analogy with the estimate for I2 we get for βk > ε−1

I3 =
C

βkθ σ−1

∥∥∥∥∥〈t〉γ
∫ t

0
G0 (t− τ)

(
fk (τ)− θ σ

τ
1
2n σ

Fk

(
·τ− 1

2n

)) τ
1
2n (σ−1)dτ

τ

∥∥∥∥∥
X

� C
βkθ σ−1

∥∥∥∥〈t〉γ
∫ t

0
G0 (t − τ)

(
fk (τ)− θ σ+1

τ(σ+1) Fk

(
·τ− 1

2n

))
τ−μdτ

∥∥∥∥
X

� C
βkθ σ

∥∥∥∥t1−μ
(

fk (t)− θ σ+1

τ(σ+1) Fk

(
·t− 1

2n

))∥∥∥∥
X

� Cε.

In the same way we easily get
I4 + I5 � ε.

Hence by induction (3.22) is true for any k � 0 uniformly with respect to k. Taking a
limit k → ∞ in (3.22) we get∥∥∥〈t〉γ

(
v(t)− t−

1
n θV

(
·t− 1

2n

))∥∥∥
X

� Cε . (3.25)

Via (3.7) we also get

ψ (t) = arg û0 (0)− 1
θ

∫ t

0
dτh−1 Im

∫
R+

xN (v)dx

= ψ(0)−
∫ t

0
β−1 (τ +1)−1 dτ Im

∫
R+

yN (V )dy

−
∫ t

0

(
θ σ h−1 (τ) (τ +1)(σ−1)−β−1 (τ +1)−1

)
dτ

× Im
∫

R+
yN (V )dy− 1

θ
Im
∫ t

0
h−1 (τ)

(∫
R+

xN (v)dx

− θ σ+1

(τ +1)1−σ

∫
R+

yN (V )dy

)
dτ.

Therefore
ψ (t) = ω log t + Ψ+O

(
t−γ) , (3.26)

where ω = − 1
β Im

∫
R+ yN (V )dy and
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Ψ ≡ ψ(0)−
∫

R+

(
θ σ−1h−1 (τ) (τ +1)−(σ−1)

−β−1 (τ +1)−1
)

dτ Im
∫

R+
yN (V )dy

− Im
∫ ∞

0
θ σ−1h−1(τ)

(
θ−σ

∫
R+

xN (v)dx

− (τ +1)−(σ−1)
∫

R+
yN (V )dy

)
dτ.

Also from (3.24) we obtain

|h(t)−θ σβ tμ | � 1+Cθ σβ tμ−γ , (3.27)

where
β =

σ
μ

Re
∫

R+
ξN (V (ξ ))dξ .

Therefore via the formula

u(t,x) = e−ϕ(t)+iψ(t)v(t,x) = eiψ(t)h−
1
σ v(t,x)

and (3.25), (3.26) and (3.27) we obtain the asymptotics of the solution∥∥∥(u(t)−At−
μ
σ − 1

n eiω logtV
(
·t− 1

2n

))∥∥∥
L∞

� Cε 〈t〉−γ− μ
σ − 1

n

with a constant A = β− 1
σ−1 eiΨ . This completes the proof of Theorem 1.
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