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Abstract. In this paper, we are interested in proving the Lewy-Stampacchia inequality in the
general framework of an obstacle problem for a nonlinear pseudomonotone elliptic operator in

W 1,p(·)
0 (Ω) where p(·) is a log-Hölder continuous exponent. Our aim is to adapt to the context

of variable exponent Sobolev spaces a previous work of the first author, based on a penalization
method.

1. Introduction

The inequality of Lewy-Stampacchia has been initially proved by H. Lewy and G.
Stampacchia [11] in the context of the superharmonic problem. Then, a huge amount
of literature has ben devoted lately to this kind of problems; let us cite for example the
two monographs: J. F. Rodrigues [20] and G. M. Troianiello [25] (for general results
on variational inequalities, obstacle problems and their applications) and the references
therein. Since the last two decades, the study of Lewy-Stampacchia inequalities found
a renewed interest, either to prove the inequality by itself, or to help to clarify the regu-
larity of solutions to some obstacle problems, or for applications to concrete problems.
Let us quote below some recent works on this topic.

In [2], A. Azevedo, J. F. Rodrigues and L. Santos considered a model based on a N-
system for linear second-order elliptic equations with sequential constraints. In [4], L.
Boccardo uses a Lewy-Stampacchia inequality in studying G-convergence in unilateral
problems. In [5], S. Challal, A. Lyaghfouri and J. F. Rodrigues consider a divergence
operator of type −div[ a(Du)

|Du| Du] in an associated functional framework based on Orlicz
Lebesgue and Sobolev spaces. They consider entropy solutions to an obstacle problem
for L1 -data, derive Lewy-Stampacchia inequalities and show convergence and stability
results for such operators.

In this general formulation, they extend or complete the results of J.F. Rodrigues
for p -Laplace operators [21], J.F. Rodrigues, M. Sanchón and J.-M. Urbano for a p(·)-
Laplacian with variable exponent [22] and J. F. Rodrigues and R. Teymurazyan for
more general Orlicz space [23]. In [18], S. Ouaro and S. Traore also consider entropy
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solutions to similar problem for p(·)-Laplace operator type and L1 data, with general
assumptions on the exponent p(·) . In [10], C. Leone is interested in obstacle problems
for a strongly monotone and Lipschitz operator A , with measure data. M. Matzeu and
R. Servadei in [12] and A. Mokrane and F. Murat in [17], consider the case of semilinear
variational inequality with a lower order nonlinear term, and, via Lewy-Stampacchia’s
estimates, they study the Hölder regularity of the solution of the problem. Then, M.
C. Palmeri [19] considers the evolution parabolic case. Let us also quote works by
R. Servadei and E. Valdinoci [24] for non-local operators like the fractional Laplacian,
and integro-differential operators in general.

Then, we invite the reader interested in older papers to consult the references cited
in the above cited ones.

In all these papers, the main operator is assumed to be strictly monotone. The
Lewy-Stampacchia inequality is a part of the papers and it is used to derive additional
information, like the regularity of the solution of the obstacle problem under consider-
ation, when the operator allows it.

An other kind of questions is the proof of the Lewy-Stampacchia inequality for a
solution (not unique a priori) of obstacle problems when the operator belongs to a large
class of Leray-Lions operators. The technique needs to be adapted and it is what was
envisaged by A. Mokrane and F. Murat in the papers [13], [14], [16] and [15]; and this
is what we propose to adapt to the context of variable exponent Sobolev spaces. This
allows to consider singular/degenerate pseudomonotone operators, depending on given
sub-domains.

In this paper, we are interested in proving the Lewy-Stampacchia inequality, namely,
in the sense of the Radon measures

0 � μ = A(u)− f � ( f −A(ψ))−, (1.1)

in the general framework for a nonlinear pseudomonotone elliptic problem with obsta-
cles of the type ⎧⎨

⎩
u ∈ K(ψ) := {w ∈W 1,p(·)

0 (Ω) : w � ψ a.e. in Ω},
〈A(u),v−u〉� 〈 f ,v−u〉, ∀v ∈ K(ψ),

(1.2)

where the data are:
- a Leray-Lions pseudomonotone operator A(v) = − div(a(x,v,Dv)) , which acts from

W 1,p(·)
0 (Ω) into W−1,p′(·)(Ω) (the definitions of such spaces are given in the next sec-

tion),
- the obstacle ψ , which belongs to W 1,p(·)(Ω) with ψ � 0 on ∂Ω ,
- the right hand side f , which is assumed to be such that g = f −A(ψ) belongs to the
order dual V ∗

p′(·) = (W−1,p′(·)(Ω))+ − (W−1,p′(·)(Ω))+ .
After this first section, we propose a second one where we recall the framework

of Lebesgue and Sobolev spaces with variable exponents. For the convenience of the
reader, we recall properties used in the sequel, present the assumptions on the data,
derive some technical lemmata and state the main result. The last section is devoted to
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the proof of the result, following the method: setting g = f −A(ψ) ∈ V ∗
p′(·) , we first

consider the case where

g− ∈W 1,p(·)
0 (Ω)∩L∞(Ω) , ψ ∈W 1,p(·)(Ω)∩L∞(Ω) with ψ � 0 on ∂Ω .

In such a case, consider the penalized problem

A(uε)− 1
ε
(uε −ψ)− = f

where f = g+−g−+A(ψ) . Setting

zε = g−− 1
ε
(uε −ψ)−,

we prove that z−ε → 0 in L1(Ω) . Then, defining με =
1
ε
(uε −ψ)− and passing to the

limit in g−− με = zε = z+ε − z−ε � −z−ε , we obtain the Lewy-Stampacchia inequality
g−− μ � 0.

The general case is then obtained by passing to the limit in the sequence of the

solutions associated with the approximation of g− by ĝn ∈W 1,p(·)
0 (Ω)∩L∞(Ω) , ĝn � 0

(the existence of such approximations is also proved by a penalization method) and ψ
by ψn ∈W 1,p(·)(Ω)∩L∞(Ω) with ψn � 0 on ∂Ω .

The main technical problems are:
- one has to consider different techniques depending on the sets Ω1 = {x∈Ω : p(x)< 2}
and Ω2 = {x ∈ Ω : p(x) � 2} ,
- one is not able to use Poincaré inequality with the integrals (the modulus), but just
with the norms.

2. Statement of the main result

In the sequel, we consider a natural number d and a bounded domain Ω ⊂ R
d

with a Lipschitz boundary ∂Ω .

2.1. Variable Lebesgue and Sobolev spaces

For convenience, let us recall some well known properties of the spaces Lp(·)(Ω)
and W 1,p(·)

0 (Ω) which can be found for instance in S. N. Antontsev and S. Shmarev
[1], L. Diening, P Harjulehto, P Hästö and M Ruzicka [6], X. Fan and D. Zhao [7] or
O. Kováčik and J. Rákosnı́k [9].

In the sequel, we call exponent any measurable function p : Ω �→ [1,+∞[ and we
set p− = ess inf

Ω
p and p+ = esssup

Ω
p .

For any exponent p(·) and any measurable function f , we set

ρp(·) : f �→
∫

Ω
| f (x)|p(x)dx,
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the Luxemburg norm ‖ f‖p(·) = inf{λ > 0/ρp(·)
(

f
λ

)
� 1} , and define

Lp(·)(Ω) = {u : Ω → R, measurable/ x �→ |u(x)|p(x) ∈ L1(Ω)},
W 1,p(·)(Ω) = {u ∈ Lp(·)(Ω) / ∂xiu ∈ Lp(·)(Ω), i = 1, . . . ,d},
W 1,p(·)

0 (Ω) = W 1,1
0 (Ω)∩W1,p(·)(Ω).

1. Endowed with the Luxembourg norm, Lp(·)(Ω) is a Banach space, separable if
p+ < +∞ . In that case, [

Lp(·)(Ω)
]′

= Lp′(·)(Ω)

where

1
p(x)

+
1

p′(x)
= 1 and Lp(·)(Ω) is uniformly convex if 1 < p− � p+ < +∞ .

Note also (J. Giacomoni and G. Vallet [8]) that if ( fn) ⊂ Lp(·)(Ω) converges to f
weakly in Lp(·)(Ω) , then, ρp( fn) converges to ρp( f ) implies that fn converges to
f in Lp(·)(Ω) .

2. There exists a constant c such that if f ∈ Lp(·)(Ω) and g ∈ Lp′(·)(Ω) , then the
following Hölder inequality holds

∫
Ω
| f (x)g(x)| dx � c‖ f‖p(·)‖g‖p′(·). (2.1)

3. If p+ is finite, then, lim
n→∞

un = 0 in Lp(·)(Ω) if and only if lim
n→∞

ρp(·)(un) = 0.

4. Lp(·)(Ω) ↪→ Lq(·)(Ω) if and only if q(·) � p(·) . Moreover, the norm of the embed-
ding operator does not exceed |Ω|+1.

5. Nemitsky operator in Lp(·)(Ω) : If h : (x,t) ∈ Ω×R �→ h(x,t) ∈ R is a Carathéodory
function such that

∃g ∈ Lq(·)(Ω), ∃a � 0, |h(x,t)| � g(x)+a|t|
p(x)
q(x) ,

and if p(·) and q(·) are bounded exponents, then the Nemitsky operator associated to
h is bounded and continuous from Lp(·)(Ω) to Lq(·)(Ω) .

DEFINITION 1. We say that a bounded exponent p(·) is log-Hölder continuous on
Ω if there exists c1 > 0 such that |p(x)− p(y)| � c1 log(e+1/|x− y|) for all x,y ∈ Ω .

6. Endowed with the norm
‖u‖

W
1,p(·)
0

= ‖Du‖p(·),

W 1,p(·)
0 (Ω) is a Banach space (resp. ‖u‖W1,p(·) = ‖u‖p(·) + ‖Du‖p(·) for W 1,p(·)(Ω)),

separable if p+ is bounded and reflexive if 1 < p− � p+ < +∞ . Moreover, if p(·) is
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log-Hölder continuous with p− > 1, for any F ∈ [W 1,p(·)
0 (Ω)]′ , there exists ( f0, �f ) ∈

[Lp′(·)(Ω)]d+1 such that, for any u ∈W 1,p(·)
0 (Ω) ,

〈F,u〉 =
∫

Ω
{ f0u+�f ·Du}dx.

In other words [W 1,p(·)
0 (Ω)]′ = W−1,p′(·)(Ω) .

7. If p(·) is log-Hölder continuous, then W 1,p(·)
0 (Ω) ↪→→ Lp(·)(Ω) . If moreover, q(·)

is an exponent with q+ < +∞ , then W 1,p(·)
0 (Ω) ↪→ Lq(·)(Ω) if q(·) � p�(·) := dp(·)

d−p(·) ,

where the embedding constant depends only on |Ω| , d , c log(p) and q+ .

8. Poincaré inequality: If p(·) is log-Hölder continuous, there exists a constant c

depending only on d and clog(p) such that, for any u ∈W 1,p(·)
0 (Ω) ,

‖u‖p(·) � cdiam(Ω)‖u‖
W

1,p(·)
0

.

9. Nemitsky operator in W 1,p(·)
0 (Ω) : Let

h : (x,ξ0,ξ1, ..,ξd) ∈ Ω×R
d+1 �→ h(x,ξ0,ξ1, ..,ξd) ∈ R

be a Carathéodory function such that there exist g ∈ Lp′(·)(Ω) and C > 0 with

|h(x,ξ0,ξ1, ..,ξd)| � g(x)+C
d

∑
k=0

|ξk|p(x)−1,

for any (ξ0,ξ1, ..,ξd) ∈ R
d+1 and a.e. x ∈ Ω . Let α ∈ Z

d
+ with |α| � 1, then the

operator

Nα : W 1,p(·)
0 (Ω) →W−1,p′(·)(Ω)

u �→
{

v ∈W 1,p(·)
0 (Ω) �→

∫
Ω

h(x,u(x),Du(x))Dαv(x)dx

}

is continuous and bounded.

In what follows, we assume that p(·) is a log-Hölder continuous exponent such
that 1 < p− � p+ < +∞ .

Let us set a technical lemma used in the sequel.

LEMMA 1. 1) Assume that u ∈ W 1,p(·)
0 (Ω) and that f : R → R is a Lipschitz-

continuous function such that f (0) = 0 . Then,

f (u) ∈W 1,p(·)
0 (Ω) and D f (u) = f ′(u)Du a.e..

Moreover, u ∈W 1,p(·)
0 (Ω) �→ f (u) ∈W 1,p(·)

0 (Ω) is a continuous (resp. weakly continu-
ous) mapping.

2) Assume that u ∈W 1,p(·)
0 (Ω) and that f , fn : R → R are Lipschitz-continuous func-

tions such that f (0) = fn(0) = 0 and ‖ f ′n‖� M for all n . Then, if f ′n converges a.e. to

f ′ , then fn(u) converges to f (u) in W 1,p(·)
0 (Ω) .



238 A. MOKRANE AND G. VALLET

Proof. 1) By definition, if u ∈ W 1,p(·)
0 (Ω) , then u ∈ W 1,1

0 (Ω) . Thus, the clas-

sical chain rule asserts that f (u) ∈ W 1,1
0 (Ω) with Df (u) = f ′(u)Du a.e.. Then, one

concludes the first part of the assertion by noticing that∫
Ω
| f (u)|p(x)dx �

∫
Ω
‖ f ′‖p(x)

∞ |u|p(x)dx � max
[
‖ f ′‖p−

∞ ,‖ f ′‖p+

∞

]∫
Ω
|u|p(x)dx,∫

Ω
|Df (u)|p(x)dx � max

[
‖ f ′‖p−

∞ ,‖ f ′‖p+

∞

]∫
Ω
|Du|p(x)dx.

If (un) converges to u in Lp(·)(Ω) , then the properties of the Nemitsky operator u �→
f (u) in Lp(·)(Ω) yield the convergence of f (un) to f (u) in Lp(·)(Ω) .

If (un) converges weakly to u in W 1,p(·)
0 (Ω) , then, it converges to u in Lp(·)(Ω)

and the above convergence holds. Moreover, the above inequalities ensure that f (un)
is a bounded sequence in W 1,p(·)

0 (Ω) . Up to a subsequence, f (unk) converges weakly

to a limit-point v in W 1,p(·)
0 (Ω) . Since f (un) converges to f (u) in Lp(·)(Ω) , one gets

that v = f (u) and the result since the whole sequence f (un) will converge weakly to

f (u) in W 1,p(·)
0 (Ω) .

If (un) converges to u in W 1,p(·)
0 (Ω) , it converges weakly and f (un) converges

weakly to f (u) in W 1,p(·)
0 (Ω) and strongly in Lp(·)(Ω) .

Using again the classical chain rule result in W 1,1
0 (Ω) , f ′(un)Dun converge to

f ′(u)Du in L1(Ω)d , thus a.e. for a subsequence denoted similarly.

Since (un) converges to u in W 1,p(·)
0 (Ω) , Dun converges to Du in [Lp(·)(Ω)]d

and |Dun(x)−Du(x)|p(x) converges to 0 in L1(Ω) . Thus, up to a second subsequence
indexed again by n , there exists h ∈ L1(Ω) such that |Dun(x)−Du(x)|p(x) � h(x) a.e.
Then,

|Df (un)−Df (u)|p(·)=| f ′(un)Dun− f ′(u)Du|p(·)

�2p+−1|[ f ′(un)[Dun−Du]|p(·) + |[ f ′(un)− f ′(u)]Du|p(·)]

�C(p−, p+,‖ f ′‖∞)[h(·)+ |Du|p(·)] = k(·) ∈ L1(Ω).

It is therefore possible to apply the convergence theorem of Lebesgue to conclude that
Df (un) converges to Df (u) in [Lp(·)(Ω)]d , for the subsequence first, then for the whole
sequence since any subsequence of f (un) has to converge to f (u) .
2) By assumption, there exists a subset Λ of full-measure in R such that for any s ∈ Λ ,
f ′n(s) converges to f ′(s) . Thus, since Du = 0 a.e. in {x ∈ Ω,u(x) ∈ R\Λ} , one has
that f ′n(u)Du converges a.e. to f ′(u)Du . Since | f ′n(u)Du| � M|Du| , the dominated
convergence theorem yields the conclusion.

2.2. Assumptions on the operator

Let A be the nonlinear operator of Leray-Lions type acting from W 1,p(·)
0 (Ω) into

its dual W−1,p′(·)(Ω), which is defined by

A(u) = −div(a(x,u,Du)).
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The function a : Ω×R×R
d → R

d is assumed to be a strictly monotone Carathéodory
function

i.e.

⎧⎨
⎩
∀(s,ξ ) ∈ R×R

d, x �→ a(x,s,ξ ) is measurable,
for a.e. x ∈ Ω, (s,ξ ) �→ a(x,s,ξ ) is continuous,
∀ξ ,η ∈ R

d ,ξ �= η ,∀x ∈ Ω a.e., [a(x,s,ξ )−a(x,s,η)] [ξ −η ] > 0.
(2.2)

We also assume that there exist three constants α > 0, β > 0, γ � 0, a function h in
L1(Ω) and a function k in Lp(·)(Ω) and two exponents q,r such that, for a.e. x ∈ Ω ,
for all s ∈ R and for all ξ ∈ R

d one has 1 � q(x),r(x) � q+ < p− and

a(x,s,ξ )ξ � α | ξ |p(x) −
[

γ |s|q(x) + |h(x)|
]
, (2.3)

| a(x,s,ξ ) | � β
[
|k(x)|+ | s |

r(x)
p(x) + | ξ |

]p(x)−1
. (2.4)

We propose to derive from these assumptions some technical lemmata used in the
sequel. They are somehow classical results, but we propose to give the details of the
proofs in this particular framework: variable exponents and dependence on u for A .

LEMMA 2. There exists a constant C>0 such that, for any u ∈W 1,p(·)
0 (Ω) ,

∫
Ω

a(x,u,Du)Dudx � α
2

min
[
‖u‖p+

W1,p(·)
0

,‖u‖p−

W1,p(·)
0

]
−C.

Proof. For any u ∈W 1,p(·)
0 (Ω) , since

∫
Ω |u|q(x)dx � 1+‖u‖q+

Lq(·)(Ω)
,

∫
Ω

a(x,u,Du)Dudx�α
∫

Ω
|Du|p(x)dx− γ

∫
Ω
|u|q(x)dx−‖h‖L1(Ω)

�α
∫

Ω
|Du|p(x)dx− γ

[
1+‖u‖q+

Lq(·)(Ω)

]
−‖h‖L1(Ω)

�α
∫

Ω
|Du|p(x)dx−C‖u‖q+

W1,p(·)
0

− γ −‖h‖L1(Ω) (2.5)

where C is related to the embeddings W 1,p(·)
0 (Ω) ↪→ Lp(·)(Ω) ↪→ Lq(·)(Ω) .

Assume on the one hand that ‖u‖
W1,p(·)

0
� 1. If for any positive δ ,

C(δ ) = δ
−q+

p−−q+ ,

then (2.5) and Young inequality yield∫
Ω

a(x,u,Du)Dudx � α‖u‖p−

W1,p(·)
0

−Cδ‖u‖p−

W1,p(·)
0

−C.C(δ )−γ−‖h‖L1(Ω).

Choosing δ = α
2C , one gets the required inequality.
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Assume on the other hand that ‖u‖
W

1,p(·)
0

< 1. If for any positive δ ,

C(δ ) = δ
−q+

p+−q+ ,

then (2.5) and Young inequality yield∫
Ω

a(x,u,Du)Dudx � α‖u‖p+

W
1,p(·)
0

−Cδ‖u‖p+

W
1,p(·)
0

−C.C(δ )−γ−‖h‖L1(Ω).

Choosing δ = α
2C , one gets the required inequality.

LEMMA 3. For any δ > 0 , there exist constants C,C(δ ) > 0 such that, for any

u,v ∈W 1,p(·)
0 (Ω) ,

∫
Ω

a(x,u,Du)Dvdx � δ‖u‖p+

W1,p(·)
0

+δ
2‖u‖p−

W1,p(·)
0

+Cδ+C(δ )
∫

Ω
|Dv|p(x)dx.

Proof.

∫
Ω

a(x,u,Du)Dvdx � β
∫

Ω

[
|k(x)|+ |u(x)|

r(x)
p(x) + |Du(x)|

]p(x)−1|Dv|dx.

For any δ > 0, Young inequality yields∫
Ω

a(x,u,Du)Dvdx

� β δ
∫

Ω

[
|k(x)|+ |u(x)|

r(x)
p(x) + |Du(x)|

]p(x)
dx+

∫
Ω

|Dv|p(x)

δ p(x)−1
dx

� 3p+−1β δ
∫

Ω

[
|k(x)|p(x) + |u(x)|r(x) + |Du(x)|p(x)

]
dx

+max[
1

δ p+−1
,

1

δ p−−1
]
∫

Ω
|Dv|p(x)dx,

and, if δ = δ
β3p+−1

, there exists possibly different constants C,C(δ ) such that

∫
Ω

a(x,u,Du)Dvdx

� δ
∫

Ω
|Du(x)|p(x)dx+ δ

∫
Ω
|u(x)|r(x)dx+Cδ +C(δ)

∫
Ω
|Dv|p(x)dx

� δ
∫

Ω
|Du(x)|p(x)dx+ δ‖u‖p−

W
1,p(·)
0

+Cδ +C(δ )
∫

Ω
|Dv|p(x)dx

� δ‖u‖p+

W
1,p(·)
0

+ δ‖u‖p−

W
1,p(·)
0

+Cδ +C(δ )
∫

Ω
|Dv|p(x)dx, (2.6)

by using Young inequality and W 1,p(·)
0 (Ω) ↪→ Lr(·)(Ω) . Then, the lemma is proved.
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LEMMA 4. There exist positive constants C1,C2 such that,

∫
Ω
a(x,u,Du)D[u−v]dx � α

2
min[‖u‖p+

W
1,p(·)
0

,‖u‖p−

W
1,p(·)
0

]−C1

∫
Ω
|Dv|p(x)dx−C2,

for any u,v ∈W 1,p(·)
0 (Ω) .

Proof. Thanks to (2.5) and Young inequality, for any δ > 0, there exists Cδ > 0,
independent on u , such that

∫
Ω

a(x,u,Du)Dudx � α
∫

Ω
|Du|p(x)dx− δ‖u‖q+

W
1,p(·)
0

−Cδ .

Thanks to the first of the three inequalities denoted by (2.6), for any δ > 0, there exist
C”,C′

δ
> 0, independent on u and v , such that

∫
Ω
a(x,u,Du)Dvdx � δ

∫
Ω
|Du(x)|p(x)dx+δ‖u‖r+

W
1,p(·)
0

+C′
δ

∫
Ω
|Dv|p(x)dx+C”δ ,

and,

∫
Ω

a(x,u,Du)D[u− v]dx+Cδ +C”δ

� [α − δ ]
∫

Ω
|Du|p(x)dx− δ

[
‖u‖q+

W
1,p(·)
0

+‖u‖r+

W1,p(·)
0

]
−C′

δ

∫
Ω
|Dv|p(x)dx.

Then, for a suitable choice of δ , and arguing as in Lemma 2 concerning the comparison

of the norm of u in W 1,p(·)
0 (Ω) to 1, one gets the result.

We finally assume that for any m∈R
+ there exist four positive constants αm,βm,γm

and δm and three functions hm , km , lm in Lp(·)(Ω) such that, for a.e. x ∈ Ω , for all
s ∈ R , t ∈ R with |s| � m , |t| � m, and |s− t| � εm for some small εm , and for all
ξ ∈ R

d , η ∈ R
d one has

[a(x,s,ξ )−a(x,s,η)][ξ −η ]�αm
| ξ −η |max(2,p(x))

(|hm(x)|+ | ξ | + | η |)2−min(p(x),2) , (2.7)

|a(x,s,ξ )−a(x,s,η)|
� βm

[
|km(x)|+ |ξ |+ |η |

](p(x)−2)+ |ξ −η |min(p(x)−1,1), (2.8)

|a(x,s,ξ )−a(x,t,ξ )| � γm|s− t|
1+δm

min(p′(x),2)
[
|lm(x)|+ |ξ |

]p(x)−1
. (2.9)
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REMARK 1.
1) An example of an operator which satisfies all the above assumptions is the so-called
p(·)-Laplacian, defined for 1 < p− � p(·) � p+ < ∞ by

−Δp(·)(u) = −div(|Du|p(·)−2Du).

A more general example is the case where

A(u) = −div(b(·,u)|Du|p(·)−2Du), i.e. a(x,s,ξ ) = b(x,s)|ξ |p(x)−2ξ ;

if b is a Carathéodory function which satisfies α � b(x,s) � β , for some 0 < α �
β < ∞, then hypotheses (2.2), (2.3), (2.4), (2.7) and (2.8) are satisfied; hypothesis (2.9)
is satisfied if b(x, ·) is locally Hölder continuous with an Hölder exponent which is

strictly greater than
1

p′(x)
when p(x) � 2 and than 1/2 when 1 < p(x) � 2.

Let us mentioned that one can also consider the case of an operator A with an
additional vector field �B(·,u) inside the divergence operator.

2) As a consequence of the Carathéorory assumption in (2.2), the growth condition
(2.4), and the properties of the Nemitsky operators in W 1,p(·)(Ω) , one gets the well-
definedness, the continuity and the boundedness of the operator

A : w ∈W 1,p(·)
0 (Ω) �→ −div(a(x,w,Dw)) ∈W−1,p′(·)(Ω).

Then, the compact embedding of W 1,p(·)
0 (Ω) in Lp(·)(Ω) , the properties of Nemitsky

operators in Lp(·)(Ω) , (2.2) and (2.4) allow to prove, by classic arguments, that A is
pseudomonotone.

Moreover, A is coercive. Indeed, if (uk)⊂W 1,p(·)
0 (Ω) is a sequence of functions whose

norms in W 1,p(·)
0 (Ω) go to infinity, thanks to Lemma 2, for sufficiently large k we have

∫
Ω

a(x,uk,Duk)Duk

‖uk‖W
1,p(·)
0

dx � α
2
‖uk‖p−−1

W1,p(·)
0 (Ω)

− C
‖uk‖W

1,p(·)
0

,

and A is coercive since p− > 1.

2.3. The main result

Let ψ : Ω → R be a given function (the obstacle) which is assumed to satisfy

ψ ∈W 1,p(·)(Ω), with ψ � 0 on ∂Ω. (2.10)

Let K(ψ) be defined by K(ψ) = {v ∈W 1,p(·)
0 (Ω) : v � ψ a.e. in Ω} (note that K(ψ)

is non empty, since ψ+ belongs to K(ψ)).

Finally, we fix f ∈W−1,p′(·)(Ω) , define

g = f −A(ψ) = f +div(a(x,ψ ,Dψ)) (2.11)
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and assume that

g ∈V ∗
p′(·), (2.12)

where V ∗
p′(·) is the order dual space of W 1,p(·)

0 (Ω) , which is defined as the set of those

elements g of W−1,p′(·)(Ω) which are also elements of the space of Radon measures
M (Ω) and are such that g+ and g− belong to W−1,p′(·)(Ω) , or equivalently as the set
of those elements g of W−1,p′(·)(Ω) which are such that there exist gp and gn (where
the superscripts p and n stand for “positive” and “negative”) such that

{
g = gp−gn,

gp ∈W−1,p′(·)(Ω), gp � 0, gn ∈W−1,p′(·)(Ω), gn � 0.

Our goal is to prove the following theorem:

THEOREM 1. Under the above assumptions (2.2)-(2.12), there exists at least one
function u, which is a solution of the variational inequality

{ ∫
Ω

a(x,u,Du)D(v−u)dx � 〈 f ,v−u〉, ∀v ∈ K(ψ),

u ∈ K(ψ),
(2.13)

and which is such that the distribution μ defined by

μ = −div(a(x,u,Du))− f (2.14)

satisfies the Lewy-Stampacchia inequality

μ � g− = ( f +div[a(x,ψ ,Dψ)])−. (2.15)

REMARK 2. Theorem 1 states in particular that μ is a nonnegative Radon mea-
sure that belongs to W−1,p′(·)(Ω)∩M (Ω) . Then, since according to [6, Chapter 10-11]
any function of W 1,p(·)(Ω) is p(·)-quasicontinuous and thus measurable for the non-
negative measure μ which belongs to W−1,p′(·)(Ω) , one gets that (u−ψ) = 0 μ -a.e.
in Ω .

3. Proof of Theorem 1

We will perform the proof of Theorem 1, mainly without distinguishing between
the sets Ω1 = {x ∈ Ω : p(x) < 2} and Ω2 = {x ∈ Ω : p(x) � 2} , except for the second
part of the proof of the convergence of z−ε in L1(Ω) , where some different technicalities
appear in Ω1 and Ω2 .
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3.1. Some preliminary results

Here we give two existence results and a density one. Since we propose to adapt
to the context of variable exponents what was proposed by A. Mokrane and F. Murat in
[13, Sections 5-6], we will just focus our attention on the operator A and we invite the
reader interested in the detail of the proofs to consult the above mentioned reference.

Concerning the first two theorems, we recall that since we do not suppose that

p− � 2d
d +2

,

it is not clear whether (uε −ψ)−v belongs to L1(Ω) when v only belongs to W 1,p(·)
0 (Ω) .

THEOREM 2. Let f ∈W−1,p′(·)(Ω) , and let a be a Carathéodory function which
satisfies (2.2), (2.3) and (2.4). Finally let ψ : Ω −→ R be a measurable function such
that

∃v� ∈ W 1,p(·)
0 (Ω) with v� � ψ a.e. in Ω. (3.1)

Then for each ε > 0 there exists at least one uε such that⎧⎪⎪⎪⎨
⎪⎪⎪⎩

uε ∈ W 1,p(·)
0 (Ω), (uε −ψ)− ∈ L2(Ω),∫

Ω
a(x,uε ,Duε)Dvdx− 1

ε

∫
Ω
(uε −ψ)−vdx = 〈 f ,v〉,

∀v ∈W 1,p(·)
0 (Ω)∩L2(Ω).

(3.2)

Moreover, ⎧⎨
⎩

(uε −ψ)−uε ∈ L1(Ω),∫
Ω

a(x,uε ,Duε)Duεdx− 1
ε

∫
Ω
(uε −ψ)−uεdx = 〈 f ,uε 〉.

(3.3)

Proof. To prove this result, one has just to adapt to the case of variable exponents
the proof of A. Mokrane and F. Murat [13, Th. 6.1] and [13, Prop. 6.1]. Concerning
A. Mokrane and F. Murat [13, Th. 6.1], one just notes that from Remark 1, we know
that A is a coercive pseudomonotone operator. Then, denoting by Tn the truncation at
height n , the operator

B : w �→ −div(a(x,w,Dw))− 1
ε
Tn(w−ψ)−

is well defined from W 1,p(·)
0 (Ω) in W−1,p′(·)(Ω) , and is a strongly continuous pertur-

bation of A .
Concerning A. Mokrane and F. Murat [13, Prop. 6.1], one just needs to verify

that the function v = Tk(uε)+ (resp. Tk(uε)− ) belongs to W 1,p(·)
0 (Ω)∩L2(Ω) , and that

Tk(uε)+ tends strongly to u+
ε in W 1,p(·)

0 (Ω) as k → +∞ . Since this is a consequence
of Lemma 1, the result holds.

A result whose proof is similar to the one of Theorem 2 and A. Mokrane and
F. Murat [13, Th. 6.2] is the following one:
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THEOREM 3. Let f ∈W−1,p′(·)(Ω) , v ∈W 1,p(·)
0 (Ω) , and let a be a Carathéodory

function which satisfies (2.2), (2.3), (2.4). Then for each ε > 0 there exists at least one
vε such that ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
vε ∈W 1,p(·)

0 (Ω), vε − v ∈ L2(Ω),∫
Ω

a(x,vε ,Dvε )Dwdx+
1
ε

∫
(vε − v)wdx = 〈 f ,w〉,

∀w ∈W 1,p(·)
0 (Ω)∩L2(Ω).

(3.4)

Now we give a density lemma for the nonnegative cone of W−1,p′(·)(Ω) , extend-
ing to the variable exponent framework the result of A. Mokrane and F. Murat in [13,
Section 5].

LEMMA 5. The nonnegative cone of W 1,p(·)
0 (Ω) is dense in the nonnegative cone

of W−1,p′(·)(Ω).

Proof. For f ∈W−1,p′(·)(Ω) , f � 0, we define v , vε and f̂ε by

v ∈W 1,p(·)
0 (Ω),−div(|Dv|p(·)−2Dv) = f in D ′(Ω),

⎧⎪⎨
⎪⎩

vε ∈W 1,p(·)
0 (Ω), vε − v ∈ L2(Ω), ∀w ∈W 1,p(·)

0 (Ω)∩L2(Ω),∫
Ω
|Dvε |p(·)−2DvεDwdx+

1
ε

∫
Ω
(vε − v)wdx = 0,

(3.5)

f̂ε = −1
ε
(vε − v) = −div(|Dvε |p(·)−2Dvε).

Let us note first that the existence of vε is ensured by Theorem 3. Then, following the
proof of [13, Section 5], one gets that vε − v � 0 a.e. in Ω and 0 � f̂ε = − 1

ε (vε − v) ∈
W 1,p(·)

0 (Ω) .
It remains to prove that f̂ε strongly converges to f in W−1,p′(·)(Ω). Using in (3.5)

the test function (vε − v) we obtain

∫
Ω
|Dvε |p(·)−2DvεDvεdx+

1
ε

∫
Ω
|vε − v|2dx

=
∫

Ω
|Dvε |p(·)−2DvεDvdx

�
∫

Ω

1
p′(x)

|Dvε |p(x) +
1

p(x)
|Dv|p(x) dx, (3.6)

which implies that

1
p+ min

[
‖vε‖p+

W1,p(·)
0 (Ω)

,‖vε‖p−

W1,p(·)
0 (Ω)

]
+

1
ε
‖vε − v‖2

L2(Ω) � C.
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Therefore

vε ⇀ v weakly in W 1,p(·)
0 (Ω). (3.7)

Rewriting now (3.6) as⎧⎪⎨
⎪⎩

∫
Ω

[
|Dvε |p(·)−2Dvε −|Dv|p(·)−2Dv

]
D[vε − v]dx+

1
ε

∫
Ω
|vε − v|2dx

= −
∫

Ω
|Dv|p(·)−2DvD[vε − v]dx,

we deduce from (3.7) that∫
Ω
[|Dvε |p(·)−2Dvε −|Dv|p(·)−2Dv]D[vε − v]dx−→ 0. (3.8)

Since J :W 1,p(·)
0 (Ω)→R , u �→ ∫

Ω
1

p(x) |Du(x)|p(x)dx is a proper, convex, continuous and
Gâteaux-differentiable mapping, its Gâteaux-derivative is the single-valued maximal

monotone operator, from W 1,p(·)
0 (Ω) to its dual space, defined by

〈DJ(u),v〉
W 1,p(·)

0 (Ω)
=

∫
Ω
|Du|p(x)−2DuDvdx

for any (u,v) in W 1,p(·)
0 (Ω) .

In terms of DJ , limit relation (3.8) reads as

lim
ε
〈DJ(vε)−DJ(v),vε − v〉

W1,p(·)
0 (Ω)

= 0

and the properties of maximal monotone operators in reflexive Banach spaces (cf. e.g.
V. Barbu [3]) ensure that J(vε) → J(v) and

〈DJ(vε),vε 〉W 1,p(·)
0 (Ω)

→ 〈DJ(v),v〉
W

1,p(·)
0 (Ω)

.

Then, the remark, saying that the weak convergence of a sequence in Lp(·)(Ω) along
with the convergence of the modulus implies the strong convergence (J. Giacomoni and
G. Vallet [8, Appendix]), leads to the convergence of Dvε to Dv in Lp(·)(Ω) , i.e. of vε

to v in W 1,p(·)
0 (Ω) . Therefore

f̂ε = −div(|Dvε |p(·)−2Dvε) −→−div(|Dv|p(·)−2Dv) = f in W−1,p′(·)(Ω)

as required. This completes the proof of Lemma 5.
We will now turn to the proof of Theorem 1.

3.2. The case where g− ∈W 1,p(·)
0 (Ω)∩L∞(Ω) and ψ ∈W 1,p(·)(Ω)∩L∞(Ω)

Hypotheses (2.12) on g and (2.10) on ψ assert that

g = f −A(ψ) ∈V ∗
p′(·), ψ ∈W 1,p(·)(Ω) with ψ � 0 on ∂Ω .
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In this subsection, we further assume that g = gp−gn where

gp ∈W−1,p′(·)(Ω), gp � 0, gn ∈W 1,p(·)
0 (Ω)∩L∞(Ω), gn � 0, (3.9)

and that

ψ ∈W 1,p(·)(Ω)∩L∞(Ω) with ψ � 0 on ∂Ω. (3.10)

For convenience, we set v� = ψ+ . Thus,

v� ∈W 1,p(·)
0 (Ω)∩L∞(Ω) with v� � ψ a.e. in Ω. (3.11)

3.2.1. Penalization and a priori estimates

Under hypotheses (2.2), (2.3), (2.4), (3.11) and (2.11), consider uε , a solution of
problem (3.2) given by Theorem 2. Using (3.3) and the test function v� in (3.2), we
obtain ∫

Ω
a(x,uε ,Duε)D(uε−v�)dx− 1

ε

∫
Ω
(uε−ψ)−(uε−v�)dx = 〈 f ,uε−v�〉. (3.12)

Then, by Lemma 4 and the definition of v� , the following estimate holds:

∫
Ω

a(x,uε ,Duε)D[uε − v�]dx− 1
ε

∫
Ω
(uε −ψ)−(uε − v�)dx

� α
2

min

[
‖uε‖p+

W
1,p(·)
0

,‖uε‖p−

W
1,p(·)
0

]
−C1

∫
Ω
|Dv�|p(x)dx

−C2+
1
ε

∫
Ω
|(uε−ψ)−|2dx.

Here, estimating the second term in the left-hand side of equality (3.12), we used the
fact that v� � ψ a.e. in Ω .

Finally the right hand side of (3.12) is estimated by

|〈 f ,uε − v�〉| � ‖ f‖W−1,p′(·) ‖ uε ‖W
1,p(·)
0 (Ω)

−〈 f ,v�〉 � α
4
‖Duε‖p−

Lp(Ω) +C,

and from the above computation we deduce that

‖ uε ‖W
1,p(·)
0 (Ω)

� C and ‖ (uε −ψ)− ‖2
L2(Ω)� Cε. (3.13)

3.2.2. Proof of the existence result

Define με = 1
ε (uε −ψ)− . From equation (3.2) we deduce that

−div(a(x,uε ,Duε))− με = f in D ′(Ω), (3.14)

which in view of the growth condition (2.4) on a , the Hölder and Poincaré inequalities

and of the W 1,p(·)
0 (Ω) estimate (3.13) on uε imply that με is bounded in W−1,p′(·)(Ω) .
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We can thus extract a subsequence (still denoted by ε ) such that uε ⇀ u weakly in

W 1,p(·)
0 (Ω) , and a.e., and με ⇀ μ weakly in W−1,p′(·)(Ω) . Then, using Lemma 1 for

the truncations Tn , the sequel of the proof of A. Mokrane and F. Murat [13, Section
4.1.2] holds similarly and we obtain that u solves the variational inequality (2.13) and
that (2.14) holds.

3.2.3. Strong convergence of z−ε in L1(Ω)

First step. Let us define zε = gn − 1
ε (uε −ψ)− and remark that zε belongs to

W 1,p(·)
0 (Ω) in view of (3.9) and (2.10).

Let us fix k > 0 and set Eε = {x ∈ Ω : −k < zε(x) < 0} . Then, following [13,
Section 4.1.3], we have

|uε −ψ | � (‖gn‖L∞(Ω) + k)ε on Eε . (3.15)

Setting m = ‖ψ‖L∞(Ω) +‖gn‖L∞(Ω)+k , supposing ε � 1 and taking into account (3.15),
we get

|ψ | � m a.e. in Ω and |uε | � m a.e on Eε . (3.16)

By definitions

g = f +div(a(x,ψ ,Dψ)), zε = gn− 1
ε
(uε −ψ)− and g = gp−gn.

Then, (3.2) yields that for any v ∈W 1,p(·)
0 (Ω)∩L2(Ω) ,∫

Ω
[a(x,uε ,Duε)−a(x,ψ ,Dψ)]Dvdx+

∫
Ω

zεvdx = 〈gp,v〉. (3.17)

Moreover, since gn � 0, by definition of zε , Eε ⊂ {x ∈ Ω : uε(x)−ψ(x) < 0} and a.e.
in Ω

D[−Tk(z−ε )] = Dzε1Eε = [Dgn +
1
ε
(Duε −Dψ)]1Eε .

Thus, by using −Tk(z−ε ) as a test function in (3.17), and since gp � 0, we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
ε

∫
Eε

[a(x,uε ,Duε)−a(x,uε ,Dψ)]D[uε −ψ ]dx+
∫

Ω
z−ε Tk(z−ε )dx

� −
∫

Eε
[a(x,uε ,Duε)−a(x,uε ,Dψ)]Dgndx

−
∫

Eε
[a(x,uε ,Dψ)−a(x,ψ ,Dψ)]Dgndx

−1
ε

∫
Eε

[a(x,uε ,Dψ)−a(x,ψ ,Dψ)][Duε −Dψ ]dx.

(3.18)

Let us set

Ω1 = {x ∈ Ω : p(x) < 2}, E1
ε = Eε ∩Ω1,
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Ω2 = {x ∈ Ω : p(x) � 2}, E2
ε = Eε ∩Ω2.

Second step. For x ∈ Ω2 , we have p(x) � 2, and we deduce from strong mono-
tonicity condition (2.7) and from estimate (3.16) on uε that

1
ε

∫
E2

ε
[a(x,uε ,Duε)−a(x,uε ,Dψ)]D[uε−ψ ]dx � αm

ε

∫
E2

ε
|Duε−Dψ |p(.)dx. (3.19)

Similarly, the L∞(Ω) estimates (3.16), the local Lipschitz continuity condition (2.8),
and Young inequality together with the fact that (p(·)−2)p′(·)+ p′(·) = p(·) and the

W 1,p(·)
0 (Ω) estimate (3.13) on uε , yield 1, since ε is small,∣∣∣∣−

∫
E2

ε
[a(x,uε ,Duε)−a(x,uε ,Dψ)]Dgndx

∣∣∣∣
� βm

∫
E2

ε
[|km(x)|+ |Duε |+ |Dψ |]p(x)−2|Duε −Dψ ||Dgn|dx

� αm

2ε

∫
E2

ε
|Duε −Dψ |p(x)dx

+ βm

∫
E2

ε

[
2βm

αm
ε
] 1

p(x)−1 [|km(x)|+ |Duε |+ |Dψ |] (p(x)−2)p(x)
p(x)−1 |Dgn|

p(x)
p(x)−1 dx

� αm

2ε

∫
E2

ε
|Duε −Dψ |p(x)dx

+Cmε
1

p+−1

∫
E2

ε
[|km(x)|+ |Duε |+ |Dψ |]

(p(x)−2)p(x)
p(x)−1 |Dgn|

p(x)
p(x)−1 dx

� αm

2ε

∫
E2

ε
|Duε −Dψ |p(x)dx+Cmε

1
p+−1 . (3.20)

We observe that producing (3.20), with the use of the first inequality of (3.13) we esti-
mated ∫

E2
ε
[|km(x)|+ |Duε |+ |Dψ |]

(p(x)−2)p(x)
p(x)−1 |Dgn|

p(x)
p(x)−1 dx

�
∫

E2
ε
[|km(x)|+ |Duε |+ |Dψ |+ |Dgn|]p(x)dx � Cm.

Moreover, using (2.9), (3.16) and the second inequality of (3.13), we get∣∣∣∣−
∫

E2
ε
[a(x,uε ,Dψ)−a(x,ψ ,Dψ)]Dgndx

∣∣∣∣ → 0 as ε → 0. (3.21)

Finally using Young inequality, (2.9), (3.16) and (3.15), for sufficiently small ε we
have∣∣∣∣−1

ε

∫
E2

ε
[a(x,uε ,Dψ)−a(x,ψ ,Dψ)]D[uε −ψ ]dx

∣∣∣∣− αm

2ε

∫
E2

ε
|Duε−Dψ |p(x)dx

1Here and in what follows, Cm denotes nonnegative constants which do not depend on ε , but can depend
on m and vary from line to line.
If |km(x)|+ |Duε |+ |Dψ | = 0 , add 1 to |km| to avoid this situation.
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� Cm

ε

∫
E2

ε
|a(x,uε ,Dψ)−a(x,ψ ,Dψ)|p′(x)dx

� Cm

ε

∫
E2

ε
γ p′(x)
m |uε −ψ |1+δm [lm(x)+ |Dψ |](p(x)−1)p′(x)dx

� Cm

ε
[(‖gn‖L∞(Ω) + k)ε]1+δm

∫
E2

ε
γ p′(x)
m [lm(x)+ |Dψ |]p(x)dx

� Cmεδm . (3.22)

Third step. Define the function Fε and the set Zε by

Fε = |hm(x)|+ |Duε |+ |Dψ | , Zε = {x ∈ Ω : Fε(x) �= 0}.

Note that Duε(x) = Dψ(x) = 0 in Ω\Zε . Therefore, in particular, we have

Duε(x)−Dψ(x) = 0 in Ω\Zε . (3.23)

From (3.23), (2.7) and the L∞(Ω) estimate (3.16) on uε we deduce that

1
ε

∫
E1

ε
[a(x,uε ,Duε)−a(x,uε ,Dψ)]D[uε −ψ ]dx

=
1
ε

∫
E1

ε ∩Zε
[a(x,uε ,Duε)−a(x,uε ,Dψ)]D[uε −ψ ]dx

� αm

ε

∫
E1

ε ∩Zε

|Duε −Dψ |2
(|hm(x)|+ |Duε |+ |Dψ |)2−p(x) dx

=
αm

ε

∫
E1

ε ∩Zε

|Duε −Dψ |2
|Fε |2−p(x) dx. (3.24)

Since because of condition (2.4) and of the inclusions uε ,ψ ∈W 1,p(·)(Ω) the first inte-
gral in (3.24) is finite, the last integral in (3.24) is also finite.

Further, condition (2.8), estimates (3.16), property (3.23), Young inequality with
the exponents q(x) = 2/(p(x)−1) and q(x)/(q(x)−1) for x ∈ E1

ε , the equality

2− p(x)+ q(x)
q(x)−1

= p(x), x ∈ E1
ε ,

and the boundedness of {Fε} in Lp(·)(Ω) yield∣∣∣∣−
∫

E1
ε
[a(x,uε ,Duε)−a(x,uε ,Dψ)]Dgndx

∣∣∣∣
� βm

∫
E1

ε
|Duε−Dψ |p(x)−1|Dgn|dx

= βm

∫
E1

ε ∩Zε
|Duε−Dψ |p(x)−1|Dgn|dx
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� βmδ
∫

E1
ε ∩Zε

⎡
⎣ |Duε −Dψ |p(x)−1

|Fε |
2−p(x)

q(x)

⎤
⎦

q(x)

dx

+ βm

∫
E1

ε ∩Zε
δ

−1
q(x)−1

[
|Fε |

2−p(x)
q(x) |Dgn|

] q(x)
q(x)−1

dx

� αm

2ε

∫
E1

ε ∩Zε

|Duε −Dψ |(p(x)−1)q(x)

|Fε |2−p(x) dx

+Cmε
p−−1
3−p−

∫
E1

ε ∩Zε
(|Fε |+ |Dgn|)p(x)dx

� αm

2ε

∫
E1

ε ∩Zε

|Duε −Dψ |2
|Fε |2−p(x) dx+Cmε

p−−1
3−p− , (3.25)

by setting δ = αm
2εβm

.
A similar argument as in the previous case yields∣∣∣∣−

∫
E1

ε
[a(x,uε ,Dψ)−a(x,ψ ,Dψ)]Dgndx

∣∣∣∣ → 0 as ε → 0. (3.26)

As far as the last term of (3.18) is concerned, using (3.23) and Young inequality, we
obtain ∣∣∣∣−1

ε

∫
E1

ε
[a(x,uε ,Dψ)−a(x,ψ ,Dψ)]D[uε −ψ ]dx

∣∣∣∣
=

∣∣∣∣−1
ε

∫
E1

ε ∩Zε
[a(x,uε ,Dψ)−a(x,ψ ,Dψ)]D[uε −ψ ]dx

∣∣∣∣
� 1

ε

∫
E1

ε ∩Zε
|a(x,uε ,Dψ)−a(x,ψ ,Dψ)| |Duε −Dψ |

|Fε |
2−p(x)

2

|Fε |
2−p(x)

2 dx

� αm

2ε

∫
E1

ε ∩Zε

|Duε −Dψ |2
|Fε |2−p(x) dx

+
2

αmε

∫
E1

ε ∩Zε
|a(x,uε ,Dψ)−a(x,ψ ,Dψ)|2|Fε |2−p(x)dx. (3.27)

In order to estimate the last term of the right hand side of (3.27), we use again (2.9),
(3.15), (3.16) and the facts that {Fε} is bounded in Lp(·)(Ω) and 2(p(·)− 1)+ 2−
p(·) = p(·) . Then for sufficiently small ε we obtain

1
ε

∫
E1

ε ∩Zε
|a(x,uε ,Dψ)−a(x,ψ ,Dψ)|2|Fε |2−p(·)dx

� 1
ε

∫
E1

ε ∩Zε
γ2
m|uε −ψ |1+δm [|lm(x)|+ |Dψ |]2(p(·)−1)|Fε |2−p(·)dx

� 1
ε
[(‖gn‖L∞(Ω) + k)ε]1+δm

∫
E1

ε ∩Zε
γ2
m[|lm(x)|+ |Dψ |]2(p(·)−1)|Fε |2−p(·)dx
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� Cmεδm . (3.28)

Summing up (3.18)-(3.22) and (3.24)-(3.28), we obtain for an arbitrary k > 0,∫
Ω

z−ε Tk(z−ε )dx −→ 0 as ε −→ 0.

and therefore, z−ε → 0 strongly in L1(Ω) .

3.2.4. Proof of the Lewy-Stampacchia inequality

Coming back to the definitions of zε and με , we have

zε = z+ε − z−ε = gn− 1
ε
(uε −ψ)− and gn + z−ε = z+ε + με � με .

Passing to the limit in the above inequality thanks to the strong convergence of z−ε to
zero in L1(Ω) and the weak convergence in W−1,p′(·)(Ω) of {με} to μ , we deduce
that

gn � μ . (3.29)

This is the Lewy-Stampacchia inequality that completes the proof of Theorem 1 in the
case of this section, i.e. where g = gp−gn and assumptions (3.9) and (3.10) hold.

3.3. The general case: approximation of g and ψ and passing to the limit

Let us consider now general data as assumed in hypotheses (2.10) and (2.12). By
Lemma 5, there exists ĝn such that

ĝn ∈W 1,p(·)
0 (Ω), ĝn � 0, ĝn → g− in W−1,p′(·)(Ω). (3.30)

Using Lemma 1 with the truncation Tn at height n , we can assume by a further approx-
imation that each of those functions ĝn also belongs to L∞(Ω) . Moreover, setting for
every n ∈ N , ψn = Tn(ψ) , we obtain

ψn ∈W 1,p(·)(Ω)∩L∞(Ω), ψn � 0 on ∂Ω, ψn → ψ in W 1,p(·)(Ω). (3.31)

Define now fn = g+− ĝn +A(ψn) , and let un be a solution given by Theorem 1 where
f , ψ and g are replaced by fn , ψn and g+− ĝn respectively. Therefore,

∀v ∈ K(ψn),
∫

Ω
a(x,un,Dun)D(v−un)dx � 〈 fn,v−un〉, (3.32)

un ∈ K(ψn), μn = −div(a(x,un,Dun))− fn, μn � ĝn. (3.33)

Then, following the proof proposed by A. Mokrane and F. Murat in [13, Section 4.2],

one proves that {un} is bounded in W 1,p(·)
0 (Ω) . This and condition (2.4) imply that

{A(un)} is bounded in W−1,p′(·)(Ω) . Then we obtain, up to a subsequence still indexed
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by n , that un converges weakly to a given u in W 1,p(·)
0 (Ω) and A(un) and μn converge

weakly to given ϕ and μ in W−1,p′(·)(Ω) . Moreover, since for every n , un ∈ K(ψn) ,
taking into account the mentioned convergence of un to u and convergence of ψn to
ψ in Ω , we get u ∈ K(ψ) . This and the definition of ψn imply that for every n ,
Tn(u) ∈ K(ψn) . Then, by virtue of (3.32), for every n we have

〈A(un),un−Tn(un)〉 � 〈 fn,un −Tn(un)〉.

Hence, using the convergence of {Tn(u)} to u in W 1,p(·)
0 (Ω) , the convergence of { fn}

to f in W−1,p′(·)(Ω) , the weak convergence of {un} to u in W 1,p(·)
0 (Ω) and the weak

convergence of {A(un)} to ϕ in W−1,p′(·)(Ω) , we obtain

limsup
n

〈A(un),un〉 � 〈ϕ ,u〉.

Since the operator A is pseudomonotone, the latter inequality along with the weak
convergence of {A(un)} to ϕ in W−1,p′(·)(Ω) implies that ϕ = A(u) and 〈A(un),un〉→
〈A(u),u〉 . Then, fixing an arbitrary v ∈ K(ψ) , using Tn(v) as a test function in (3.32)
and passing to the limit in (3.32) and (3.33), we obtain that 〈A(u),v−u〉 � 〈 f ,v−u〉 ,
μ = A(u)− f and μ � g− . This completes the proof of Theorem 1 in the general case.

REMARK 3. Let us mention that techniques of the same kind can be applied to
the bilateral problem, for example by adapting [16], but one needs ad hoc assumptions
on the operator.
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