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Abstract. Sufficient conditions are established for the existence of at least one nontrivial classical
solution to the boundary value system with Sturm-Liouville boundary conditions{−(φpi(u

′
i(x)))

′ = λFui (x,u1 , . . . ,un)hi(u′i(x)) in (a,b),

αiui(a)−βiu′i(a) = 0, γiui(b)+σiu′i(b) = 0,
i = 1, . . . ,n.

The analysis is based on variational methods and critical point theory.

1. Introduction and preliminary results

In this paper, we study the existence of at least one nontrivial classical solutions to
the boundary value system with Sturm-Liouville boundary conditions{−(φpi(u

′
i(x)))

′ = λFui(x,u1, . . . ,un)hi(u′i(x)) in (a,b),

αiui(a)−βiu′i(a) = 0, γiui(b)+ σiu′i(b) = 0,
i = 1, . . . ,n, (1.1)

where λ is a positive parameter, pi > 1, φpi(t) = |t|pi−2t , αi , γi � 0, βi , σi > 0, hi :
R → [0,∞) is a bounded and continuous function with inft∈R hi(t) > 0 for i = 1, . . . ,n .
In addition, F : [a,b]×R

n → R is a function such that the mapping (t1,t2, . . . ,tn) →
F(x,t1, t2, . . . ,tn) is in C1 in R

n for all x∈ [a,b] , Fti is continuous in [a,b]×R
n for i =

1, . . . ,n , and F(x,0, . . . ,0) = 0 for all x∈ [a,b] , where Fti denotes the partial derivative
of F with respect to ti . By a classical solution of system (1.1), we mean a function
u = (u1, . . . ,un) such that, for i = 1, . . . ,n , ui(x) ∈C1[a,b] , φpi(u

′
i(x)) ∈C1[a,b] , and

ui(x) satisfies (1.1).
Problems of Sturm-Liouville type have been widely investigated for some time.

For some recent work, see [3, 6, 7, 8, 9, 10, 12, 13] and the references therein. In this
paper, we establish some sufficient conditions under which system (1.1) has at least
one nontrivial classical solution. Our approach is to use variational methods; the main
tool is a local minimum theorem established in [4], which is recalled below. This
lemma and variations of it have frequently been used to obtain multiplicity results for
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nonlinear problems of a variational nature. See, for example, [1, 2, 4, 5, 11] and the
references therein.

We now recall the local minimum theorem that appeared in [4]. For a given
nonempty set X and two functionals Φ,Ψ : X → R , we define

η(r1,r2) = inf
v∈Φ−1(r1,r2)

supu∈Φ−1(r1,r2) Ψ(u)−Ψ(v)

r2 −Φ(v)
(1.2)

and

ρ(r1,r2) = sup
v∈Φ−1(r1,r2)

Ψ(v)− supu∈Φ−1(−∞,r1) Ψ(u)

Φ(v)− r1
(1.3)

for all r1,r2 ∈ R with r1 < r2 . In what follows, we let X∗ denote the dual space of X .

LEMMA 1.1. ([4, Theorem 5.1]) Let X be a reflexive real Banach space, Φ : X →
R be a sequentially weakly lower semicontinuous, coercive, and continuously Gâteaux
differentiable functional whose Gâteaux derivative admits a continuous inverse on X∗ ,
and let Ψ : X → R be a continuously Gâteaux differentiable functional whose Gâteaux
derivative is compact. Let Iλ = Φ− λ Ψ and assume that there are r1,r2 ∈ R with
r1 < r2 such that

η(r1,r2) < ρ(r1,r2).

Then, for each λ ∈ (1/ρ(r1,r2),1/η(r1,r2)) , there exists u0,λ ∈ Φ−1(r1,r2) such that
Iλ (u0,λ ) � Iλ (u) for all u ∈ Φ−1(r1,r2) and I′λ (u0,λ ) = 0 .

Throughout this paper, we let X be the Cartesian product of n Sobolev spaces
W 1,pi([a,b]) , i = 1, . . . ,n , i.e., X = W 1,p1([a,b])× ...×W 1,pn([a,b]) , endowed with
the norm

||u|| = ||(u1, . . . ,un)|| =
n

∑
i=1

||ui||1, u = (u1, . . . ,un) ∈ X ,

where

||ui||1 =
(∫ b

a
(|u′i(x)|pi + |ui(x)|pi)dx

)1/pi

, i = 1, . . . ,n.

Then, X is a reflexive real Banach space.
For i = 1, . . . ,n and v ∈ Lpi([a,b]) , we introduce the notations

||v||Lpi =
(∫ b

a
|v(t)|pidt

)1/pi

,

mi = inf
t∈R

hi(t), Mi = sup
t∈R

hi(t),

m = min{mi : i = 1, . . . ,n}, M = max{mi : i = 1, . . . ,n},
p = min{pi : i = 1, . . . ,n}, p = max{pi : i = 1, . . . ,n},

so we have M � m > 0. We also let qi be the conjugates of pi , i.e., 1/pi +1/qi = 1.
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For all s ∈ R , let

Ji(s) =
∫ s

0

(pi −1)|δ |pi−2

hi(δ )
dδ , i = 1, . . . ,n.

For each u = (u1, ...,un) ∈ X , let the functionals Φ,Ψ : X → R be defined by

Φ(u) =
n

∑
i=1

[∫ b

a

(∫ u′(x)

0
Ji(s)ds

)
dx

+
βi

αi

∫ αiui(a)
βi

0
Ji(s)ds+

σi

γi

∫ − γiui(b)
σi

0
Ji(s)ds

]
(1.4)

and

Ψ(u) =
∫ b

a
F(x,u1(x), . . . ,un(x))dx. (1.5)

A simple calculation shows that

1

M p

n

∑
i=1

(
||u′i||pi

Lpi +
α pi−1

i

β pi−1
i

|ui(a)|pi +
γ pi−1
i

σ pi−1
i

|ui(b)|pi

)

� Φ(u) � 1
mp

n

∑
i=1

(
||u′i||pi

Lpi +
α pi−1

i

β pi−1
i

|ui(a)|pi +
γ pi−1
i

σ pi−1
i

|ui(b)|pi

)
. (1.6)

DEFINITION 1.1. We say that a function u = (u1, . . . ,un) ∈ X is a weak solution
of system (1.1) if

n

∑
i=1

[∫ b

a
Ji(u′i(x))v

′
i(x)dx+ Ji

(
αiui(a)

βi

)
vi(a)− Ji

(−γiui(b)
σi

)
vi(b)

−λ
∫ b

a
Fui(x,u1(x), . . . ,un(x))dx

]
= 0

for any v = (v1, . . . ,vn) ∈ X .

The following lemma was proved in [7] (also see [1, Lemma 2.1]).

LEMMA 1.2. ([7, Lemma 2.1]) A weak solution to (1.1) coincides with a classical
solution to (1.1).

LEMMA 1.3. ([8, Lemma 2.2]) Let the functionals Φ,Ψ : X → R be defined by
(1.4) and (1.5). Then,

(a) Φ is sequentially weakly lower semicontinuous, continuous, lim||u||→∞ Φ(u) = ∞ ,
and its derivative at the point u = (u1, . . . ,un) ∈ X is the functional Φ′(u) given by

Φ′(u)(v) =
n

∑
i=1

[∫ b

a
Ji(u′i(x))v

′
i(x)dx+ Ji

(
αiui(a)

βi

)
vi(a)− Ji

(−γiui(b)
σi

)
vi(b)

]
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for every v = (v1, . . . ,vn) ∈ X .

(b) Ψ is sequentially weakly upper semicontinuous and its derivative at the point u =
(u1, . . . ,un) ∈ X is the functional Ψ′(u) given by

Ψ′(u)(v) =
∫ b

a

n

∑
i=1

Fui(x,u1(x), . . . ,un(x))vi(x)dx

for every v = (v1, . . . ,vn) ∈ X .

REMARK 1.1. By Definition 1.1 and Lemmas 1.2 and 1.3, we see that u ∈ X is a
critical point of Φ−λ Ψ if and only u is a classical solution of system (1.1).

LEMMA 1.4. ([8, Lemma 2.3]) Assume that, for u = (u1, . . . ,un) ∈ X , there exists
r > 0 such that Φ(u) � r . Then, we have

max
x∈[a,b]

n

∑
i=1

|ui(x)| �
n

∑
i=1

⎛
⎝ pi

√√√√β pi−1
i

α pi−1
i

Mpr + pi

√
Mpr (b−a)

1
qi

⎞
⎠ . (1.7)

LEMMA 1.5. Assume that

(H) Either p � 2 or p < 2 .

Then, Φ′ : X → X∗ admits a continuous inverse on X∗ .

The scalar case of Lemma 1.5 with Dirichlet boundary conditionswas proved in [1,
Corollary 2.5]. The system case of Lemma 1.5 with Dirichlet boundary conditions was
proved in [8, Lemma 2.1]. For the general system case with Sturm-Liouville boundary
conditions, the proof is essentially the same. The details are left to the reader.

In this paper, we always assume that the condition (H) holds without further men-
tion.

In the next section, we present our results and their proofs.

2. Main results

For any ϑ > 0, let

Q(ϑ) =

⎧⎨
⎩(t1, . . . ,tn) ∈ R

n :
n

∑
i=1

|ti| � ϑ
n

∑
i=1

⎛
⎝ pi

√√√√β pi−1
i

α pi−1
i

+(b−a)
1
qi

⎞
⎠
⎫⎬
⎭ ,

and for any u = (u1, . . . ,un) ∈ X , let

Θu =
n

∑
i=1

(
||u′i||pi

Lpi +
α pi−1

i

β pi−1
i

|ui(a)|pi +
γ pi−1
i

σ pi−1
i

|ui(b)|pi

)
. (2.1)
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For a given constant ν � 0 and a function u = (u1, . . . ,un) ∈ X with

ν p

Mp
�= Θu

mp
and

ν p

Mp
�= Θu

mp
,

we define

au(ν) =

∫ b
a sup(t1,...,tn)∈Q(ν) F(x,t1, . . . ,tn)dx− ∫ b

a F(x,u1(x), . . . ,un(x))dx
ν p

Mp
− 1

mpΘu
(2.2)

if ν � 1, and

au(ν) =

∫ b
a sup(t1,...,tn)∈Q(ν) F(x,t1, . . . ,tn)dx− ∫ b

a F(x,u1(x), . . . ,un(x))dx
ν p

Mp
− 1

mpΘu

(2.3)

if ν < 1.

THEOREM 2.1. Assume that there exist two constants ν1 � 0 and ν2 > 0 , and a
function w = (w1, . . . ,wn) ∈ X such that

(A1) ν p
1 < Θw and Θw/(mp) < ν p

2 /(Mp) if ν2 � 1 ; and ν p
1 < Θw and Θw/(mp) <

ν p
2 /(Mp) if ν2 < 1 ;

(A2) aw(ν2) < aw(ν1) .
Then, for each λ ∈ (1/aw(ν1), 1/aw(ν2)) , system (1.1) has at least one nontrivial clas-
sical solution u0 = (u01, . . . ,u0n) ∈ X such that r1 < Φ(u0) < r2 , where Φ is defined
by (1.4) and

r1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ν p
1

Mp
, ν1 � 1,

ν p
1

Mp
, ν1 < 1,

r2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ν p
2

Mp
, ν2 � 1,

ν p
2

Mp
, ν2 < 1.

(2.4)

Proof. Let the functionals Φ , Ψ : X → R be defined by (1.4) and (1.5), respec-
tively. In view of Lemmas 1.3 and 1.5, it is east to see that Φ and Ψ satisfy all the
regularity assumptions given in Lemma 1.1.

From (1.6) and (2.1), it follows that Θw/(Mp) � Φ(w) � Θw/(mp) . Then, by
(A1) and (2.4), we have

r1 < Φ(w) < r2. (2.5)

From (1.7), we see that

Φ−1(−∞,r2)

⊆
⎧⎨
⎩(u1, . . . ,un) ∈ X :

n

∑
i=1

|ui(x)| � ν2

n

∑
i=1

⎛
⎝ pi

√√√√β pi−1
i

α pi−1
i

+(b−a)
1
qi

⎞
⎠ for x ∈ [a,b]

⎫⎬
⎭ .
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Then,

sup
(u1,...,un)∈Φ−1(−∞,r2)

Ψ(u) = sup
(u1,...,un)∈Φ−1(−∞,r2)

∫ b

a
F(x,u1(x), . . . ,un(x))dx

�
∫ b

a
sup

(t1,...,tn)∈Q(ν2)
F(x,t1, . . . ,tn)dx.

Therefore, from (1.2) and (2.2)–(2.5), we obtain that

η(r1,r2) �
supu∈Φ−1(−∞,r2) Ψ(u)−Ψ(w)

r2 −Φ(w)

�
∫ b
a sup(t1,...,tn)∈Q(ν2) F(x,t1, . . . ,tn)dx−Ψ(w)

r2−Φ(w)
� aw(ν2).

Note that (A2) implies that aw(ν1) > 0, and so

Ψ(w) �
∫ b

a
sup

(t1,...,tn)∈Q(ν1)
F(x,t1, . . . ,tn)dx.

Then, by similar reasoning, we also have

ρ(r1,r2) �
Ψ(w)− supu∈Φ−1(−∞,r1) Ψ(u)

Φ(w)− r1

�
Ψ(w)− ∫ b

a sup(t1,...,tn)∈Q(ν1) F(x,t1, . . . ,tn)dx

Φ(w)− r1

� aw(ν1).

Thus, from (A2),
η(r1,r2) � aw(ν2) < aw(ν1) � ρ(r1,r2).

Hence, Lemma 1.1 implies that, for each λ ∈ (1/aw(ν1), 1/aw(ν2)) , Φ(u)− λ Ψ(u)
has at least one nontrivial critical point u0 =(u01, . . . ,u0n) in X satisfying r1 < Φ(u0) <
r2 . Invoking Remark 1.1 completes the proof of the theorem.

In Theorem 2.1, the conditions (A1)–(A3) are related to the function w ∈ X . A
different function w∈ X would lead to different conditions. For example, for some τ >
0, by taking w(t)= (τ(x−a), . . . ,τ(x−a))∈X and w(t) = (τ, . . . ,τ)∈X , respectively,
from Theorem 2.1, we have the following two results.

COROLLARY 2.1. Assume that there exist three constants ν1 � 0 , ν2 � 1 , and
τ > 0 such that

ν p
1 <

n

∑
i=1

(
τ pi +

γ pi−1
i

σ pi−1
i

(τ(b−a))pi

)
,

1
mp

n

∑
i=1

(
τ pi +

γ pi−1
i

σ pi−1
i

(τ(b−a))pi

)
<

ν p
2

Mp
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and

a2,τ :=

∫ b
a sup(t1,...,tn)∈Q(ν2) F(x,t1, . . . ,tn)dx− ∫ b

a F(x,τ(x−a), . . . ,τ(x−a))dx

ν
p
2

Mp
− 1

mp ∑n
i=1

(
τ pi + γ pi−1

i

σ pi−1
i

(τ(b−a))pi

)

< a1,τ :=

∫ b
a sup(t1,...,tn)∈Q(ν1) F(x,t1, . . . ,tn)dx− ∫ b

a F(x,τ(x−a), . . . ,τ(x−a))dx

ν
p
1

Mp
− 1

mp ∑n
i=1

(
τ pi + γ pi−1

i

σ pi−1
i

(τ(b−a))pi

) .

Then, for each λ ∈ (1/a1,τ , 1/a2,τ) , system (1.1) has at least one nontrivial classical
solution u0 = (u01, . . . ,u0n) ∈ X such that r1 < Φ(u0) < r2 , where Φ is defined by
(1.4), and r1 and r2 are defined by (2.4).

COROLLARY 2.2. Assume that there exist three constants ν1 � 0 , ν2 � 1 , and
τ > 0 such that

ν p
1 <

n

∑
i=1

(
α pi−1

i

β pi−1
i

+
γ pi−1
i

σ pi−1
i

)
τ pi ,

1
mp

n

∑
i=1

(
α pi−1

i

β pi−1
i

+
γ pi−1
i

σ pi−1
i

)
τ pi <

ν p
2

Mp
,

and

b2,τ :=

∫ b
a sup(t1,...,tn)∈Q(ν2) F(x,t1, . . . ,tn)dx− ∫ b

a F(x,τ, . . . ,τ)dx

ν
p
2

Mp
− 1

mp ∑n
i=1

(
α pi−1

i

β pi−1
i

+ γ pi−1
i

σ pi−1
i

)
τ pi

< b1,τ :=

∫ b
a sup(t1,...,tn)∈Q(ν1) F(x,t1, . . . ,tn)dx− ∫ b

a F(x,τ, . . . ,τ)dx

ν
p
1

Mp
− 1

mp ∑n
i=1

(
α pi−1

i

β pi−1
i

+ γ pi−1
i

σ pi−1
i

)
τ pi

.

Then, for each λ ∈ (1/b1,τ , 1/b2,τ) , system (1.1) has at least one nontrivial classical
solution u0 = (u01, . . . ,u0n) ∈ X such that r1 < Φ(u0) < r2 , where Φ is defined by
(1.4), and r1 and r2 are defined by (2.4).

By choosing ν1 = 0 and ν2 = ν , the following two results follow directly from
Corollaries 2.1 and 2.2.

COROLLARY 2.3. Assume that there exist two constants ν � 1 and τ > 0 such
that

1
mp

n

∑
i=1

(
τ pi +

γ pi−1
i

σ pi−1
i

(τ(b−a))pi

)
<

ν p

Mp

and

c2,τ :=

∫ b
a sup(t1,...,tn)∈Q(ν) F(x,t1, . . . ,tn)dx− ∫ b

a F(x,τ(x−a), . . . ,τ(x−a))dx

ν p

Mp
− 1

mp ∑n
i=1

(
τ pi + γ pi−1

i

σ pi−1
i

(τ(b−a))pi

)
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< c1,τ :=
∫ b
a F(x,τ(x−a), . . . ,τ(x−a))dx

1
mp ∑n

i=1

(
τ pi + γ pi−1

i

σ pi−1
i

(τ(b−a))pi

) . (2.6)

Then, for each λ ∈ (1/c1,τ , 1/c2,τ) , system (1.1) has at least one nontrivial classical
solution u0 = (u01, . . . ,u0n) ∈ X such that 0 < Φ(u0) < ν p/(Mp) , where Φ is defined
by (1.4).

COROLLARY 2.4. Assume that there exist two constants ν � 1 and τ > 0 such
that

1
mp

n

∑
i=1

(
α pi−1

i

β pi−1
i

+
γ pi−1
i

σ pi−1
i

)
τ pi <

ν p

Mp

and

d2,τ :=

∫ b
a sup(t1,...,tn)∈Q(ν) F(x,t1, . . . ,tn)dx− ∫ b

a F(x,τ, . . . ,τ)dx

ν p

Mp
− 1

mp ∑n
i=1

(
α pi−1

i

β pi−1
i

+ γ pi−1
i

σ pi−1
i

)
τ pi

< d1,τ :=
∫ b
a F(x,τ, . . . ,τ)dx

1
mp ∑n

i=1

(
α pi−1

i

β pi−1
i

+ γ pi−1
i

σ pi−1
i

)
τ pi

. (2.7)

Then, for each λ ∈ (1/d1,τ , 1/d2,τ) , system (1.1) has at least one nontrivial classical
solution u0 = (u01, . . . ,u0n) ∈ X such that 0 < Φ(u0) < ν p/(Mp) , where Φ is defined
by (1.4).

REMARK 2.1. It is easy to see that (2.6) is equivalent to

∫ b

a
sup

(t1,...,tn)∈Q(ν)
F(x,t1, . . . ,tn)dx <

mpν p ∫ b
a F(x,τ(x−a), . . . ,τ(x−a))dx

Mp∑n
i=1

(
τ pi + γ pi−1

i

σ pi−1
i

(τ(b−a))pi

) ,

and that (2.7) is equivalent to

∫ b

a
sup

(t1,...,tn)∈Q(ν)
F(x,t1, . . . ,tn)dx <

mpν p ∫ b
a F(x,τ, . . . ,τ)dx

Mp∑n
i=1

(
α pi−1

i

β pi−1
i

+ γ pi−1
i

σ pi−1
i

)
τ pi

.

In applications, the above equivalent forms are easier to verify.

We now present a simple version of Corollary 2.4 with n = 1. Let α, γ be two
nonnegative constants, β , σ be two positive constants, and p > 1. Let f : [a,b]×R→
R be continuous and h : R → [0,∞) be continuous with

0 < m := inf
t∈R

h(t) � M := inf
t∈R

h(t) < ∞.
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Let F be the function defined by

F(x,t) =
∫ t

0
f (x,s)ds for each (x, t) ∈ [a,b]×R.

For any ϑ > 0, set

W (ϑ) =

{
t ∈ R : |t| � ϑ

(
p

√
β p−1

α p−1 +(b−a)
1
q

)}
,

where 1/p+1/q = 1.
The following result is an obvious consequence of Corollary 2.4.

COROLLARY 2.5. Assume that there exist two constants ν � 1 and τ > 0 such
that (

α p−1

β p−1 +
γ p−1

σ p−1

)
τ p <

mν p

M
(2.8)

and

k2,τ :=

∫ b
a supt∈W (ν) F(x,t)dx− ∫ b

a F(x,τ)dx

ν p

Mp − 1
mp

(
α p−1

β p−1 + γ p−1

σ p−1

)
τ p

< k1,τ :=
∫ b
a F(x,τ)dx

1
mp

(
α p−1

β p−1 + γ p−1

σ p−1

)
τ p

. (2.9)

Then, for each λ ∈ (1/k1,τ , 1/k2,τ) , the problem{−(φp(u′))′ = λ f (x,u)h(u′) in (a,b),

αu(a)−βu′(a) = 0, γu(b)+ σu′(b) = 0,
(2.10)

has at least one nontrivial classical solution u ∈ W 1,p([a,b]) such that 0 < Φ1(u) <
ν p/(Mp) , where

Φ1(u) =
[∫ b

a

∫ u′(x)

0

∫ s

0

(p−1)|δ |p−2

h(δ )
dδdsdx+

β
α

∫ αu(a)
β

0

∫ s

0

(p−1)|δ |p−2

h(δ )
dδds

+
σ
γ

∫ − γu(b)
σ

0

∫ s

0

(p−1)|δ |p−2

h(δ )
dδds

]
.

REMARK 2.2. It is easy to see that (2.9) is equivalent to

∫ b

a
sup

t∈W (ν)
F(x,t)dx <

mν p ∫ b
a F(x,τ)dx

M
(

α p−1

β p−1 + γ p−1

σ p−1

)
τ p

, (2.11)

which is easier to verify in applications.

Results corresponding to Corollaries 2.1–2.3 can be formulated similarly and we
leave this to the interested reader.

Finally, as an example, we present the following special case of Corollary 2.5.
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COROLLARY 2.6. Let f1 : [a,b]→ (0,∞) and f2 : R→ [0,∞) be continuous func-
tions such that limt→0+ f2(t)/t p−1 = ∞ . Let h : R → [0,∞) be a continuous function
such that

0 < m := inf
t∈R

h(t) � M := inf
t∈R

h(t) < ∞.

Then, for each

λ ∈
(

0,
1

Mp
∫ b
a f1(x)dx

sup
ν�1

ν p∫ κν
0 f2(ξ )dξ

)
,

where

κ = p

√
β p−1

α p−1 +(b−a)
1
q ,

the problem {−(φp(u′))′ = λ f1(x) f2(u)h(u′) in (a,b),

αu(a)−βu′(a) = 0, γu(b)+ σu′(b) = 0,
(2.12)

has at least one nontrivial classical solution u ∈W 1,p([a,b]) .

Proof. Let f (x,t) = f1(x) f2(t) . Clearly, (2.12) is a special case of (2.10). For
fixed λ as in the conclusion, there exists a constant ν � 1 such that

λ <
1

Mp
∫ b
a f1(x)dx

ν p∫ κν
0 f2(ξ )dξ

=
ν p

Mp∫ b
a f1(x)dxsupt∈W (ν)

∫ t
0 f2(ξ )dξ

.

Since limt→0+
f2(t)
t p−1 = ∞ , we have limt→0+

∫ t
0 f2(ξ )dξ

t p = ∞ . Then, for the above ν , in

view of the fact that F(x,t) = f1(x)
∫ t
0 f2(s)ds , we see that there exists τ∗ > 0 such that

(2.8) and (2.11) hold, and

λ <

ν p

Mp − 1
mp

(
α p−1

β p−1 + γ p−1

σ p−1

)
τ p

∫ b
a f1(x)dxsupt∈W (ν)

∫ t
0 f2(ξ )dξ − ∫ b

a f1(x)dx
∫ τ
0 f2(s)ds

=
1

k1,τ

for all τ ∈ (0,τ∗) . By Remark 2.2, (2.9) holds if τ ∈ (0,τ∗) . Note that limτ→0+ k2,τ =
∞ . The conclusion then follows from Corollary 2.5.
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