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EXISTENCE AND GLOBAL ATTRACTIVITY OF PERIODIC SOLUTIONS

FOR CHEMOSTAT MODEL WITH DELAYED NUTRIENTS RECYCLING

JIANWEN JIA AND HONGHONG ZHANG

(Communicated by Michal Fečkan)

Abstract. In this paper, a chemostat model involving distributed delays with two-microorganism
and nutrients recycling is considered. Some sufficient conditions ensuring the existence and
global attractivity of periodic solutions for the chemostat model are derived by employing the
theory of coincidence degree and differential inequality technique.

1. Introduction

The chemostat, a laboratory apparatus used for the continuous culture of microor-
ganisms, has played an important role in microbiology and population biology[8]. They
have a wide range of applications, for example, waste water treatment, production by
genetically altered organisms (like production of insulin), etc. The growth in a chemo-
stat is described by a system of ordinary differential equations and is studied by many
researchers. Generally speaking,the loss or death of biomass in a chemostat attributing
to the washout rate of the system is very high. But, when we try to model a natural
lake system the washout rate tends to be low. As the washout rate is low, the dead
biomass(naturally die or unnaturally die) remains in the system and it is possible that
the bacterial decomposition of dead biomass resulting in the regeneration of nutrient.
Consequently, we will introduce a recycling of dead biomass as nutrient.

However, when one tries to model a natural lake system, the system of ordinary
differential equations is not suitable. At present, considerable work has been done
to develop the dynamics for chemostat systems with delays. Sree Hari Rao and Raja
Sekhara Rao, He and Ruan, Yuan et al.,[1, 4, 6, 8] studied the stability of the chemostat
models with delays and nutrient recycling. Beretta and Takeuchi and Sree Hari Rao and
Raja Sekhara Rao and He et al.,[2, 5, 7] described the mechanism in a chemostat by a
system of integro-differential equations involving distributed time lags both in growth
response and nutrient recycling. They obtained some sufficient conditions ensuring
the stability of the system by employing Lyapunov functional method.However, to the
best of our knowledge, few study the periodic oscillatory behavior of chemostat system
involving distributed delay.
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Motivated by the above discussion, in this paper, we study the nonautonomous
chemostat system involving distributed delays and nutrient recycling. We can write the
following system:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ(t) = D(t)(x0 − x(t))−U(x(t))[a1(t)y1(t)+a2(t)y2(t)]
+

∫ t
−∞ f (t − s)[b1(s)γ1(s)y1(s)+b2(s)γ2(s)y2(s)]ds,

ẏ1(t) = −(γ1(t)+D(t))y1(t)+ c1(t)y1(t)
∫ t
−∞ g(t− s)U(x(s))ds,

ẏ2(t) = −(γ2(t)+D(t))y2(t)+ c2(t)y2(t)
∫ t
−∞ g(t− s)U(x(s))ds,

x(t) = φ(t),yi(t) = ψi(t),−∞ < t � 0, i = 1,2,

(1.1)

where x(t),y1(t),y2(t) represent the concentration of limiting substrate X , microor-
ganism Y1 and Y2 , respectively. x0 denotes the nutrient input concentration which is
assumed to be constant here. D(t) is the washout rate at time t ,γ1(t),γ2(t) > 0 denote
the death rate coefficient of the microorganism Y1 and Y2 , respectively. b1(t),b2(t) > 0
is the fraction of the nutrient recycled by the dead microorganisms, a1(t),a2(t) denote
the maximum uptake rate of the species, c1(t))(< a1(t)),c2(t)(< a2(t)) denote the
maximum specific growth rate of the species, respectively. D(t) , a1(t) , a2(t) , b1(t) ,
b2(t) , c1(t) , c2(t) are positive ω(ω > 0)-periodic functions. U(x(t)) denotes the
uptake function and U(0) = 0. The kernel f describes the contribution of the dead
biomass from the past to the nutrient recycled at time t where as g tells that the growth
is not immediate to consumption and there is a time delay.

This paper is organized as follows. In Section 2, we introduce notations and lem-
mas which will be useful for our main results. In Section 3, we show the existence of
periodic solution. Attractivity of periodic solution is discussed in Section 4. Finally,
we give a brief discussion in Section 5.

2. Preliminary

For convenience, we will give some notations and lemmas which will be useful for
our main results. Let X = Z = {z∈C(R,R3)|z(t+ω)= z(t)} , z(t)= (x(t),y1(t),y2(t))T

and

‖z(t)‖ = d−1
1 |x(t)|+d−1

2 |y1(t)|+d−1
3 |y2(t)|, ‖|z(t)‖| = max

t∈[0,ω]
‖z(t)‖,

then (X ,‖| · ‖|) is a Banach space.
Let X and Y be normed vector spaces. Let L : DomL ⊂ X → Y be a Fredholm

mapping of index zero and let N : X → Y be a continuous mapping. The mapping L
will be called a Fredholm mapping of index zero if dim(KerL) = condim(ImL) < +∞
and ImL is closed in Y .

If L is a Fredholm mapping of index zero, then there exist continuous projectors
P : X → X and Q : Y → Y such that ImP = KerL , ImL = KerQ = Im(I −Q), then
L |DomL∩KerP: (I −P)X → ImL is invertible, and its inverse is denoted by KP . If Ω
is a bounded open subset of X , the mapping N is called L-compact on N if QN(Ω)
is bounded and KP(I −Q)N : Ω → ImL is compact. Because ImQ is isomorphic to
KerL , there exists an isomorphism J : ImQ → KerL.
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LEMMA 1. (Continuation Theorem, Gaines and Mawhin [3]) Let Ω is a bounded
open set of X ,L be a Fredholm mapping of index zero and let N be L-compact on Ω .
Suppose that:

(i) for each λ ∈ (0,1) ,every solution x of Lx �= λNx is such that x ∈ KerL∩∂Ω;
(ii) QNx �= 0 for each x ∈ KerL∩∂Ω;
(iii) deg{JQN,Ω∩KerL,0} �= 0 .

Then the equation Lx = λNx has at least one solution lying in DomL∩∂Ω .

For the sake of convenience and simplicity, we introduce some notation as follows:

k̂ =
1
ω

∫ ω

0
k(t)dt, k = sup

t∈R
|k(t)|, k = inf

t∈R
|k(t)|,

where k is a positive continuous ω -periodic function with ω > 0.
From now on, we always assume that:

(H1) There exists positive constant L , such that |U(x)−U(x)| � L|x− x | , for all
x, x ∈ R.
(H2 )

∫ ∞
0 f (s)ds = 1,

∫ ∞
0 g(s)ds = 1.

(H3) M1 � (D− (b1γ 1d2 + b2γ 2d3)d−1
1 )+

√
N

2(a1d2 + a2d3 + c1d1 + c2d1)L
> 0,

M2 � (D− (b1γ 1d2 + b2γ 2d3)d−1
1 )−√

N

2(a1d2 + a2d3 + c1d1 + c2d1)L
where

N � [(b1γ 1d2 + b2γ 2d3)d−1
1 −D]2−4(a1d2 + a2d3 + c1d1 + c2d1)LDd−1

1 x0 > 0.

3. Existence of periodic solution

In this section, we shall consider the existence of periodic solution of system (1.1).
Corresponding equation Lz = λNz,λ ∈ (0,1) , we have⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ(t) = λ [D(t)(x0 − x(t))−U(x(t))[a1(t)y1(t)+a2(t)y2(t)]
+

∫ t
−∞ f (t − s)[b1(s)γ1(s)y1(s)+b2(s)γ2(s)y2(s)]ds],

ẏ1(t) = λ [−(γ1(t)+D(t))y1(t)+ c1(t)y1(t)
∫ t
−∞ g(t− s)U(x(s))ds],

ẏ2(t) = λ [−(γ2(t)+D(t))y2(t)+ c2(t)y2(t)
∫ t
−∞ g(t− s)U(x(s))ds],

x(t) = φ(t),yi(t) = ψi(t),−∞ < t � 0, i = 1,2.

(3.1)

THEOREM 1. If conditions (H1)-(H3) hold, then for any φ ,ψi ∈C, there exists
a positive constant B ∈ [M2,M1] which is independent of λ , such that

‖z(t)‖ < B, t � 0. (3.2)

Proof. For any φ ,ψi ∈C, we will prove that (3.2) holds. If (3.2) is not true, then
there must be t1 > 0, such that

‖z(t1)‖ = B,‖z(t)‖ < B,0 � t < t1, (3.3)



278 JIANWEN JIA AND HONGHONG ZHANG

and
‖z(t)‖ � B,0 � t � t1.

Then, we have

‖z(t1)‖ � e−λ
∫ t1
0 D(t)dt d−1

1 |x(0)|+
∫ t1

0
e−λ

∫ t1
t D(u)dud−1

1 λ

× [D(t)x0 + |U(x(t))|(a1(t)|y1(t)|+a2(t)|y2(t)|)
+

∫ t

−∞
f (t − s)[b1(s)γ1(s)|y1(s)|+b2(s)γ2(s)|y2(s)|]ds]dt

+ e−λ
∫ t1
0 (γ1(t)+D(t))dtd−1

2 |y1(0)|+
∫ t1

0
e−λ

∫ t1
t (γ1(u)+D(u))du

×d−1
2 λ [c1(t)|y1(t)|

∫ t

−∞
g(t− s)|U(x(s))|ds]dt

+ e−λ
∫ t1
0 (γ2(t)+D(t))dtd−1

3 |y2(0)|+
∫ t1

0
e−λ

∫ t1
t (γ2(u)+D(u))du

×d−1
3 λ [c2(t)|y2(t)|

∫ t

−∞
g(t− s)|U(x(s))|ds]dt

� e−λDt1(d−1
1 |x(0)|+d−1

2 |y1(0)|+d−1
3 |y2(0)|)+

∫ t1

0
e−λD(t1−t)λ

× [d−1
1 Dx0 +d−1

1 |U(x(t))|(a1(t)|y1(t)|+a2(t)|y2(t)|)
+d−1

1

∫ t

−∞
f (t − s)[b1γ1|y1(s)|+b2γ2|y2(s)|]ds

+ c1d
−1
2 |y1(t)|

∫ t

−∞
g(t− s)|U(x(s))|ds

+ c2d
−1
3 |y2(t)|

∫ t

−∞
g(t− s)|U(x(s))|ds]dt

� e−λDt1(d−1
1 |x(0)|+d−1

2 |y1(0)|+d−1
3 |y2(0)|)+

∫ t1

0
e−λD(t1−t)λ

×
[
(a1d2 +a2d3)LB2 +d−1

1 (b1γ1d2 +b2γ2d3)B+Dd−1
1 x0

+(c1 + c2)Ld1B
2
]
dt

� e−λDt1B+
1
D

[(a1d2 +a2d3 + c1d1 + c2d1)LB2

+d−1
1 (b1γ1d2 +b2γ2d3)B+Dd−1

1 x0][1− e−λDt1 ]
< B.

This contradicts the first equality of (3.3), so (3.2) holds. Thus, the proof is com-
pleted. �

THEOREM 2. If (H1)-(H3) hold, then there exists at least one ω -periodic solu-
tion of system (1.1).
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Proof. Define

X = Y =
{
(x(t),y1(t),y2(t))T ∈C(R,R3) :

x(t + ω) = x(t),y1(t + ω) = y1(t),y2(t + ω) = y2(t)
}
,

then X ,Y be normed vector spaces, with norm

‖z(t)‖ = ‖(x(t),y1(t),y2(t))T ‖ = max
t∈[0,ω]

(d−1
1 |x(t)|+d−1

2 |y1(t)|+d−1
3 |y2(t)|).

where d−1
i | · | denote Euclidean norm. Let

L : DomL∩X → Y,L(x(t),y1(t),y2(t))T = (x′(t),y′1(t),y
′
2(t))

T

and DomL = {(x(t),y1(t),y2(t))T ∈C′(R,R3)} . Define N : X → X ,

N

⎛
⎝ x(t)

y1(t)
y2(t)

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

D(t)(x0 − x(t))−U(x(t))[a1(t)y1(t)+a2(t)y2(t)]

+
∫ t

−∞
f (t − s)[b1(s)γ1(s)y1(s)+b2(s)γ2(s)y2(s)]ds

−(γ1(t)+D(t))y1(t)+ c1(t)y1(t)
∫ t

−∞
g(t− s)U(x(s))ds

−(γ2(t)+D(t))y2(t)+ c2(t)y2(t)
∫ t

−∞
g(t− s)U(x(s))ds

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

It is easy to see that KerL = R
3 ,

ImL =
{

(x(t),y1(t),y2(t)) ∈ Y :
∫ ω

0
(x(t),y1(t),y2(t))T dt = (0,0,0)T

}

is closed in X and dim(KerL) = condim(ImL) = 3. Therefore, L is a Fredholm map-
ping of index zero.

Define P : X → X and Q : Y → Y :

P

⎛
⎝ x(t)

y1(t)
y2(t)

⎞
⎠ = Q

⎛
⎝ x(t)

y1(t)
y2(t)

⎞
⎠ =

⎛
⎝ ˆx(t)

ˆy1(t)
ˆy1(t)

⎞
⎠ ,

⎛
⎝ x(t)

y1(t)
y2(t)

⎞
⎠ ∈ X = Y.

Clearly, P,Q are continuous projectors such that

ImP = KerL = R
3, KerQ = ImL = Im(I−Q).

Thus, there exists LP which is the converse projectors of L , and

KP : ImL → DomL∩KerP, KP(z) =
∫ t

0
z(s)ds− 1

ω

∫ ω

0

∫ t

0
z(s)dsdt,
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then QN : X → Y,KP(I−Q)N : X → X

QNz =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
ω

∫ ω

0
(D(t)(x0 − x(t))−U(x(t))[a1(t)y1(t)+a2(t)y2(t)]

+
∫ t

−∞
f (t − s)[b1(s)γ1(s)y1(s)+b2(s)γ2(s)y2(s)]ds)dt

1
ω

∫ ω

0
(−(γ1(t)+D(t))y1(t)+ c1(t)y1(t)

∫ t

−∞
g(t− s)U(x(s))ds)dt

1
ω

∫ ω

0
(−(γ2(t)+D(t))y2(t)+ c2(t)y2(t)

∫ t

−∞
g(t− s)U(x(s))ds)dt

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

KP(I−Q)Nz =
∫ t

0
Nz(s)ds− 1

ω

∫ ω

0

∫ t

0
Nz(s)dsdt − (

t
ω

− 1
2
)
∫ ω

0
Nz(s)ds.

Clearly, QN and KP(I −Q)N are continuous, By Arezera-Ascoli’s theorem, we can
obtain that QN(Ω) and KP(I −Q)N : Ω → ImL are relatively compact for any open
bounded set Ω ⊂ X . Hence, N is L-compact on Ω .

Corresponding equation Lz = λNz,λ ∈ (0,1), denote z(t) ∈ X be a solution of
system (3.1). And take B0 ∈ [M20,M10] , where

M10 = min{M1,M̃1}, M20 = max{M2,M̃2},

M̃1 � (D− (b1γ 1d2 + b2γ 2d3)d−1
1 )+

√
Ñ

2(a1d2 + a2d3 + c1d1 + c2d1)L
> 0,

M̃2 � (D− (b1γ 1d2 + b2γ 2d3)d−1
1 )−

√
Ñ

2(a1d2 + a2d3 + c1d1 + c2d1)L

and

Ñ � [(b1γ 1d2 + b2γ 2d3)d−1
1 −D]2−4(a1d2 + a2d3 + c1d1 + c2d1)LDd−1

1 x0 > 0.

We will prove [M20,M10] is not empty. Obviously, M2 < M̃1 . We next prove
M̃2 < M1 . From (H3),M1 > 0,and because of D− (b1γ 1d2 + b2γ 2d3)d−1

1 ) > 0, we
have

M1− M̃2

=
D− (b1γ 1d2 + b2γ 2d3)d−1

1

2(a1d2 + a2d3 + c1d1 + c2d1)L

+

√
[(b1γ 1d2 + b2γ 2d3)d−1

1 −D]2−4(a1d2 + a2d3 + c1d1 + c2d1)LDd−1
1 x0

2(a1d2 + a2d3 + c1d1 + c2d1)L

− D− (b1γ 1d2 + b2γ 2d3)d−1
1

2(a1d2 + a2d3 + c1d1 + c2d1)L

−
√

[(b1γ 1d2 + b2γ 2d3)d−1
1 −D]2−4(a1d2 + a2d3 + c1d1 + c2d1)LDd−1

1 x0

2(a1d2 + a2d3 + c1d1 + c2d1)L
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=
1

2(a1d2 + a2d3 + c1d1 + c2d1)L

[
−ΔD

+
√

[(b1γ 1d2 + b2γ 2d3)d−1
1 −D]2−4(a1d2 + a2d3 + c1d1 + c2d1)LDd−1

1 x0

+
√

[(b1γ 1d2 + b2γ 2d3)d−1
1 −D]2−4(a1d2 + a2d3 + c1d1 + c2d1)LDd−1

1 x0

]

=
1

2(a1d2 + a2d3 + c1d1 + c2d1)L

[
−ΔD

+
(
[(b1γ 1d2 + b2γ 2d3)d−1

1 −D]2 −4(a1d2 + a2d3 + c1d1 + c2d1)LDd−1
1 x0

)
+

(
−ΔD+[(b1γ 1d2 + b2γ 2d3)d−1

1 −D])2

−4(a1d2 + a2d3 + c1d1 + c2d1)LDd−1
1 x0

)1/2
]

>
1

2(a1d2 + a2d3 + c1d1 + c2d1)L

[
−ΔD

+
√

ΔD2−2ΔD[(b1γ 1d2 + b2γ 2d3)d−1
1 −D]

]
> 0,

where ΔD = D−D .so M̃2 < M1 . hence [M2,m1]
⋂

[M̃2,m̃1] is not empty, which implies
[M20,m10] is not empty.

Define Ω = {z ∈ X | |‖z‖| < B0} , according to the proof of Theorem 1, when
x ∈ ∂Ω, we have Lz �= λNz,λ ∈ (0,1) . Then condition (i) of Lemma 1 holds. Since
z ∈ ∂Ω

⋂
KerL = ∂Ω

⋂
R3,z is a constant vector, and |‖z‖| = B0. Thus we have

(d−2
1 x,d−2

2 y1,d
−2
3 y2)QNz � 1

ω

∫ ω

0
[Dx0d

−2
1 x−Dd−2

1 x2 +Ld−2
1 x2(a1y1 + a2y2)

+d−2
1 x

∫ t

−∞
f (t − s)[b1γ1y1 +b2γ2y2]ds

− (γ 1 +D)d−2
2 y2

1 + c1Ld−2
2 y2

1

∫ t

−∞
g(t− s)xds

− (γ 2 +D)d−2
3 y2

1 + c2Ld−2
3 y2

2

∫ t

−∞
g(t− s)xds]dt

� [Dx0d
−1
1 −DB0 +LB2

0(a1d2 + a2d3)

+ (b1γ1d2 +b2γ 2d3)d−1
1 B0 + c1Ld−1

1 B2
0 + c2Ld−1

1 B2
0]B0

= [(a1d2 + a2d3 + c1d1 + c2d1)LB2
0

+[(b1γ 1d2 + b2γ 2d3]d−1
1 −D]B0 +Dx0d

−1
1 ]B0 < 0.

Therefore QNz �= 0, , which means condition (ii) of Lemma 1 holds. Notice that

ImQ = KerL and J = −I : ImQ → KerL, Jz = −z.
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From homotopy invariant, we obtain

deg(JQN,Ω∩KerL,(0,0,0)T ) = deg(−zT ,Ω∩KerL,(0,0,0)T ) = 1 �= 0,

which means condition (iii) of Lemma 1 holds. By Lemma 1, the proof is com-
pleted. �

4. Attractivity of periodic solution

Let (x∗(t),y∗1(t),y
∗
2(t))

T be the periodic solution of system (1), (x(t),y1(t),y2(t))T

be any solution of system (1.1), and denote

u(t) = x(t)− x∗(t), v(t) = y1(t)− y∗1(t), w(t) = y2(t)− y∗2(t),

then system (1.1) becomes

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u̇(t) = −D(t)u(t)−a1(t)[U(x(t))y1(t)−U(x∗(t))y∗1(t)]
−a2(t)[U(x(t))y2(t)−U(x∗(t))y∗2(t)]

+
∫ t

−∞
f (t − s)[b1(s)γ1(s)v(s)+b2(s)γ2(s)w(s)]ds,

v̇(t) = −(γ1(t)+D(t))v(t)+ c1(t)[y1(t)
∫ t
−∞ g(t− s)U(x(s))ds

−y∗1(t)
∫ t

−∞
g(t− s)U(x∗(s))ds],

ẇ(t) = −(γ2(t)+D(t))w(t)+ c2(t)[y2(t)
∫ t
−∞ g(t− s)U(x(s))ds

−y∗2(t)
∫ t

−∞
g(t− s)U(x∗(s))ds],

u(t) = Φ(t),v(t) = Ψ1(t),w(t) = Ψ2(t),−∞ < t � 0,

(4.1)

where Φ(t) = φ(t)− x∗(t),Ψi(t) = ψi(t)− y∗i (t), i = 1,2. Clearly, (x∗(t),y∗1(t),y
∗
2(t))

is global attractive for system (1.1) if and only if the zero solution of (4.1) is global
attractive.

THEOREM 3. (Semilinear equations) If (H1)-(H3) hold,then the zero solution of
system (4.1) is global attractive.

Proof. For any Φ,Ψi ∈C,(i = 1,2) , we first prove

lim
t→+∞

sup‖z(t)‖ = 0, (4.2)

where z(t) = (u(t),v(t),w(t))T . In view of Theorem 1, for any given Φ,Ψi ∈ C, we
have ‖z(t)‖ < B , for t � 0. Thus, there is a nonnegative constant σ , such that

lim
t→+∞

sup‖z(t)‖ = σ . (4.3)
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According to definition of superior limit and (4.3), for sufficient small constant
ε > 0, there is t2 > 0, such that

‖z(t)‖ < (1+ ε)σ ,∀t � t2. (4.4)

Since
∫ ∞

0
f (s)ds =

∫ ∞

0
g(s)ds = 1, for the above ε and B , there must exist T > 0,

such that ∫ ∞

0
((b1γ1d2 +b2γ2d3)d−1

1 B f (s)+ (c1 + c2)Ld1B
2g(s))ds � 1

3
ε. (4.5)

From (4.1), (4.4), (4.5) and Taylor’s theorem, when t � t2 +T , we obtain

u̇(t)+D(t)u(t) � |a1(t)[U(x(t))y1(t)−U(x∗(t))y∗1(t)]|
+ |a2(t)[U(x(t))y2(t)−U(x∗(t))y∗2(t)]|

+
∣∣∣∣
∫ t

−∞
f (t − s)[b1(s)γ1(s)v(s)+b2(s)γ2(s)w(s)]ds

∣∣∣∣
= a1(t)[|U(x(t))−U(x∗(t))| |y1(ξ )|+ |y1(t)− y∗1(t)| |U(x(ξ ))|]

+a2(t)[|U(x(t))−U(x∗(t))| |y2(ξ )|+ |y2(t)− y∗2(t)| |U(x(ξ ))|]
+

∫ t

−∞
f (t − s)[b1(s)γ1(s)|v(s)|+b2(s)γ2(s)|w(s)|]ds

� a1[L|u(t)| |y1(ξ )|+ |v(t)|L|x(ξ )|]+ a2[L|u(t)| |y2(ξ )|
+ |w(t)|L|x(ξ ))|]+

∫ t

−∞
f (t − s)[b1γ 1|v(s)|+ b2γ 2|w(s)|]ds

� a1Ld1d2B[d−1
1 |u(t)|+d−1

2 |v(t)|]+ a2Ld1d3B[d−1
1 |u(t)|

+d−1
3 |w(t)|]+

(∫ t−T

−∞
+

∫ t

t−T

)
(b1γ 1|v(s)|+ b2γ 2|w(s)|)

� (a1d2 + a2d3)Ld1B(1+ ε)σ +
∫ ∞

T
(b1γ 1d2 + b2γ 2d3) f (s)Bds

+(b1γ 1d2 + b2γ 2d3)(1+ ε)σ

� [(a1d2 + a2d3)Ld1B+(b1γ 1d2 + b2γ 2d3)(1+ ε)σ ]+d1
ε
3
.

Similarly, we have

v̇(t)+ (γ1(t)+D(t))v(t) � c1(t)
∣∣∣∣y1(t)

∫ t

−∞
g(t− s)U(x(t))ds

− y∗1(t)
∫ t

−∞
g(t− s)U(x∗(t))ds

∣∣∣∣
� c1(t)

∫ t

−∞
g(t− s)|y1(t)U(x(s))− y∗1(t)U(x∗(s))|ds

= c1(t)
∫ t

−∞
g(t− s)[|U(x(t))−U(x∗(t))| |y1(ξ )|
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+ |y1(t)− y∗1(t)| |U(x(ξ ))|]ds

� c1

∫ t

−∞
g(t− s)[L|u(s)| |y1(ξ )|+ |v(s)|L|x(ξ )|]ds

� c1

(∫ t−T

−∞
+

∫ t

t−T

)
g(t− s)[L|u(s)| |y1(ξ )|

+ |v(s)|L|x(ξ ))|]ds

� c1

∫ t

−∞
g(t− s)Ld1d2B(1+ ε)σ +d2

ε
3

� c1Ld1d2B(1+ ε)σ +d2
ε
3
,

and

ẇ(t)+ (γ2(t)+D(t))w(t) � c2Ld1d3B(1+ ε)σ +d3
ε
3
.

Thus, we obtain

|u(t)| � e−
∫ t
0 D(s)ds|u(0)|+

∫ t

0
e−

∫ t
s D(u)du

{
[(a1d2 + a2d3)Ld1B

+(b1γ 1d2 + b2γ 2d3)](1+ ε)σ +d1
ε
3

}
ds

� e−Dt |u(0)|+
∫ t

0
e−D(t−s)

{
[(a1d2 + a2d3)Ld1B

+(b1γ 1d2 + b2γ 2d3)](1+ ε)σ +d1
ε
3

}
ds, (4.6)

|v(t)| � e−
∫ t
0(γ1(s)+D(s))ds|v(0)|

+
∫ t

0
e−

∫ t1
s (γ1(u)+D(u))du

[
c1d1d2LB(1+ ε)σ +d2

ε
3

]
ds

� e−Dt |v(0)|+
∫ t

0
e−(D+γ1(t))(t−s)

[
c1d1d2LB(1+ ε)σ +d2

ε
3

]
ds, (4.7)

and

|w(t)| � e−
∫ t
0(γ2(s)+D(s))ds|w(0)|

+
∫ t

0
e−

∫ t1
s (γ2(u)+D(u))du

[
c2d1d3LB(1+ ε)σ +d2

ε
3
d3

]
ds

� e−Dt |v(0)|+
∫ t

0
e−(D+γ2(t))(t−s)

[
c2d1d3LB(1+ ε)σ +d3

ε
3

]
ds. (4.8)
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Combining (4.6), (4.7), (4.8), we have

‖z(t)‖ � e−Dt(d−1
1 |u(0)|+d−1

2 |v(0)|+d−1
3 |w(0)|)

+(1− e−Dt)
1
D

[
(a1d2 + a2d3)LB+(b1γ 1d2 + b2γ 2d3)d−1

1 (1+ ε)σ ]

+
ε
3

+ c1d1LB(1+ ε)σ +
ε
3

+ c2d1LB(1+ ε)σ +
ε
3

]
� e−DtB+

ε
D

+
1
D

[
[(a1d2 + a2d3 + c1d1 + c2d1)LB

+d−1
1 (b1γ 1d2 + b2γ 2d3)

]
(1+ ε)σ .

Letting t → +∞,ε → 0, then we have

σ � 1
D

[[(a1d2 + a2d3 + c1d1 + c2d1)LB+d−1
1 (b1γ 1d2 + b2γ 2d3)]σ .

If σ �= 0, we have

1
D

[(a1d2 + a2d3 + c1d1 + c2d1)LB+(b1γ 1d2 + b2γ 2d3)d−1
1 ] � 1,

which means

(a1d2 + a2d3 + c1d1 + c2d1)LB2 +[(b1γ 1d2 + b2γ 2d3)d−1
1 −D]B � 0.

However, by the definition of B in Theorem 1, we have

(a1d2 + a2d3 + c1d1 + c2d1)LB2 +[(b1γ 1d2 + b2γ 2d3)d−1
1 −D]B < 0.

Hence, σ must be zero. Therefore, limt→+∞ ‖z(t)‖ = 0, which implies

lim
t→+∞

‖u(t)‖ = 0, lim
t→+∞

‖v(t)‖ = 0 and lim
t→+∞

‖w(t)‖ = 0.

Thus, the proof is completed. �

5. Conclusions

In this paper, we have analyzed a nonautonomous chemostat model with dis-
tributed delays nutrient recycling. By employing the theory of coincidence degree and
differential inequality technique, we have derived several easily verifiable sufficient
conditions ensuring the existence and global attractivity of periodic solution.
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