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COMPETITIVE GOMPERTZ MODEL OF TWO SPECIES

LI-CHANG HUNG

(Communicated by Danielle Hilhorst)

Abstract. In this paper, a competitive Gompertz model of two species is proposed. Furthermore,
under a certain condition, the existence of monotone traveling wave solutions of this model is
shown by the method of super- and subsolutions, which is developed in [6, 15, 16].

Dedicate to my lovely sisters Wen and Chun

1. Introduction

On the basis of the logistic growth equation, the competitive Lotka-Volterra system
which describes the interaction between two distinct species takes the following form:⎧⎪⎨

⎪⎩
ut = d1 uxx +u(λ1− c11 u− c12 v),

x ∈ R, t > 0,

vt = d2 vxx + v(λ2− c21 u− c22 v),
(1.1)

where u(x, t) and v(x,t) stand for the density of the two species u and v , respectively;
di , λi , cii (i = 1,2) , and ci j (i, j = 1,2. i �= j) are the diffusion rates, the intrin-
sic growth rates, the intra-specific competition rates, and the inter-specific competition
rates, which are assumed to be positive parameters, respectively.

In ecology, it is important to determine which species will survive in a competitive
system. In order to tackle this problem, we can use traveling wave solutions, which are
solutions of the form

(u(x,t),v(x,t)) = (u(z),v(z)), z = x−θ t, (1.2)

where θ represents the wave velocity of the traveling wave.
Under suitable scalings of the dependent and independent variables, the traveling

wave solution (u(z),v(z)) of (1.1) satisfies⎧⎪⎨
⎪⎩

uzz + θ uz + u(1−u−a1v) = 0,

z ∈ R,

d vzz + θ vz + λ v(1−a2u− v) = 0,

(1.3)
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where d , λ , a1 and a2 are positive parameters. We remark that the determination of θ
is part of solving system (1.3). A lot of attention has been paid to studying the existence
of traveling wave solutions for (1.1). For instance, see [4, 6, 8, 9, 10, 11, 12, 13, 15,
16, 20] and references cited therein. In particular, in [7, 18, 19], exact traveling wave
solutions of (1.1) were constructed by applying judicious ansätz for solutions.

Under certain situations, it is appropriate to use other growth equations rather than
using the logistic growth equation. For instance, the Gompertz growth equation pro-
vides a good fit for the growth of tumors and microorganisms. We derive the Gompertz
growth equation here. Suppose that u = u(t) is the size of the tumor and r = r(t) is
the tumor growth rate. The Gompertz growth law can be described by the following
differential equations ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

du
dt = r(t)u(t),

dr
dt = −ar(t),

u(0) = u0, r(0) = r0,

where a > 0 is a constant. This system can be solved to give

u(t) = u0 e
r0
a (1−e−at).

It turns out that u satisfies the following ODE

du
dt

= au ln
(u0 exp(r0 a−1)

u

)
, (1.4)

which is the so-called Gompertz growth equation. We note that the density of species
tends to increase more rapidly at low density under the Gompertz growth equation than
under the logistic growth equation.

Based on the Gompertz growth equation (1.4), we propose the following compet-
itive Gompertz model of two species [22]:⎧⎪⎨

⎪⎩
ut = d1 uxx+u ln

(
1

u+ c12v+ α1
+ β1

)
,

vt = d2 vxx+v ln
(

1
c21 u+ v+ α2

+ β2

)
, x ∈ R, t > 0,

(1.5)

where u = u(x, t) and v = v(x,t) denote the densities of species u and v , respectively;
d1 and d2 are the diffusion rates which are assumed to be positive constants; α1 , α2 ,
β1 and β2 are positive parameters and are related by

β1 = 1− 1
1+ α1

, β2 = 1− 1
γ + α2

, α1 � 1, α2 � 1, (1.6)

where γ is a positive constant. It is readily seen that (1.5) is a competitive system in
the sense that

∂ f (u,v)
∂v

> 0,
∂g(u,v)

∂u
> 0 (1.7)
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for u,v > 0, where

f (u,v) = u ln
( 1

u+ c12 v+ α1
+ β1

)
and g(u,v) = v ln

( 1
c21 u+ v+ α2

+ β2

)
.

For simplicity, choose α1 = 1 and α2 = α . Under the condition (1.6), the correspond-
ing diffusionless system of (1.5) is⎧⎪⎨

⎪⎩
ut = u ln

(
1

u+ c12 v+1 + 1
2

)
,

vt = v ln
(

1
c21 u+ v+ α +1− 1

γ + α
)
, t > 0,

(1.8)

which has four equilibrium points

E1 = (0,0), E2 = (1,0), E3 = (0,γ), E4 = (u∗,v∗), (1.9)

where

u∗ =
−1+ γ c12

−1+ c12 c21
, v∗ =

−γ + c21

−1+ c12 c21
. (1.10)

It is easy to see that the asymptotic behavior of solutions (u,v) of (1.8) with initial
conditions u(0) , v(0) > 0 can be classified into four cases according to the relations
among c12 , c21 , and γ .

THEOREM 1.1. (Local stability of equilibria) Three cases are monostable while
the other case is bistability:

(i) If γ < min(c21,1/c12) , then lim
t→∞

(u(t),v(t)) = (1,0) .

(ii) If c21 < γ < 1/c12 , then lim
t→∞

(u(t),v(t)) = (u∗,v∗) .

(iii) If 1/c12 < γ < c21 , then lim
t→∞

(u(t),v(t)) = either (1,0) or (0,γ) depending on the

initial conditions.

(iv) If γ > max(c21,1/c12) , then lim
t→∞

(u(t),v(t)) = (0,γ) .

Proof. The proof is elementary and hence omitted.

We remark that the local stability of equilibria in (1.8) does not depend on the
value of the parameter α due to the fact that the null line

ln
( 1

c21 u+ v+ α
+1− 1

γ + α

)
= 0 (1.11)

turns out to be
c21 u+ v = γ, (1.12)

in which α does not appear.
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Motivated by the method of super- and subsolutions applied in [6, 15, 16], we
establish the existence of traveling wave solutions

(u(x,t),v(x,t)) = (u(z),v(z)), z := x− ct, (1.13)

for ⎧⎪⎨
⎪⎩

ut = uxx +u ln
(

1
u+ c12 v+1 + 1

2

)
,

vt = vxx + v ln
(

1
c21 u+ v+ α +1− 1

γ + α
)
, x ∈ R, t > 0

(1.14)

by mean of Theorem 4.2 in [21]. Traveling wave solutions (u(z),v(z)) satisfy

⎧⎪⎨
⎪⎩

uzz + cuz +u ln
(

1
u+ c12 v+1 + 1

2

)
= 0,

vzz + cvz + v ln( 1
c21 u+ v+ α +1− 1

γ + α
)

= 0, z ∈ R.

(1.15)

When v is absent in (1.5), (1.5) becomes

ut = d1 uxx +u ln
( 1

u+ α1
+ β1

)
. (1.16)

To simplify the problem, we choose d1 = 1, α1 = α and β1 = α
1+α so that following

Gompertz equation with diffusion is obtained:

ut = uxx +u ln
( 1

u+ α
+

α
1+ α

)
, x ∈ R , t > 0 . (1.17)

It is noted that due to the choice β1 = α
1+α in the nonlinear term

u ln
( 1

u+ α
+ β1

)
,

u = 0 and u = 1 are the two zeros of u ln( 1
u+ α + β1) , that is, f (0) = f (1) = 0.

The remainder of this paper is organized as follows. In Section 2, some well-
known results, including the existence of traveling wave solutions for the Fisher equa-
tion as well as minimal speed of traveling wave solutions are presented without proof.
Applying the results in Section 2, Section 3 is devoted to the existence and stability
of traveling wave solutions for (1.17). In addition, minimal speed of traveling wave
solutions for (1.17) is given there. By combining the method of super- and subsolutions
developed in [6, 15, 16] with Theorem 4.2 in [21], we show in Section 4 the existence
of monotone traveling wave solutions which connect the two equilibrium points (0,γ)
and (u∗,v∗) at infinity for (1.14), under the condition c21 < γ < 1/c12 . Finally, we
conclude the present paper with some remarks in Section 5.
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2. Preliminaries

The following proposition asserts the existence of front solutions for the nonlinear
diffusion equation and the estimate of the minimal speed for which the front solutions
exist.

PROPOSITION 2.1. (Existence) There exists a c∗ > 0 such that if c � c∗ , the fol-
lowing nonlinear diffusion equation

ut = uxx + f (u), x ∈ R, t > 0 (2.1)

with the Fisher-type nonlinear term satisfying

f ∈C 1([0,1]), f (0) = f (1) = 0, f ′(0)> 0, f ′(1)< 0, f (u) > 0 for all u∈ (0,1) (2.2)

has a unique (up to a translation) monotonic traveling wave solution

u(x,t) = U(x− ct), U(−∞) = 1, U(∞) = 0, (2.3)

where c is the propagating speed.

PROPOSITION 2.2. (Minimal speed) The speed of propagation c in Proposition 2.1
has a lower bound c∗ which is bounded above and below by [1]

2
√

f ′(0) � c∗ � 2sup

{√
f (u)
u

∣∣∣∣∣ u ∈ (0,1)

}
. (2.4)

Let c0 = 2
√

f ′(0) , then we have [17]

• If 2
u2

∫ u
0 f (s)ds � f ′(0) for all u ∈ (0,1] ⇒ c∗ = c0 (linear selection)

• If 1
2

∫ 1
0 f (u)du � f ′(0) ⇒ c∗ > c0 (nonlinear selection)

For the case c∗ > c0 , c∗ is characterized by the following variational formulation [2]

c∗ = sup

{
2

∫ 1
0

√
f ghdu∫ 1

0 gdu

∣∣∣∣∣ g ∈ D

}
, (2.5)

where D is the space defined by

D =
{

g ∈ C 1((0,1)
) ∣∣ g � 0, h ≡−g′ > 0 in (0,1),

∫ 1

0
g(u)du < ∞

}
, (2.6)

or [5]

c∗ = inf
ρ∈B

sup
0<u<1

{
ρ ′(u)+

f (u)
ρ(u)

}
, (2.7)

where B is the space defined by

B =
{

ρ ∈ C 1([0,1]
) ∣∣ ρ > 0 in (0,1), ρ(1) = 0, ρ ′(1) < 0

}
. (2.8)
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3. Gompertz Growth Equation

In this section, the existence of traveling wave solutions for (1.17) and minimal
speed can be established using the results in Section 2.

3.1. Existence of traveling wave solutions and minimal speed

THEOREM 3.1. (Existence) Suppose that α > 0 is a constant. There exists a c∗ >
0 such that if c � c∗ , then the following equation with generalized Gompertz growth

ut = uxx +u ln
( 1

u+ α
+

α
1+ α

)
, x ∈ R , t > 0

has a unique (up to a translation) monotonic traveling front solution u(x, t) =U(x−ct)
with U(∞) = 0 and U(−∞) = 1 .

Proof. Let f (u) = u ln( 1
u+ α + α

1+ α ) . Then it is easy to see the following
properties of f hold:

• f ∈ C 1([0,1]) .

• f (0) = f (1) = 0, f ′(0) > 0, f ′(1) < 0.

• f (u) > 0, ∀ u ∈ (0,1) .

Thus, we have the desired result by Proposition 2.1.

THEOREM 3.2. (Minimal speed) The minimal speed c∗ in Theorem 3.1 is explic-
itly given as a function of α by

c∗ = 2

√
ln

[
1+

1
α (1+ α)

]
. (3.1)

Proof. Let f (u)= u ln( 1
u+ α + α

1+ α ) . Since a straightforward calculation shows
that

f ′(0) = ln
[
1+

1
α (1+ α)

]
, (3.2)

it suffices to prove by Proposition 2.2 that

2
u2

∫ u

0
f (s)ds � f ′(0) for all u ∈ (0,1]. (3.3)

Indeed, the difference 2
u2

∫ u
0 f (s)ds− f ′(0) is

2
u2

∫ u

0
f (s)ds− f ′(0)
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=
1+ α
uα

− ln
(1+ α + α2

α + α2

)
+ ln

(
1− 1

1+ α
+

1
u+ α

)
(3.4)

+
α2

u2 ln(1+
u
α

)+
1

u2 α2

(
1+ α + α2)2

ln
[ 1+ α + α2

1+ α (1+u+ α)

]
:= g(u,α).

It is easy to see that for all α > 0

lim
u→0

g(u,α) = 0 (3.5)

and for all α > 0, u ∈ (0,1]

∂g(u,α)
∂u

= −2α2

u3 ln
(
1+

u
α

)
− 2

u2 α
(1+ α)

−2(1+ α + α2) ln
(
1+

uα
1+ α + α2

)
< 0 (3.6)

These facts imply that for all α > 0, u ∈ (0,1]

g(u,α) < 0. (3.7)

This completes the proof of the theorem.

It is clear from Theorem 3.2 that c∗ > 0 can be arbitrarily small if the parameter α
is chosen sufficiently large. This property for the generalized Gompertz model is quite
different from that for the Fisher’s equation ut = uxx +u(1−u) . The minimal speed for
which a monotonic front solution joining u = 1 with u = 0 exists is known to be 2.

REMARK 3.1. If f is concave, then the minimal speed c∗ = 2
√

f ′(0) ([1], [14]).

3.2. Stability of Traveling Waves

We employ the technique adapted by Canosa [3] to study the stability of traveling
waves for (1.17). It turns out that these traveling waves are asymptotically stable in
some sense.

THEOREM 3.3. (Stability) Under certain small perturbations, the traveling wave
solutions in Theorem 3.1 are asymptotically stable.

Proof. To show the desired result, rewrite (1.17) in the moving frame

ut = uzz + cuz +u ln
( 1

u+ α
+

α
1+ α

)
, z = x− ct , t > 0 . (3.8)

For simplicity, let β = α
1+α . Here a small perturbation V (z,t) which vanishes outside

a bounded interval (−L,L) , that is,

V (z,t) = 0, for |z| � L, L > 0, (3.9)
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is added to the traveling wave solution U(z) . Then U(z)+V (z, t) is inserted to (3.8) to
give

Vt =Uzz +Vzz +cUz +cVz +U ln
( 1

U +V + α
+β

)
+V ln

( 1
U +V + α

+β
)
. (3.10)

Since U(z) is a traveling wave that solves

Uzz + cUz +U ln
( 1

U + α
+ β

)
= 0, (3.11)

it follows that (3.10) is reduced to

Vt = Vzz + cVz +U ln
[ U + α + β (U + α)(U +V + α)
U +V + α + β (U + α)(U +V + α)

]

+V ln
( 1

U +V + α
+ β

)
, (3.12)

of which the corresponding linearized equation is

Vt = Vzz + cVz +
[
ln

( 1
U + α

+ β
)
− γ

]
V, (3.13)

where γ = U
U+α+β (U+α)2 . We then look for a solution in the form

V (z,t) = v(z)e−λ t , (3.14)

where v(z) satisfies⎧⎪⎨
⎪⎩

v′′ + cv′ +
[
λ + ln

(
1

U + α + β
)
− γ

]
v = 0,

v(−L) = v(L) = 0,

(3.15)

and λ is the eigenvalue of the problem (3.15). To solve this eigenvalue problem, we
apply the transformation v(z) = w(z)e−

c
2 z to get

⎧⎪⎪⎨
⎪⎪⎩

w′′ +

[
λ −

(
c2

4 − ln
(

1
U + α + β

)
+ γ

)]
w = 0,

w(−L) = w(L) = 0.

(3.16)

It is a well-known result that if c2

4 − ln
(

1
U + α +β

)
+ γ > 0, then all the eigenvalues

λ of (3.16) are positive. Indeed, by Theorem 3.2 we have

c2

4
− ln

( 1
U + α

+ β
)

+ γ � c∗2

4
− ln

( 1
U + α

+ β
)

+ γ (3.17)
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= ln
[
1+

1
α (1+ α)

]− ln
( 1

U + α
+

α
1+ α

)
+ γ

� ln
[
1+

1
α (1+ α)

]− ln
( 1

α
+

α
1+ α

)
+ γ

= γ :=
U

U + α + β (U + α)2 > 0

since 0 � U(z) � 1 for all z ∈ R and c∗ is the minimal speed in Theorem 3.2. This
establishes the stability of the traveling wave solutions which were previously shown in
Theorem 3.1.

4. Traveling Waves in Competitive Gompertz Model of Two Species

Sometimes, a competition model can be transformed into a cooperation model by
means of a suitable change of variables. This fact is essential in proving the following
existence theorem for (1.15) under the monostable assumption c21 < γ < 1/c12 .

THEOREM 4.1. (Existence of waves under c21 < γ < 1/c12 ) Under the hypothe-
sis c21 < γ < 1/c12 , (1.14) has a monotonic traveling wave solution (u(x, t),v(x,t)) =
(U(z),V (z))(z := x− ct) which joins (U,V )(∞) = (0,γ) with (U,V )(−∞) = (u∗,v∗)
for any c � 2

√
ln 3

2 , where c is the propagating speed of wave.

Proof. System (1.15) is transformed into⎧⎪⎪⎨
⎪⎪⎩

(u1)zz + c(u1)z +u1 ln
(

1
u1 + c12 (γ −u2)+1

+ 1
2

)
= 0,

(u2)zz + c(u2)z +(u2− γ) ln
(

1
c21 u1 +(γ −u2)+ α +1− 1

γ + α
)

= 0, z ∈ R.

(4.1)
by the change of variables ⎧⎨

⎩
u1(z) = u(z),

u2(z) = γ − v(z), z ∈ R.
(4.2)

To construct upper solutions of (4.1), let u1(z) = u(z) and u2(z) = γ u(z) , where 0 �
u � 1 solves for any c � 2

√
ln 3

2⎧⎪⎨
⎪⎩

uzz + c uz + u ln
(

1
u +1 + 1

2

)
= 0, z ∈ R,

u(−∞) = 1, u(∞) = 0.

(4.3)

Consider (u1,u2) and (u1, u2) , where u1 satisfies 0 � u1 � u1 and u2 satisfies 0 �
u2 � u2 . Then (u1,u2) and (u1, u2) form a pair of upper solutions for (4.1). Indeed,
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one readily verifies that due to γ −u2 � γ − u2 = γ(1− u) � 0, we have

(u1)zz + c(u1)z + u1 ln
( 1

u1 + c12 (γ −u2)+1
+

1
2

)

= u1

[
ln

( 1
u1 + c12 (γ −u2)+1

+
1
2

)
− ln

( 1
u1 +1

+
1
2

)]
� 0. (4.4)

On the other hand, it is easy to verify that the following inequality is true.

(u2)zz + c(u2)z +(u2 − γ) ln
( 1

c21 u1 +(γ − u2)+ α
+1− 1

γ + α

)

= γ (uzz + c uz)+ (γ u− γ) ln
( 1

c21 u1 +(γ − γ u)+ α
+1− 1

γ + α

)

= −γ u ln
( 1

u +1
+

1
2

)
− γ(1− u) ln

( 1
c21 u1 + γ(1− u)+ α

+1− 1
γ + α

)
� 0

(4.5)

since by means of the fact 0 � u � 1 and the hypothesis of monostable condition
c21 < γ < 1/c12 we clearly have

ln
( 1

u +1
+

1
2

)
� ln

( 1
1+1

+
1
2

)
= 0 (4.6)

and

ln
( 1

c21 u1 + γ(1− u)+ α
+1− 1

γ + α

)
� ln

( 1
γ u + γ(1− u)+ α

+1− 1
γ + α

)

= ln
( 1

γ + α
+1− 1

γ + α

)
= 0. (4.7)

Let

F1(u1,u2) = u1 ln
( 1

u1 + c12 (γ −u2)+1
+

1
2

)
, (4.8)

F2(u1,u2) = (u2− γ) ln
( 1

c21 u1 +(γ −u2)+ α
+1− 1

γ + α

)
. (4.9)

We clearly have for i = 1,2 that

Fi

(
s,

c21

2
s
)

> 0 (4.10)

for sufficiently small s > 0. Indeed, it is readily to verify that

F1

(
s,

c21

2
s
)

= s ln
( 1

s+ c12 (γ − c21

2
s)+1

+
1
2

)

= s ln
( 1

s(1− 1
2
c12 c21)+ c12 γ +1

+
1
2

)
> 0 (4.11)
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for sufficiently small s > 0. The last inequality above holds since by hypothesis c21 <
γ < 1/c12

s(1− 1
2
c12 c21)+ c12 γ < 1 (4.12)

for sufficiently small s > 0. Also, one readily verifies that

F2

(
s,

c21

2
s
)

= (
c21

2
s− γ) ln

( 1

c21 s+(γ − c21

2
s)+ α

+1− 1
γ + α

)

= (
c21

2
s− γ) ln

( 1
c21

2
s+ γ + α

+1− 1
γ + α

)
> 0 (4.13)

for sufficiently small s > 0. Let
−→
F = (F1,F2) , −→w+ = (0,0) , −→w− = (u∗,γ − v∗) and K

be the class which contains all the functions −→ρ (z) = (ρ1(z),ρ2(z)) satisfying

K =
{−→ρ ∈ C 2(−∞,∞)

∣∣ −→ρ is monotonically decreasing with lim
z→±∞

−→ρ (z) = −→w±
}

.

(4.14)
The existence of the upper solution −→ρ = (u1, u2) satisfying (4.4) and (4.5) gives that
c � ω∗ , where

ω∗ = inf−→ρ ∈K
sup
z,i

{
ρ ′′

i (z)+Fi(
−→ρ (z))

−ρ ′
i (z)

}
. (4.15)

We can now employ Theorem 4.2 in [21] to obtain the existence of solution −→u (z) =
(u1(z),u2(z)) for (4.1) with u1(z) , u2(z) monotonically decreasing in z for −∞ < z <

+∞ and lim
z→±∞

−→u (z) = −→w± . Finally, set

⎧⎨
⎩

u(z) = u1(z),

v(z) = γ −u2(z), z ∈ R.
(4.16)

Then (u(z),v(z)) is a solution of (1.15) with (u,v)(+∞) = (0,γ) and (u,v)(−∞) =
(u∗,v∗) . This completes the proof.

Changing the roles of u and v , we obtain the following analogous result.

COROLLARY 4.2. (Existence of waves under the monostable condition) Under the
hypothesis c21 < γ < 1/c12 , (1.14) has a monotonic traveling wave solution

(u(x,t),v(x,t)) = (U(z),V (z)) (z := x− ct),

which joins (U,V )(∞) = (1,0) with (U,V )(−∞) = (u∗,v∗) for any c � 2
√

ln 3
2 , where

c is the propagating speed of wave.
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REMARK 4.1. From the proof of Theorem 4.1, we see that in fact (u1, u2) also
forms a pair of upper solutions for (1.15) in the sense that⎧⎪⎪⎨
⎪⎪⎩

(u1)zz + c(u1)z + u1 ln
(

1
u1 + c12 (γ − u2)+1

+ 1
2

)
� 0,

(u2)zz + c(u2)z +(u2 − γ) ln
(

1
c21 u1 +(γ − u2)+ α +1− 1

γ + α
)

� 0, z ∈ R.

(4.17)
(4.1) is a cooperative system, which is verified by a straightforward calculation.

5. Concluding Remarks

Under the condition c21 < γ < 1/c12 , we proved in Theorem 4.1 the existence of
monotone traveling wave solutions which connect the two equilibrium points (0,γ) and
(u∗,v∗) at infinity for (1.14). For the existence of traveling wave solutions under the
symmetric cases γ < min(c21,1/c12) and γ > max(c21,1/c12) , it suffices to consider
only one of the two cases. Therefore, an open problem to be solved is the existence
of traveling wave solutions for (1.14) under the two symmetric cases together with the
bistable case 1/c12 < γ < c21 . On the other hand, the method of super- and subsolutions
we adapted to show the existence was originally developed in [6, 15, 16]. Accordingly,
it is shown in this paper that this method has broader application, in particular, it can be
applied under the non-polynomial Gompertz nonlinearities. In addition, further inves-
tigations also include how to establish the stability of the traveling wave solutions.
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