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BLOWUP OF NONLINEAR SCHRODINGER
EQUATIONS WITH INVERSE-SQUARE POTENTIALS

TOSHIYUKI SUZUKI

(Communicated by Pavel I. Naumkin)

Abstract. Blowup in finite time for nonlinear Schrédinger equations (NLS) with inverse-square
potential a|x|~> and nonlocal nonlinearities described by integral operators (HE), is consid-
ered. The local and global existence for (HE), is studied in Suzuki[10]. To show the blowup
for (NLS) the virial identity is important role. But the identity for (HE), has not proved in
consequence of the strongly singular potential. Thus we give a strict proof of the virial identity
for (HE), .

1. Introduction and main results

In this paper we consider the blowup in finite time of weak solutions to the follow-
ing Hartree type equations (nonlinear Schrodinger equations with nonlocal nonlineari-
ties) with inverse-square potentials

i% - (—A+ i)u+u1<(|u|2) inR xRV,

Jx[? (HE),
u(0,x) = up(x) in RV,
where i=+—1,N>3,a>—(N— 2)2/4. Here the operator K is defined as
K10 =K(W) = [ kxy)f0)d. (L.1)

where k € L} (RY x RV) satisfies several conditions. One of the features of (HE),
is the presence of the strongly singular potential a|x|™2. In fact, —A and a|x|~2 are
the same scaling. Moreover, if N = 1, then the potential a|x|~2 is appeared in the
Calogero-Moser dynamical system as many-body problem. Thus the inverse-square
potential is worth observing in both mathematics and quantum physics. The other is
the nonlocal nonlinearity described by the integral operator (1.1). The typical examples

of the problem are so-called Hartree equations:

du 1 2\ N
ir = —Aut du(l " fu?) inRxRY, (1.2)
u(0,x) = up(x) inRN,
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where |x| = % |u|? is the convolution of |x|~! and |u|?. In fact, (1.2) is the special case
of (HE), with @ =0 and k(x,y) = A|x—y|~! (A € R). In quantum physics, (1.2) is
considered very well (see Chadam -Glassey [4] and Lieb -Simon [7]).

In this paper the (local) weak solution is called in the following sense:
DEFINITION 1.1. Given an open interval / C R containing 0, a function u is
said to be a local weak solution to (HE), on I if u belongs to L=(I;H'(RY))N

Wl=(I;H-'(R")) and satisfies (HE), in the sense of L=(I;H ! (R")). If I coincides
with R, then the local weak solution is said to be a global weak solution to (HE), .

In Suzuki[10] he showed the unique existence of global weak solution to (HE),
(see Theorem 1.1). In fact, he solved under the following three conditions:

(K1) k is a symmetric real-valued function, that is, k(x,y) = k(y,x) € R a.a. x,y € RV;
(K2) kEL)’j’(L;’)—kL)IC3 (L) forsome o, B € [1,e0] suchthat a < B, o '+B~' <4/N;

(K3) k_ := —min{k, 0} € LY (L) i (L%) for some &, B € [1,e0] such that & < 3,
a'4+p ' <2/N.

Here the class L? (LY) is the family of k : RY x RV — R such that

B/ec  N\1/B
[ o co
IRl gy = ( /R N /R ) dy)™ dx) T <. (1.3)

THEOREM 1.1. ([10, Theorem 1.1]) Let N >3 and a > —(N —2)?/4. Assume
that k satisfies (K1)~(K3). Then for every uy € H'(RN) there exists a unique global
weak solution u to (HE),. Moreover, u belongs to C(R;H'(RY))NC'(R; H~1(R"))
and satisfies conservation laws

lu@)ll2 = lluoll 2, Eu(r)) = E(uo) VieR, (1.4)

where the “energy” is defined as

2
12

= Livolz, + 412

E(o) =5 IVol: +3 | iy
1 2 2 1N

7 [y LKoo Pdxay, g€ ' ®Y). (1)

Here note that to show the local existence of weak solutions to (HE), (K1) and
(K2) are assumed; (K3) is used only for global existence. (K3) implies that the energy
functional E is almost positive. Thus we are interested in the case where (K3) is not
satisfied and E(ug) is negative.

Blowup in finite time of weak solutions to nonlinear Schrodinger equations (NLS)
is important. In particular, the finite blowup for (NLS) is related to the instability of
standing waves (see Berestycki-Cazenave[l] and Weinstein[11]). First Glassey [0]
proved the blowup for (NLS) with initial value uy € H'(RY) with |x[ug € L*>(RY)
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over 30 years ago. Later, Ogawa-Tsutsumi[8] proved the blowup for (NLS) without
|x|up € L*>(RN) but uy being radial. The key of showing the finite blowup in [6] is the
virial identity. For example, if u is a local weak solution to

d
ig—? = —Au+2AuPlu inRxRV,

u(0,x) = up(x) in RV,

(NLS)o

then u satisfies the virial identity for (NLS):

d> , 4N(p—1D2a

2 +1
a2 @z =81Vu)llz +— = ()17

On the one hand, formal calculation ensures the virial identity for (HE),:

_d2 u(t)|?
et} [72 = 81 Vu(r)]172 + 8a HQ
_4/ / < (Vik) (e, y) |u(z, x)‘ |u(t, y)\2dxdy

But the justification seems not to be simple and hence the proof has not been carried out.
One of the typical reasons is the strong singularity of the potential a|x|~2. If N > 5,
then we can use the Rellich inequality:

4

<—|A H*(RMY).

Iz

This implies that if u € C([—~T,T]; H*(R")) is a local weak solution to (HE),,, then we
see that u € C'([~T,T]; L*(R")). But the Rellich inequality does not hold if N =3 and
N = 4. Moreover, if k(x,y) = U(x)U(y) (U € LN/2(RV)) with N =3 and N = 4, then
K(|ul*)u ¢ L>(RY) for u € H*(RY) in general. Thus we can not construct a (strong)
solution u € C([-T,T]; H*(RN))NC' ([T, T};L*(RY)) to (HE),.

Our purpose of this paper is the blowup in finite time for weak solutions to (HE) ,
by applying the virial identity (see Section 3). To show this we add the following
condition:

(Kd) ke L3 (L) + 18 (L2) for some &, B € [1,0] such that & < B, &~ + B~ <4/N
and N
k(x,y) +k(x,y) >0 aa.x,yeR", (1.6)

where & is defined as

K(r9) 1= 5 v Vik(e) 43 Vyk( ).

Then we have the following blowup result:
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THEOREM 1.2. Let N >3 and a > —(N —2)*/4. Assume that k satisfies (K1),
(K2) and (K4). Then for every ug € H'(RV) with |x|ug € L*(RV) and E (up) < 0 there
exist Ty, Ty > 0 such that u € C(I;H'(RY))NCY(I;H ' (RN)) is a (unique) local
weak solution to (HE) , for every open interval I with 0 € I and IC (=T, T») and u
satisfies

li \Y% =oco= 1i \Y%
lim V()2 = o= tim | [Vu(0)] 2

that is, the weak solution blows up in finite time.

Here we remark the conditions (K3) and (K4). Let k(x,y) := [x—y|~!. Then (K3)
is satisfied. Moreover, k(x,y) = (—1/2)k(x,y). Thus we see that k(x,y) + k(x,y) =
(1/2)k(x,y) = 0 and hence k satisfies also (K4). In this case the energy E(¢) is not
negative for any ¢ € H'(R"). Therefore the negativity of the energy functional with
(K4) concerns the blowup in finite time.

This paper is divided into five sections. In Section 2 we give some preliminary
results. Notations are prepared in Section 2.1. Section 2.2 is devoted to the linear
operator —A +alx|~? and related results. Analysis of the integral operator with kernel

k in the class Lf (L) and the approximation are discussed in Sections 2.3. Section 3
is devoted to the justification of the virial identity. Theorem 1.2 is proved in Section 4.
Finally, in Section 5 some remarks to our result are in order.

2. Notations and preliminaries

2.1. Notations

First LP(RY) is the usual Lebesgue space with norm

1/p
s = ([ uolrax) ", wer®) (1< p <),
RN
||| = == esssup |u(x)|, ueL™(RY).

Let p € [1,00]. Then p’ € [1,0] denotes the Holder conjugate p’:=p/(p—1). H'(RV)
is the usual L?-type Sobolev space with the norm

el = (laell72+ Vel 2)'72, we H'(RY).
On the other hand, H~!(R") is the dual of H!'(R"). Note that we have a usual triplet
H'(RY) c 2(RY) c HI(RY),
where the inclusion is continuous and dense. In particular, we have

/ 2N
HI(RN) C Lq(RN)v Lq (RN) C H_l(RN)7 2 < q < X A

We use another L?-type space. D(x) is defined as

D(x) := {u € L*(R); |x|u € L*(RM)}.
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In fact, D(x) is Hilbert space with the norm |[|ul|p(y := [|(1+ [x|*)!/2u|| 12, u € D(x).
Let I C R be an open interval and Y a Banach space. Then C(I;Y) is a family of

the (strongly) continuous Y -valued function on /. On the other hand, the vector-valued
Lebesgue space LP(I;Y) is equipped with norm

H”HLI’(I;Y) = HH”()”YHUJ(I) <o
Moreover the vector -valued Sobolev space W' (I,Y) is equipped with norm
||”||W1~p(1;y) o= [|ullr oy + H”/”LI’(I;Y) <o,

Here u’ denotes the weak derivative of u respect to time variable 7 € I. Then it is
wellknown that WP (I;Y) C C(I1;Y) for 1 < p < eo.
To simplify the notation, we write

Pi=—A+alx|™% a>—(N-2)/4. 2.1

Also we denote a Vb := max{a,b} and a Ab:=min{a,b}.

2.2. The properties of the operator P, and some closedness lemmas

First we note that P, is nonnegative and selfadjointin H~!(RY) (see [9, Theorem
5.2]). Thus we can consider the Schrédinger group {e~ e} in H=!(RY). We use the
Strichartz estimates for {e~f«} established by Burq, Planchon, Stalker and Tahvildar-
Zadeh [2] (see also [10, Lemma 2.2]):

LEMMA 2.1. Let N >3 and (p,q) be a Schriodinger admissible pair; i.e.,
2 N
P 4
)

=~ Dyq=2.

N
2
Assume that (pj,q;) (j =1, 2) are Schrodinger admissible pairs. Then

t .
H/ e =P (s, x)ds
0

LP2(R;L92) < CP17P2 Hq)”L”,l (R;Lq,l )a (22)

® € L7 (R;L91 (RY)).

It follows from the Hardy inequality

I

that for a > —(N —2)?/4, § >0 and ¢ € H'(R")

2

<——|V HY(RM), N> 2.
12 N—2|| (p||L27 V(PE ( )7N 3a ( 3)

(P2

[
|x|2+ &

4a_
(1~ Gz Vol < IVol+a [ 2.4)
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< (1+ ) IVl

Also we see that for every u € H'(RV)
<_A+ Wﬁ)u - (—A+ ﬁ)u (6 — 0) strongly in ' (R"). (2.5)

Hence it is useful to consider the approximate operator —A +a(|x|> +8)~"', § > 0 of
P,. We use the following closedness lemma.

LEMMA 2.2. Let N > 3 and {6,}n C (0,00) be a sequence such that 8, > 6p+
and &, — 0 (n — ). Assume that a > —(N —2)?/4, {u,}, C H'(RN) and u €
HY(RN) satisfy

up —u  (n— o) weakly in HI(RN)

IVi||72 +a

—>oo),

MHLQ +a

.
[x|2 + &, 1L

Then Vu, — Vu (n — o) strongly in L*(RN)V.

Proof. Tt follows from (2.4) that

(-5 2))W( w)l

2
<V —u)[72+a |x|2+5
2
= (1wt gl - (0t v g
<H " ”L2+a X2 + &, L2> <” uHLH_a X2 + &, L2>

u
—2Re(Vu,V(up —u))2 — 2aRe<m,un - u>H717H1

=11, — b, —2Rels, —2aRely,.

We see from the assumption that I, — ||[Vul[2, +al| x| ~"u|?, (n — eo) and I, — 0

(n — o). The dominated convergence theorem implies that (|x|>+&,)~"/?u — |x| 'u

(n — o) strongly in L?>(RY). Thus we have

Dy — ||Vul7 +al| 7

(n — o).

In a way similar to I, (2.5) and the weak convergence u, to u in H'(RV) yield that
14, — 0 (n — o). Therefore we obtain

Iip— by —2Rel3, —2aRely, — 0 (n— o)

and hence we conclude Vu, — Vu (n — o) strongly in L>(RM)V. [

Next lemma is used in the verification of the convergence xuy, (1) to xu(r).
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LEMMA 2.3. Let u,u, € C([-T,T|;H' (RN)) satisfy

!
lxo(1)]| = [lxo(0)] +4Im/0 /RN oG0x-Vo(sx)duds.  (2.6)

Assume that |[u||p=_7.7.y1) < C for all n € N, uy(t) — u(t) (n — o) strongly in
H'(RN) forall t € [T, T] and xu,(0) — xu(0) (n — o) strongly in L>(RN)N. Then
Xty (1) — xu(t) (n— o) strongly in L>(RVN forall t € [~T,T)].

Proof. Step 1. Note that ||xu,(t)||;2 is uniformly bounded in n € N and 7 €
[-T,T]. In fact, (2.6) implies

t !
(0} 2 < ko) 72 +2| [ v(s) 2 ds| +2[ [ 1V9(s) 2]

Hence the Gronwall inequality implies that

t
el < | [ (o0 + Vo)) ds]-
It follows from the uniform boundedness of u, in L= (—T,T;H'(R")) that the uniform
boundedness of xu, in L=(—T,T;L*>(RV)N).

Step 2. Since x is bounded and linear operator in L?(B(0,R)), xu,(t) — xu(t) (n — o)
strongly in L?>(B(0,R))N forevery R >0 and ¢ € [-T,T].

Step 3. Next we show that xu,(t) — xu(t) (n — o) weakly in L?>(R¥)N. First, let
¢ € C5(RV)N . Then there exists R > 0 such that supp @ C B(0,R). Step 2 implies that

(xun (1), )2 = /B(o R)

for all # € [~T,T]. In general case, fix v € L>(RV)¥. Then there exists {@}m €
Cy(RM)N such that @, — v (m — o) strongly in L*(RV)V.

Xty (1) - @dx — /B(O’R)xu(t) “@dx = (xu(t), Q)2 (n — o)

| (et (1) = xu(2),v) 12
< e (|2 [V = @ll 2 + [ Getan (1) = x04(2), @) 2]+ [Peae(0) | 2|V = @il 2
— Cllv=@ullz (1= ) Vi€ [-T,T],
Here C is independent of n and m. Thus letting m — oo ensures xuy(1) — xu(r)
(n — oo) weakly in L?(R)N forevery ¢ € [-T,T].

Step 4. Since Vu,(t) — Vu(t) (n — oo) strongly in L>(RM)N and xu,(t) — xu(r)
(n — o) weakly in L2(RM)N for ¢ € [-T,T], we see that for every t € [~T,T]

/RNx?(t)Vun(t)dxH/Rwa~Vu(t)dx (n— o).

On the other hand, ||Vu,(¢)|/;2 and ||xu,(¢)||;2 are uniformly bounded in n € N and
t € [-T,T]. Thus the dominated convergence theorem implies that ||xun(t)||i2 —
qu(t)Hi2 (n — o). Therefore we conclude that xu, (1) — xu(t) (n — oo) strongly
in 2RV)N. O
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REMARK 2.1. Let u, u, € C([-T,T];H'(RV)) and f, f, € L™(~T,T). Assume
that

Xty (1) — xu(t), Vup(t) — Vu(t)  (n— oo) strongly in L2 RNV, 1 € [-T,T]
ut) = f(t) (n—eo), [fu)] <M, 1€[-TT],

and u, satisfies
- 1
||xu,,(t)||iz = ||xu,,(0)Hiz +4tIm/Rqu,,(0)-Vu,,(O)dx+/O (t—s)fu(s)ds

Then the dominated convergence theorem asserts that
- T
||xu(t)||i2 = ||xu(0) Hiz —|—4tlm/RN xu(0) - Vu(0)dx+ /0 (t—2s)f(s)ds

2.3. Properties of kernels

In this section we consider the kernel k in the integral operator (1.1). First, we
define the kernel kg and the index ¥ as

k(x,y) |k(x,y)| <R,
kr(x,y) :=< R k(x,y) >R, 2.7)
—R k(xvy) < —R,
1/1 1\71-1 N
vi= [1‘§<a+3ﬂ e[y @8

Note that kg € LY (Ly) with [[kg||7=( 1) SR and [[k— kR”Lﬁ oy ™ 0 (R — o). Next
y

we consider the smooth approximation of k. Let p, be the Frledrlchs mollifier. Then
ke is defined

e(wy)i= [ [ pele=E)pely—m)k(E.m)d&dn, 29
Define (kg)e and (k—kg)e in a way similar to (2.9). The Young inequality implies that
(kR )ellzz () < lkrllrz 25y < R, (2.10)

CAN(y—lip—1
[(k—kr)ell (1) < € Nia+p )”Pl”La’leHLﬁ’Hk_kRHL)lg(Lg)a

| (k —kg)e| < [k — kg||

J140%) by

Thus we see that ke € LY (L7).

Next we define two functionals G, and G as for every ¢ € H'(RV)

1
Gelo)i=7 [, [ kelxy)lo(o)Plo() P dxay, @.11)
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1
Go)i=5 [, [ KelowPlow)P dxdy 212)
RN JRN
By virtue of [10, Lemma 3.1], (K1) and (K2) imply (G3):

|G() = G(v)], 1Ge(u) = Ge (V)] < *M* |[k—kll p oo + RM? =]z (2.13)

Ly
for every u, v € H'(RN) with ||ul|;n <M, ||v|[; <M.

Next we show that k¢ is an approximation of k.
LEMMA 2.4. Let k satisfy (K1) and (K2). Then for every ¢ € H'(RN)
o) [ (w)ex)lp0)Pdy = 0(x) [ ke(x)lo(s)Pdy .14
(€ — 0) strongly in L*(RY),
o) [ (k=ke)ex oWy = 0(0) [ (k—kn)xy)lp)Pdy  @.15)
(€ — 0) strongly in L*'(RM).
Proof. Step 1. First we show that for every f € L' (RV)

| @elenflay = | k) f0)dy (€= 0)aaxeR. @16
R R

It follows from (2.10) that |(kg)e(x,y)f(y)| < R|f(y)| a.a. x,y € RV. Thus we see
that (kg)e(x,y) — kg(x,y) (€ — 0) a.a. x,y € RV. Hence the dominated convergence
theorem ensures (2.16).

Step 2. Next we show that for every f € LY(RYN)
Lk kelenfdy— [ k-k)@nfmdy (=0 @1

strongly in L” (RY). To end this, we divide (k—kg)e — (k—kg) into

pé‘(x) * [Pg(y) *KR(xvy) _KR(XJJ)] + [pé‘(x) *ER(XJJ) _KR(xvy)L

where (g := k — kg. Since pg(y) *(r(x,-) — Lr(x,-) (€ — 0) strongly in L*(RV) a.a.
x€RY we have

pela) [ [P+ Calxy) — n(w )] (3)dy — 0 (e —0) strongly in LY ("),
On the other hand, since [y (r(x,y)f(y)dy € L"' (RY), we obtain

pel)« [ tr(x)f0)dy — [ tr(x)f()dy (e —0) songlyin L7 (R).

Therefore we conclude (2.17).

Step 3. Fix ¢ € H'(RV). Then it follows from (2.16) and the dominated convergence
theorem that (2.14). On the other hand, (2.17) implies (2.15). U
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REMARK 2.2. Lemma 2.4 implies that if & satisfies (K1) and (K2), then
Ge(9) —G(p) (e—0), pecH'(RY). (2.18)
Finally, we consider x -V k(x,y) and x- V ke (x,y). First note that (K1) implies

/RN /RNX-ka(x,y) y)dxdy = / / y- Vyok(x,y) f(x) f(v) dxdy.

Therefore we obtain

/ / x-Vik(x,y) f v)dxdy = / / kxy Sf(y)dxdy. (2.19)
RN RN

Now we define |
ke(x,y) := —[x-kag(x,y) +y- Vyke(x,y)]. (2.20)

Note that if k satisfies (K1), then k,S also satisfies (K1). Here k,S is not the approxi-
mation of k defined as in (2.9), but ke can be rewritten by using k and k. In fact, we
obtain

e9) = (Beltr0) + 5P Pels) ek (9) + 5P (1) Pely) k().

where (k)¢ is the smooth approximation of k defined as in (2.9) and pg (x) := Npe (x) +
x-Vyipe(x). As like the Friedrichs mollifier, we see that
pexf—0 (e—0)strongly in LP(RY), feLP(RY), (1< p<eo),
pexf—0 (e—0)aeonRY fecL”RY).
Therefore Lemma 2.4 and (2.13) yield the following lemma.

LEMMA 2.5. Let k satisfy (K1), (K2) and (K4). Define

Gelo)i= [, [ Kelxn)lo() Pl dxdy, @21)
0)i= [, [ Kx)lowPle0)Pdxdy (2.22)

for @ € H'(RN). Then for any ¢ € H'(RV)
Ge(9) = G(9) (¢—0) (2.23)

and for every € >0 and u,v € H' (RN) with ||ul|;n <M and ||v||;n <M

|Ge () = Ge(v)| < 4M* ([[k— kg Bug) + 1Pl Ik — ke (2.24)

By )
+4M° (|| R+ R) [|u— vl 2.

REMARK 2.3. More precisely, we have
|Ge (u) = Ge(v)| < C(RYM? (|t — V]| (2.25)

for every € >0 and u, veHl(RN) with |||l <M and ||v][; <M. Here we do not
need k+k>0 as in (K4) and k — z—0 (R—>oo) for (2.25).
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3. Proof of the virial identity
In this section we show the key identity which is called the virial identity of (HE) ,:
t
(1) = || + 4 Im /RN 15 - Vg dx + /0 ((—s)V(u(s)ds  (B.1)

for any local weak solutions to (HE), with initial value u(0) = up € H'(RV) N D(x).
Here

V(p) = 2 Q> & 1N
0)=8|Volj:+8a| 5[ ~4G9) 9B ®)DE) (2

(5 is defined in (2.22)). We divide the proof of (3.1) into four stages:

Stage 1. First we construct approximate solutions to (HE)

.avs,é ave s o N
=== —Ave s+ m +vesKe(|vesl”) inRxRY, (HE)ﬁ"S
ve 5(0,x) = uo(x) inRY,
where a€¢R, € >0, 6 >0 and
Kef ()= Ke()00) = [ ke(x.y)f ().
where k¢ is defined in (2.9).
Stage 2. We derive the virial identity for (HE)? .
Stage 3. Next we consider
e _ (—A+ i)u +upKe(jugl?) inR xRN
o ‘x‘z € e Rel|Ue ) (HE)?

ug(0,x) = up(x) in RV,
The solution is the limit of v, 5 (6 — 0). By letting § — 0 of (HE)%° we confirm the
virial identity for (HE)Z.
Stage 4. We verify the virial identity for (HE), by letting € — 0 of (HE)Z.
Now we begin to prove (3.1).

Stage 1 of proof (3.1). First we consider the approximate problem (HE)E“S of (HE),
to obtain the virial identity. Note that a(|x|*+8) ' € L™(R). Since ke € L7(L), K
is locally Lipschitz continuous in L?(RY). Therefore [3, Theorem 3.3.1] yields that for
every up € H'(RV) there exists a global unique weak solution v, 5 € C(R;H'(RV)) N

C'(R;H'(RY)) to (HE)5® . Moreover, v, 5 satisfies the conservation laws:

ve,s(O)llz2 = [luollz2;  Ees(ves(t) = Ees(uo) VieR, (3.3)
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where

Ge(p), ¢cH'(RY).

1 a
Ee5(0) =5 [Vollp+3

WP+ 0l

Furthermore, if 1o € H*(RV), then v, 5 € C(R;H*(RV))NC(R; L*(RY)).

Stage 2 of proof (3.1). Now we show the virial identity for (HE)2’5 . First we calculate

the time derivative of [|xv, 5(7) ||i2 . Asin [3, Lemma 6.5.2] we obtain

d -
s =41m [ xvgs@)- Vv s(e)dr. (3.4)

2 respect to f.

Next we consider the second derivative of [[xve 5(2)]|7

LEMMA 3.1. Let v, 5 be a global weak solution to (HE)% with ve.5(0) = up.
Assume that ug € H'(RN)ND(x). Then v, 5 satisfies

d2
Tallves Ol =Ves(ves®) VieR, (35)

where Vg s is defined as

XQ

L2—45£(q0), pcH'RY). (3.6

Proof. Step 1. Assume further that uy € H*>(RY) N D(x). Then the weak solution
ve s belongs to C(R; H*(RV))NC'(R;L*(RY)). Fix > 0. Now we calculate

d 45 )
=—1 _ 80V |y
dt m/RN (14 p)x[?)? ve,s (1) dx

xvgg
1+u\x\2

dt2

and let © — 0. Applying the integral by parts we obtain

xvg(s Sx'v"eé(t) ,

=1 M NI 7
dlz 1-|-[.1|)c|2 m/]RN< ”(x)v875(t>+(1+”‘x‘2)2>vs,6(t)dx (3.7)

=Io(t:p) + L (1) + Lt 1) + I (25 1),

where
4x 4N — 16 16
M = 1 —
u) le<<1+u|x|2>2> U+ w22 T+ Py

() := Re/NMu(x)v&g(t) [—Av&g(t)—f— x 2—|—(5) +ves(t )Kg(|v£75(t)|2) dx,

x- Vv
hitp):=R /RN 2(31+.ux5(;3[ Aea(ilas
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L(sp) = /RN 8- Vve (1) ave (1)

(L4 pfx)? x>+

x- Vv
s =re [ SV ) k0P

Since [My (x)| < 4N and M, (x) — 4N (u — 0) for all x € RV, we have

)

||2

Io(t:11) — 4N [Vve 502 ’

4N /R (1) Keuvg,a(t)\z)dx (L—0)VicR (38)

Next we consider I (r; it) . Integrating by parts we have I (¢; 1) = I11(t; 1) + L12(2; 1),
where

8681(1+ p[x|?) — 32uxix;j dve 5(t) dve 5(1)
I (t; R/ / : 22 dx
n(:p) 1121 EEBE ax ox;
B 8 ) 32u\x~Vv£75(t)|2
- RN[(IMIXIZVWVS’S(I)' A )
, 8y 9%es(t) dves(t)
Iip(ts 1) = l 1 /RN a2 dndx;  ox, dx

Js

. d 8"8,60) 2 2
1121/ 1+u\x\ 233@‘ ax; ‘dx__/RNMu(X)‘VV&S(I)‘ e

Thus we obtain
L(t;10) — (8—4N) [Vve 5(t)|17. (u—0)VreR. (3.9)

Integrating by parts we see the convergence of I, :

oy 2 .. 4x a
btu) = /RN ves(t)] dlv((l PR |x|2+5> dx (3.10)

4aN 8alx|?
— - 2 — — .
/RN ves(t)] <|x|2+5 (‘x‘2+5)2>dx (L—0), r€R

Finally we consider I3. In a way similar to I, we calculate

4x - Vyike(x,y) 2 2
M X)ke( t, t, dxdy.
= oo o [P ke9) 4 TS e 0,0 e 1) Py

Thus applying (2.19) we obtain for r € R

L(t:p) — —/RN[4Nks(x,y)+4/5é(x,y)}Ivs,a(t,X)Izlvs,a(t,y)\zdxdy (3.11)
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as 4 — 0. Therefore we see that for r € R
L)+ L) + Lt p) + B p) (3.12)

eal)® i ves) (1 —0)

= 8Vve sl + 8 555 |,

= Ve,s(ve,s(1))-
Step 2. Next we show the uniform boundedness:
[Li(t; )| < Cj(e, luollgr) V6>0,Vu>0,VreR. (3.13)
To end this first we confirm
[Vves()ll;2 < C(e, luoll 1) VieR, VS >0. (3.14)

By using the conservation laws (3.3) we calculate

‘ 86
¥reslfs e [, TS s

2
= || Vuo| %, —|—a/RN |x||'§°+ 5 A +2(Ge(uo) = Ge(ve (1)) (3.15)

It follows from (2.13) with ke € L7 (L) and (3.3) that

|Ge (ve,s (1)) < 4lkell e lluolly2-

Applying (2.4) to (3.15) we obtain

da_ ) day 2 4
(1= ) I9ves @z < (1 Gy =g Vool + 16 kel ol

This is nothing but (3.14).
Now we evaluate I; (j=0,1,2,3). We divide Iy into Io; + Ioz + lo3, where

Iov(1: 1) = Re /]R My (3)7 5 (0)[ Ave (1)) d,
loo(1: 1) := /RN%%,&U)P‘M
(1) = [ Mu(0lve s (1) Ke(ve.s 1)) .

For Iy, integrating by parts we see

/RN My (x)ve 5()[—Ave 5 (1)] dx

:/RN[VM“()C) Ve 5 (1) Vve () + My ()| Vve 5 (1)) dx.
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We see that VM, (x)| < 16(N +2) by a simple calculation. Thus we obtain
o (63 12)] < 16(N+2) [ve (1)1 21| Ve 5 (1) 12 + 4N [ Vv 0) -
For Iy, and Iy3, we see

llves®OF ,_ 16Nl

MO E s S -

2
2 ”Vvé‘,ﬁ(t)HLZa

oa(r:10)] < /

RN
() < [ [ M09 e () e 1, 2) e )P sy
AN |1k |1 [1ve.s (1)1
Therefore we obtain the uniform boundedness of Ij:

16|a|

[o(t; )] <N{4+m

]C(& ol 1) + 16(N +2) [Juol 2 C (e, lluo 1)
4N [lke ||z luollj> - V7 €R. (3.16)

For I}, we can calculate

8|Vves(t)|?
1 (¢; < —_— 3.17
|1( ”)| /]RN (1+,U‘.X‘2)2 ( )

32,LL|x-Vv£’5(t)\2 )
L et [ IMa)] Vv g0) P
<4(N+10)C(e, |luol|)? VreR.
For I, using (2.3) and (3.14) we have
|a|My (x) [ve 5 (1) 2 / 8lal |x|* |ve 5 (1)

b (t; < . . d 3.18
1)) /RN P+ 5 t ey TxphPR(eR o G1®

_ 16(N+2)|d]

= (N—2)? C(e, ||u0||[-11)2 VteR.

For I5, note that |x- V, kg (x,y)| can be evaluated as ||x~kag||L;o(L;) < Cr(e). Hence
we see that
(1 1)| < 4N [[ke |l 21 + Ce(®)] uollf> Vi ER. (3.19)

Since (3.16)—(3.19) are proved, we obtain (3.13),

Step 3. Combining (3.13) and (3.12) into (3.7), Remark 2.1 ensures the virial identity
for HE)£° (3.5) when uo € H2(RY) N D(x).

Step 4. We remark that Step 2 yields

[Ves(ves(t))] < 5(8, lluoll1) YeeR, VS >0. (3.20)
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Step 5. Let up € H' (RN)ND(x). Then there exists {uoy }m C H*(RY)ND(x) such that
tom — o (m — =) in H'(RV)ND(x). Denote v? 5 as a global weak solution to (HE) ,

with initial value V' 5(0) = ugy. Since (HE)i“s verifies the continuous dependence
of initial value (see [3, Theorem 3.3.1]), we see that V' 5(¢) — v 5(t) (m — o) in
=T, TEHI®Y)). Thus Ve 5(25(1)) — Ve s(ves()) (m — o) for 1 € [T,T].
Also (3.20) ensures that |V8’5(v’8”75(t))\ < Cfort€[-T,T] and m € N. Finally, Lemma
2.3 implies that xv'5(r) — xve 5(t) (m — eo) strongly in L*(RY)" for every 7 € R.
Thus Remark 2.1 asserts that (3.5) holds even if ug € H'(RV)ND(x). O

Stage 3 of proof (3.1). First note that || Vv, 5(¢)|;2 is uniformly bounded in 7 € R and
0 >0 [see (3.14)]. Next we prove that ||v] s(¢)||5-1 is uniformly bounded in r € R
and 6 > 0. By using (2.4) and (G2) in [10, Lemma 3.1] we have

4la
¥ 501 < (1 s Y vea Ol + lellzzs e 01

Applying (3.14) and (3.3), we obtain
HV‘;E(Z)HH—I <C'(g, |Juollyn) VtER, VS >0. (3.21)
Since (3.14) and (3.21) are verified, [3, Proposition 1.1.2] yields that for every
T > 0 there exist {§;}; C (0,00) and ve € Cy([~T,T];H'(RY)) such that §; — 0
(j — o) and
ves, (1) = ve(t) (j— =) weakly in H'(RY) V1 e [-T,T], (3.22)
Ve, — Ve (J— o) weakly” in L~(~T,T;H '(RY)). (3.23)
In particular, we see from (2.5) and (3.22) that for every ¢t € [T, T]
a
A 7) ( (A ) i 500 Kly in H~1(RY). (3.24
(~8+ g e 0= (A% 1 re) =) weakly infi ! (RY). (324
Combining (3.24) and (3.23) with (HE)E“s , we see that there exists f such that
2\ st a
Vg’gj Kg(|V£75j| ) = zv&‘;j — (—A+ W) Vg,ﬁj
— ivh — Pyve =1 f (j — o0) weakly* in L>(~T,T;H ' (RY)).
(G5) in [10, Lemma 3.1] asserts that

Im/ HlHldS—O VIG[ T7T].

Now ve satisfies iv) = P,ve + f in L°(—T,T;H~'(R")). Thus we obtain the conser-
vation law of charge for v¢. Combining this with (3.3) we have

[Ive(@)llr2 = lluollz2 = [Ive.s; (D)2 Vi €[-T,T]. (3.25)



Differ. Equ. Appl. 6 (2014), 309-333. 325

Hence we see from (3.22) and (3.25) that vg 5, (1) — ve(t) (j — o) strongly in L*(R")
for t € [T, T]. Therefore (G5) in [10, Lemma 3.1] ensures that f = v K¢ (|ve|?) and
ve satisfies

ive = Pyve +veKe(|ve|?) inL™(—T,T;H '(RV)).

ve(0) = up € HY(RY).
On the other hand, Theorem 1.1 implies that there exists a unique weak solution to

(HE)Z. Thus the uniqueness for (HE)Z implies ve = ue. Moreover, u, satisfies the
conservation laws:

lue(®)ll 2 = lluoll 2, Ee(ue(r)) = Ee(ug) Vit €ER, (3.26)
where the energy of (HE)? is defined as

1 ®

&ww=;ww;+|h—

We have proved that ve 5, (1) — ue(t) (j — o) strongly in L*(RN) fort € [~T,T].
More precisely, we see that

+Ge(@), @cH'(RY). (3.27)

ve s, (t) — ug(t) (j— o) strongly in H'(RY), tec[-T,T]. (3.28)

In fact, it follows from (3.3), (3.26) and (2.13),

1Vves ) +a jm’ = 2B 5(ve 5(0)) ~ 2Gelve 5(0)
— 2E(up) —2Ge(ue(t))
_ ug(t) |2 .
= IVuele) 2 +al |5 G =)

Lemma 2.2 yields (3.28). On the other hand, [3, Lemma 6.5.2] implies

e (1) 22 — o] 2 =4Im/(: /RNxm-vug(s)dxds.
Thus Lemma 2.3 with (3.14) and (3.28) ensures
xve 5(t) — xug(t) (j — oo) strongly in L*(RY), 1€ [-T,T].
Now we can derive the virial identity for (HE)Z by letting & — 0 of (3.5):
4>
Tl ()7 = Ve(ue(®), 1€R, (3.29)
where V; is defined for ¢ € H'(RV)

Ve(@) :=8|Vollj2 +8a| || | —4Ge(9). (3.30)
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Since ke € L7(LY), (2.13) implies that
|Ge (Ve o, (1)) = Ge(ue (1)) < 4 llkell o 1) ol 1ve 5, (1) = e (1) 2 (3.31)
—0 (j—oe)Vre[-T,T].
On the other hand, (3.28) implies that for all t € [-T,T]

5,(1)
|x|2+5

(t) 2

[

1Vve 5, (1)lI72 +a

— || Vue(t) |72 +a ‘ (j— o). (3.32)

Hence (3.31) and (3.32) yield that Ve 5,(ve 5,(1)) — Ve (ue(?)) (j — o) for t € [-T,T].
Moreover, applying (3.14) and (2.4) we have

4a
(N=2)?

4a
(N-2)

Ve, (e, (1) < 8(1+ ) 19ve 5,002 + 4 1Rell o 05 e,y ()12

<8(1+ 2)c<s7||uo||H1>+4Hkg||L;«(L;e>Huouzz.

Therefore Remark 2.1 ensures (3.29).
Stage 4 of proof (3.1). First we show uz — u (¢ — 0).

LEMMA 3.2. Let u be a local weak solution to (HE), in (—T,T>). Then ug — u
(€ — 0) strongly in L=(—Ty, Toy; H' (RY)).

Proof. Step 1. First we show the uniform boundedness of ue :
lue@)|lgr <My Ve>0Nre|-T,T]. (3.33)

Now we denote

[0) 2.\1/2
Iolla = (ol + 1Vl +a| T L) = 10+2) Polla, g e ®Y)

and set M := 2|{ugl| ;5. Note that || - || 5 is equivalent to || - || [see (2.4) with § =0].
Define
Te i= sup{|Jue(?)|| g <M, t € [-T,T]}.
7>0

If 1o = oo, then we have proved the uniform boundedness. Thus we assume T, < oo.
Since ue € C(R;H'(RY)), 1, satisfies

[ue(Te) ||l 7 = M or [|ug(—7e)|| 7 = M. (3.34)
It follows from (3.26) and (2.13) that for ¢ € [— T, T¢]
e ()% = [luol| % = 2[Ge (o) — Ge(ue(1))] (3.35)

<2 M ||k — kR”Lﬁ L) +2RM? ||ug — ue (1) | -
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On the other hand, we see from (G2) in [10, Lemma 3.1] that

loeg (0| 7o < N1 Patte (1) - + llae (1) Ke ([ue (0)]*) | -
< e (2)]| 77+ Ro llue ()2 +C||k—kRolng(Lg)Hue(t)II%
<M+ Ry Juollz2 +C k= kol . 1) M>=:C(M) Vi€ [T,
where |- || 5. == |(1+P,)~ /2|2 note that || - || - is equivalentto [|-|[5-1. Applying
[3, Lemma 3.3.6] we obtain
ue(t) — ue(s) |2 < V2C(M) |t — sV, 1,5 € [, 7). (3.36)

Combining (3.36) with setting s = 0 into (3.35), we see that

luee (1) I — lluoll; < 2¢*M* ||k — ke +2V2RMPC(M)r|'.

14055
Letting t = +1. and applying (3.34) we have

)
o MM kel

T > > 0;
¢ 8V2RM3C(M)

note that ||k — kg|| ey~ 0 (R — <o) implies the positivity. Thus we obtain (3.33) by

putting
3 —8c*M? ||k — kRHLﬁ )
Ty = > 0.

8v2RMC (M)

Step 2. Next we show that ue — u (¢ — 0) strongly in L=(—T1,T>;L*>(RY)) and in
L' (=T, T5; L% (RN)), where r(y) := 4y/[N(y—1)]. Note that u and u, satisfy the
following integral equations:

e = ¢ g =i [ ¢ IR (uls) P s,

ue(r) = e g — i / eI g (5)Ke e (5) )] d:

0

We divide u(r) —ue(t) into Jy(1;€) +Ja2(t5€) +J3(1;€), where

Ji(rse) = —i /Ote“'“‘”f’“ [u(s)K (Ju(s)|*) — Ke(|u(s) )] ds,
"'/(: e P u(s) — e (5)Ke (|Ju(s) ) ds,
J3(r:€) i= —i /0 e Py (5)Ke (Ju(s)|* — [ue(s)|?)] ds.

D(t;€):
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For simply we denote

= [ e O)ds i) = Il )
For J; applying the Strichartz estimates (2.2) we have

||JIHL,T(LP) <3 Co r |[uKT kg — (kR)E}(W‘z)”LI (12)
+ Crpr K[ (k— k) — (ke — (kg)e)](|ue|? M,
Applying (2.14), (2.15) and the dominated convergence theorem, we see that
1]z oy — 0 (€ —0). (3.37)
For I, applying the Strichartz estimates (2.2) we have
121l 5z < Cooe 11 (10 — ) K[(kr)e] () | 2
+ Coy) e 1 — ue) Klke — (kr)e }(Iu\ M
< 2CoRT H”Hp 12) [l — MSHLN (L?)

+ G (7)1 [k~ Rl L) 2 g2y e = well 2

In a way similar to J>, we can evaluate J3 as follows:
||J3HL,T(LP) < Coor [|ue K[ (kg)e] (|ul* — |”e|2)||L} (1)
+Criyy o llute Klke — (kr)e] (|ua]* — [ue|? )II e
S 2CRT Hu8||L°° (L?) ([foe HL"" @)t ||u8||L°° 12) )Hu _MSHL;"’(LZ)

G @)D kel e
% (g2 + ez ion ) e =l -
Set (7,p) = (0,2) and (r(y),27). Now we put

M := maX{H"‘O”LZ: HuHLr(Y)(ij;LZY) Sl(.lp 8 ”ué‘HU T,T;LZV)} < oo,
£€(0

Case 1 (o' 4+ B! <4/N) Take Ty € (0,T) such that 6(Ce o +C.., () ) RM*Ty < 1/2
and 3(Cy(y) .0 + Cry)rip) Ik — Kl 5 M2(2T0)1 2/r(1) < 1/2. Then we obtain

([t — | 1o (T, Toi2?1) T Ry )
< 2Wille (-7 m02) + 2l 0 (- 2y (3-38)

It follows from (3.37) that
ue —u (€ — 0) strongly in L™ (—Ty, To: L>(RM)) N L' (= Ty, To; L (RV)). (3.39)
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Case 2 (a~ '+ B~ =4/N). Fix R > 0 so that

3(Creo + Ca2) |k — kgl M* < 1)2.

)

Next take Ty € (0,7) such that 6(Ce o + C. ¢ ))RM2T0 1/2. Then we have (3.39).

Extending the interval step by step, we conclude that us — u (€ — 0) strongly in
L= (=Ty, To; L*(RV)) and in L' (=T, T; LY (RV)).

Step 3. Assume that ug /> u (€ — 0) in C(I;H'(R")). Then there exist & > 0 and
bounded sequences {&;}m C (0,1) and {t,,},» C I such that

ey, (tm) — ultm) || g1 > €0, meN.
We may also assume that €, — 0 and 1,, — 19 € I (m — o). Since u € C(I, H'(RV)),

we have [[u(tm) —u(to) || g1 mvy < €0/2 for sufficiently large m. Therefore we obtain

&
it 1) — (o) 1 > .

On the other hand, it follows from Step 2 that |jug,, () — u(tm)| 2 — 0 (m — o).
Since u € C(1;L*(R")), we have |lu(ty) —u(to)||;2 — 0 (m — o). Thus we obtain
||ug,, (tm) — u(to)||;2 — O (m — o). This means that ug,, (f,) — u(ty) (m — o) strongly
in L2(RN) but ue,, () 7 u(to) (m — o) strongly in H'(RV).

To derive a contradiction it remains to show that

ue, (tm) — u(to) (m — o)  strongly in H'(RM). (3.40)

Now using the functions G, G¢ [see (2.12) and (2.11)] and

@ € H'(RY),

1 2 al e
0(0) = 31V liz(an * 5| 7 2 ey

we can write as

Ee(9) = 0(9)+Ge(9), E(p)=0(p)+G(p), ¢ecH'(RY). (3.41)
Now we show
O(ue,, (tm)) — Q(u(to)) (m— o). (3.42)
To end this, first we see from the conservation laws (3.26) and (1.4) that

Ey,, (g, (tn)) = Ee,, (0) — E(uo) = E(u(to))  (m — o). (3.43)

Next we prove
Ge, (ute,, (tm)) — G(u(to))  (m — o). (3.44)

Applying (2.13) we calculate

|G, (ue, (tm)) — G (u(to))|
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< |G, (ug,, (tm)) — G, (u(to))| + | Ge,, (u(t0)) — G(u(to))|
<Mtk - krll g L) + RM ||ug,, (1) — u(t0) || 2 + | Ge,, (u(to)) — G(u(10)))|
— M|k~ Kell p gy (m— o).

Since R > 0 is arbitrary, (K2) implies (3.44). Combining (3.43) and (3.44) into (3.41)
we obtain (3.42).

On the other hand, by the boundedness of ||ug, ()| there exist v € H'(RV)
and a weak convergent subsequence {ugm(j) (tm(j))}; such that e, i (tm(j)) =V (j— )

weakly in H'(RY). Since ue,; (1)) — u(to) (j— o) strongly in L*(R"), we obtain
e, ; (tm(j)) — u(to) (j — o) weakly in H'(R"). Therefore from the weak conver-

gencein H'(R") of {ugm(j) (tm(j)) }j to u(to) and the convergence of the corresponding
norms we conclude (3.40), a contradiction. [

Now we are the final position to prove (3.1). First note that Lemma 2.3 yields
xue(t) — xu(t) strongly in L?>(RV)N . Next we show

Ve(ue(t)) = V(u(t)) (e—0),te[-T,T]. (3.45)
Since ug — u (& — 0) uniformly in C([-T, T];HI(RN)), we see that

ue(t) |2

x|l = [[Vule HL2+
On the other hand, (2.25) and (2.23) yield that

Ge (e (1)) = [Ge (ue (1)) — Ge(u(t))] + [Ge (u(t)) — Gu(1))] + Glu(r))
— Gu(t)) (e—0),1e[-T,T].

IVue (1)|[72 +a

(e—0),re[-T.T].

Thus we obtain (3.45).
Next we show the uniform boundedness of V¢ (i) . It follows from (2.4) and (3.33)
that

2 4
<8<1+ 4 )Mg Vie[-T,T).
12

81 e 1) + 8“7 N-27

On the other hand, (2.25) implies that
4|Ge (ue(t))| < 4C(KIME Vit € [T, T).

Thus we have |Vg(ug(7))| < C for t € [-T,T] and € > 0. Therefore Remark 2.1 asserts
(3.1).

4. Proof of Theorem 1.2

Proof. Assume that u is a global weak solution to (HE),. Applying (3.1) and
(1.4) we see that

2 ~
Sl = 1680) ~4 [ [ e+ Kl Plutr )P day.
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Define () := [[xu()|/7,. Thus (K4) implies that ¢” (1) < 16 E(uo) . Integrating twice
we have

(1) < 9(0)+ ' (0)1 +8E (uo)1* =: w(1).
Since E(up) < 0, there exists #; >0 (j = 1,2) such that y(—#;) =0 = y/(2). Thus
o(—t) <0 and @(;) < 0. Since ¢ is continuous in 7 and @(0) > 0, there exist
Ty, T, > 0 such that ¢(—T;) =0 = ¢(T»). Applying the Holder inequality and inte-
grating by parts for [xv-Vvdx, we have

2
V172 < yIlzIWle vve H'(RY)ND(x).

Let v:=u(r). Then (1.4) implies that

N [[uoll7,

IVu)ll2 2 55—~
B 2 ()| 2
Letting t — —T11+0 or t — T, — 0, we see that

li Vu(t == 1 Vu(t .
Jim [Vu(@)llp == tim [Vu(o)]lz

This is a contradiction (see also [3, Remark 3.1.6 (i1)]). [
5. Concluding remarks

In a way similar to Sections 3 and 4, we can show the blowup in finite time for the
nonlinear Schrédinger equations with inverse-square potentials:

ou a . N
ie = (—A+ W)u—kf(u) inR xRY, (NLS),
1(0,x) = up(x) in RV,

where f: C — C is power type nonlinearities.

(N1) f(0) =0 and there exist p € [1,(N+2)/(N—2)) and K > 0 such that
[f() = FO) S K+ [P~ + P Du—v| Vu,veC;

(N2) f(x) €R (x>0)and f(e'z7) =€ f(z) (z€C, 0 €R);

(N3) There exist g € [1,14+4/N) and L;,L, > 0 such that

F(x) ::/ f(s)ds > —Lix® — Loyx?™' Vx> 0;
0

(N4) 2(N+2)F(x) —Nxf(x) >0 for x > 0.

In Okazawa-Suzuki-Yokota[9], unique and global existence of weak solutions to
(NLS), is verified under the assumption (N1)—-(N3). Note that unique and local exis-
tence of weak solutions to (NLS), is assumed under (N1) and (N2).
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THEOREM 5.1. ([9, Theorem 5.11) Let N > 3 and a > —(N —2)?/4. Assume
that f satisfies (N1)=(N3). Then for every ug € H'(RN) there exists a unique global
weak solution u to (NLS),,. Moreover, u belongs to C(R;H'(RV))NC!(R;H~'(RM))
and satisfies

(@)l 2 = lluoll 2, E(u(t)) = E(uo) V1€R,
where E is the energy defined as

~ 1 0]
E(9):=5IVol}: +3 M—

The blowup results in finite time for (NLS),, is as follows:

+ [ Fle@hdy vee H'(RY).

THEOREM 5.2. Let N >3 and a > —(N —2)*/4. Assume that k satisfies (N1),
(N2) and (N4). Then for every ug € H' (RN) with |x|ug € L>(RN) and E(ug) < O there
exist Ty, T > 0 such that u € C(I;H'(RY)NCY(I;H ' (RY)) is a (unique) local
weak solution to (NLS),, for every open interval I with 0 € I and I C (—T;,T>) and
u satisfies
tim V()2 === tim [[Vu()] .

11—

that is, the weak solution blows up in finite time.
To derive the virial identity for (NLS), we consider

.3"8,6 .
l ot = —Avg ||2+5+Pe f(pe*ves) inR xRV,

Ve s5(0,x) = uo( ) inRV.

(5.1)

In a way similar to Section 3, we obtain

2 ~
O beute) 2 = V (u(),

where

V(p):=8|Ve|2 +8al||—

2_/RN[SNF(Iq)I)—4Nf(\(P\)|<Pde

REMARK 5.1. Let k(x,y) := W(x —y). Then (K4) is rewritten as follows: x-
VW € L=(RN) 4+ L'VN/4)(RV) and W (x) 4 (1/2)x- V. W (x) > 0; see also [3, Theorem
6.5.4].
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