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BLOWUP OF NONLINEAR SCHRÖDINGER

EQUATIONS WITH INVERSE–SQUARE POTENTIALS

TOSHIYUKI SUZUKI

(Communicated by Pavel I. Naumkin)

Abstract. Blowup in finite time for nonlinear Schrödinger equations (NLS) with inverse-square
potential a|x|−2 and nonlocal nonlinearities described by integral operators (HE) a is consid-
ered. The local and global existence for (HE) a is studied in Suzuki [10]. To show the blowup
for (NLS) the virial identity is important role. But the identity for (HE) a has not proved in
consequence of the strongly singular potential. Thus we give a strict proof of the virial identity
for (HE) a .

1. Introduction and main results

In this paper we consider the blowup in finite time of weak solutions to the follow-
ing Hartree type equations (nonlinear Schrödinger equations with nonlocal nonlineari-
ties) with inverse-square potentials⎧⎨⎩i

∂u
∂ t

=
(
−Δ +

a
|x|2

)
u+uK(|u|2) in R×RN,

u(0,x) = u0(x) in RN ,
(HE)a

where i =
√−1, N � 3, a > −(N−2)2/4. Here the operator K is defined as

K f (x) = K( f )(x) :=
∫

RN
k(x,y) f (y)dy, (1.1)

where k ∈ L1
loc(R

N ×RN) satisfies several conditions. One of the features of (HE)a

is the presence of the strongly singular potential a|x|−2 . In fact, −Δ and a|x|−2 are
the same scaling. Moreover, if N = 1, then the potential a|x|−2 is appeared in the
Calogero-Moser dynamical system as many-body problem. Thus the inverse-square
potential is worth observing in both mathematics and quantum physics. The other is
the nonlocal nonlinearity described by the integral operator (1.1). The typical examples
of the problem are so-called Hartree equations:⎧⎨⎩i

∂u
∂ t

= −Δu+ λ u(|x|−1 ∗ |u|2) in R×RN,

u(0,x) = u0(x) in RN ,
(1.2)
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where |x|−1 ∗ |u|2 is the convolution of |x|−1 and |u|2 . In fact, (1.2) is the special case
of (HE)a with a = 0 and k(x,y) = λ |x− y|−1 (λ ∈ R). In quantum physics, (1.2) is
considered very well (see Chadam -Glassey [4] and Lieb -Simon [7]).

In this paper the (local) weak solution is called in the following sense:

DEFINITION 1.1. Given an open interval I ⊂ R containing 0, a function u is
said to be a local weak solution to (HE)a on I if u belongs to L∞(I;H1(RN)) ∩
W 1,∞(I;H−1(RN)) and satisfies (HE)a in the sense of L∞(I;H−1(RN)) . If I coincides
with R , then the local weak solution is said to be a global weak solution to (HE)a .

In Suzuki [10] he showed the unique existence of global weak solution to (HE)a

(see Theorem 1.1). In fact, he solved under the following three conditions:

(K1) k is a symmetric real-valued function, that is, k(x,y) = k(y,x) ∈ R a.a. x, y∈ RN ;

(K2) k∈ L∞
x (L∞

y )+Lβ
x (Lα

y ) for some α, β ∈ [1,∞] such that α � β , α−1+β−1 � 4/N ;

(K3) k− := −min{k, 0} ∈ L∞
x (L∞

y )+Lβ̃
x (Lα̃

y ) for some α̃ , β̃ ∈ [1,∞] such that α̃ � β̃ ,

α̃−1 + β̃−1 � 2/N .

Here the class Lβ
x (Lα

y ) is the family of k : R
N ×R

N → R such that

‖k‖
Lβ

x (Lα
y )

:=
(∫

RN

(∫
RN

|k(x,y)|α dy
)β/α

dx
)1/β

< ∞. (1.3)

THEOREM 1.1. ([10, Theorem 1.1]) Let N � 3 and a > −(N − 2)2/4 . Assume
that k satisfies (K1)–(K3). Then for every u0 ∈ H1(RN) there exists a unique global
weak solution u to (HE)a . Moreover, u belongs to C(R;H1(RN))∩C1(R;H−1(RN))
and satisfies conservation laws

‖u(t)‖L2 = ‖u0‖L2 , E(u(t)) = E(u0) ∀ t ∈ R, (1.4)

where the “energy” is defined as

E(ϕ) :=
1
2
‖∇ϕ‖2

L2 +
a
2

∥∥∥ ϕ
|x|

∥∥∥2

L2

+
1
4

∫
RN

∫
RN

k(x,y)|ϕ(x)|2|ϕ(y)|2 dxdy, ϕ ∈ H1(RN). (1.5)

Here note that to show the local existence of weak solutions to (HE)a (K1) and
(K2) are assumed; (K3) is used only for global existence. (K3) implies that the energy
functional E is almost positive. Thus we are interested in the case where (K3) is not
satisfied and E(u0) is negative.

Blowup in finite time of weak solutions to nonlinear Schrödinger equations (NLS)
is important. In particular, the finite blowup for (NLS) is related to the instability of
standing waves (see Berestycki-Cazenave [1] and Weinstein [11]). First Glassey [6]
proved the blowup for (NLS) with initial value u0 ∈ H1(RN) with |x|u0 ∈ L2(RN)
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over 30 years ago. Later, Ogawa-Tsutsumi [8] proved the blowup for (NLS) without
|x|u0 ∈ L2(RN) but u0 being radial. The key of showing the finite blowup in [6] is the
virial identity. For example, if u is a local weak solution to⎧⎨⎩i

∂u
∂ t

= −Δu+ λ |u|p−1u in R×RN,

u(0,x) = u0(x) in RN ,
(NLS)0

then u satisfies the virial identity for (NLS)0 :

d2

dt2
‖xu(t)‖2

L2 = 8‖∇u(t)‖2
L2 +

4N(p−1)λ
p+1

‖u(t)‖p+1
Lp+1 .

On the one hand, formal calculation ensures the virial identity for (HE)a :

d2

dt2
‖xu(t)‖2

L2 = 8‖∇u(t)‖2
L2 +8a

∥∥∥u(t)
|x|

∥∥∥2

L2

−4
∫

RN

∫
RN

x · (∇xk)(x,y)|u(t,x)|2|u(t,y)|2 dxdy.

But the justification seems not to be simple and hence the proof has not been carried out.
One of the typical reasons is the strong singularity of the potential a|x|−2 . If N � 5,
then we can use the Rellich inequality:∥∥∥ ϕ

|x|2
∥∥∥

L2
� 4

N(N −4)
‖Δϕ‖L2 ∀ ϕ ∈ H2(RN).

This implies that if u∈C([−T,T ];H2(RN)) is a local weak solution to (HE)a , then we
see that u∈C1([−T,T ];L2(RN)) . But the Rellich inequality does not hold if N = 3 and
N = 4. Moreover, if k(x,y) =U(x)U(y) (U ∈ LN/2(RN)) with N = 3 and N = 4, then
K(|u|2)u 
∈ L2(RN) for u ∈ H2(RN) in general. Thus we can not construct a (strong)
solution u ∈C([−T,T ];H2(RN))∩C1([−T,T ];L2(RN)) to (HE)a .

Our purpose of this paper is the blowup in finite time for weak solutions to (HE)a

by applying the virial identity (see Section 3). To show this we add the following
condition:

(K4) k̃ ∈ L∞
y (L∞

x )+Lβ̃
y (Lα̃

x ) for some α̃ , β̃ ∈ [1,∞] such that α̃ � β̃ , α̃−1 + β̃−1 � 4/N
and

k(x,y)+ k̃(x,y) � 0 a.a. x, y ∈ R
N , (1.6)

where k̃ is defined as

k̃(x,y) :=
1
2
[x ·∇xk(x,y)+ y ·∇yk(x,y)].

Then we have the following blowup result:
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THEOREM 1.2. Let N � 3 and a > −(N −2)2/4 . Assume that k satisfies (K1),
(K2) and (K4). Then for every u0 ∈H1(RN) with |x|u0 ∈ L2(RN) and E(u0) < 0 there
exist T1, T2 > 0 such that u ∈ C( I ;H1(RN))∩C1( I ;H−1(RN)) is a (unique) local
weak solution to (HE)a for every open interval I with 0 ∈ I and I ⊂ (−T1,T2) and u
satisfies

lim
t→−T1+0

‖∇u(t)‖L2 = ∞ = lim
t→T2−0

‖∇u(t)‖L2 ,

that is, the weak solution blows up in finite time.

Here we remark the conditions (K3) and (K4). Let k(x,y) := |x−y|−1 . Then (K3)
is satisfied. Moreover, k̃(x,y) = (−1/2)k(x,y) . Thus we see that k(x,y) + k̃(x,y) =
(1/2)k(x,y) � 0 and hence k satisfies also (K4). In this case the energy E(ϕ) is not
negative for any ϕ ∈ H1(RN) . Therefore the negativity of the energy functional with
(K4) concerns the blowup in finite time.

This paper is divided into five sections. In Section 2 we give some preliminary
results. Notations are prepared in Section 2.1. Section 2.2 is devoted to the linear
operator −Δ +a|x|−2 and related results. Analysis of the integral operator with kernel

k in the class Lβ
x (Lα

y ) and the approximation are discussed in Sections 2.3. Section 3
is devoted to the justification of the virial identity. Theorem 1.2 is proved in Section 4.
Finally, in Section 5 some remarks to our result are in order.

2. Notations and preliminaries

2.1. Notations

First Lp(RN) is the usual Lebesgue space with norm

‖u‖Lp :=
(∫

RN
|u(x)|p dx

)1/p
, u ∈ Lp(RN) (1 � p < ∞),

‖u‖L∞ := esssup |u(x)|, u ∈ L∞(RN).

Let p∈ [1,∞] . Then p ′ ∈ [1,∞] denotes the Hölder conjugate p ′ := p/(p−1) . H1(RN)
is the usual L2 -type Sobolev space with the norm

‖u‖H1 := (‖u‖2
L2 +‖∇u‖2

L2)1/2, u ∈ H1(RN).

On the other hand, H−1(RN) is the dual of H1(RN) . Note that we have a usual triplet

H1(RN) ⊂ L2(RN) ⊂ H−1(RN),

where the inclusion is continuous and dense. In particular, we have

H1(RN) ⊂ Lq(RN), Lq ′
(RN) ⊂ H−1(RN), 2 � q � 2N

N−2
, N � 3.

We use another L2 -type space. D(x) is defined as

D(x) := {u ∈ L2(RN); |x|u ∈ L2(RN)}.
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In fact, D(x) is Hilbert space with the norm ‖u‖D(x) := ‖(1+ |x|2)1/2u‖L2 , u ∈ D(x) .
Let I ⊂ R be an open interval and Y a Banach space. Then C( I ;Y ) is a family of

the (strongly) continuous Y -valued function on I . On the other hand, the vector-valued
Lebesgue space Lp(I;Y ) is equipped with norm

‖u‖Lp(I;Y ) :=
∥∥‖u(·)‖Y

∥∥
Lp(I) < ∞.

Moreover the vector -valued Sobolev space W 1,p(I;Y ) is equipped with norm

‖u‖W1,p(I;Y ) := ‖u‖Lp(I;Y ) +‖u ′‖Lp(I;Y ) < ∞.

Here u ′ denotes the weak derivative of u respect to time variable t ∈ I . Then it is
wellknown that W 1,p(I;Y ) ⊂C( I ;Y ) for 1 < p � ∞ .

To simplify the notation, we write

Pa := −Δ +a|x|−2, a > −(N−2)2/4. (2.1)

Also we denote a∨b := max{a,b} and a∧b := min{a,b} .

2.2. The properties of the operator Pa and some closedness lemmas

First we note that Pa is nonnegative and selfadjoint in H−1(RN) (see [9, Theorem
5.2]). Thus we can consider the Schrödinger group {e−itPa} in H−1(RN) . We use the
Strichartz estimates for {e−itPa} established by Burq, Planchon, Stalker and Tahvildar-
Zadeh [2] (see also [10, Lemma 2.2]):

LEMMA 2.1. Let N � 3 and (p,q) be a Schrödinger admissible pair, i.e.,

2
p

+
N
q

=
N
2

, p, q � 2.

Assume that (p j,q j) ( j = 1 , 2) are Schrödinger admissible pairs. Then∥∥∥∫ t

0
e−i(t−s)PaΦ(s,x)ds

∥∥∥
Lp2 (R;Lq2 )

� Cp1,p2 ‖Φ‖
Lp ′1(R;Lq ′1 )

, (2.2)

Φ ∈ Lp ′
1(R;Lq ′

1(RN)).

It follows from the Hardy inequality∥∥∥ ϕ
|x|

∥∥∥
L2

� 2
N−2

‖∇ϕ‖L2 , ∀ ϕ ∈ H1(RN), N � 3, (2.3)

that for a > −(N−2)2/4, δ � 0 and ϕ ∈ H1(RN)(
1− 4a−

(N−2)2

)
‖∇ϕ‖2

L2 � ‖∇ϕ‖2
L2 +a

∫
RN

|ϕ |2
|x|2 + δ

dx (2.4)
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�
(
1+

4a+

(N−2)2

)
‖∇ϕ‖2

L2 .

Also we see that for every u ∈ H1(RN)(
−Δ +

a
|x|2 + δ

)
u →

(
−Δ +

a
|x|2

)
u (δ → 0) strongly in H−1(RN). (2.5)

Hence it is useful to consider the approximate operator −Δ +a(|x|2 + δ )−1 , δ > 0 of
Pa . We use the following closedness lemma.

LEMMA 2.2. Let N � 3 and {δn}n ⊂ (0,∞) be a sequence such that δn > δn+1

and δn → 0 (n → ∞) . Assume that a > −(N − 2)2/4 , {un}n ⊂ H1(RN) and u ∈
H1(RN) satisfy

un → u (n → ∞) weakly in H1(RN),

‖∇un‖2
L2 +a

∥∥∥ un√|x|2 + δn

∥∥∥2

L2
→‖∇u‖2

L2 +a
∥∥∥ u
|x|

∥∥∥2

L2
(n → ∞).

Then ∇un → ∇u (n → ∞) strongly in L2(RN)N .

Proof. It follows from (2.4) that(
1− 4a−

(N−2)2

)
‖∇(u−un)‖2

L2

� ‖∇(un−u)‖2
L2 +a

∥∥∥ un−u√
|x|2 + δn

∥∥∥2

L2

=
(
‖∇un‖2

L2 +a
∥∥∥ un√|x|2 + δn

∥∥∥2

L2

)
−

(
‖∇u‖2

L2 +a
∥∥∥ u√|x|2 + δn

∥∥∥2

L2

)
−2Re〈∇u,∇(un−u)〉L2 −2aRe

〈 u
|x|2 + δn

,un−u
〉

H−1,H1

= I1n− I2n−2ReI3n−2aReI4n.

We see from the assumption that I1n → ‖∇u‖2
L2 + a‖|x|−1u‖2

L2 (n → ∞) and I3n → 0

(n → ∞). The dominated convergence theorem implies that (|x|2 + δn)−1/2u → |x|−1u
(n → ∞) strongly in L2(RN) . Thus we have

I2n →‖∇u‖2
L2 +a

∥∥∥ u
|x|

∥∥∥2

L2
(n → ∞).

In a way similar to I2n , (2.5) and the weak convergence un to u in H1(RN) yield that
I4n → 0 (n → ∞). Therefore we obtain

I1n− I2n−2ReI3n−2aReI4n → 0 (n → ∞)

and hence we conclude ∇un → ∇u (n → ∞) strongly in L2(RN)N . �
Next lemma is used in the verification of the convergence xun(t) to xu(t) .
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LEMMA 2.3. Let u, un ∈C([−T,T ];H1(RN)) satisfy

‖xϕ(t)‖2
L2 = ‖xϕ(0)‖2

L2 +4Im
∫ t

0

∫
RN

ϕ(s,x)x ·∇ϕ(s,x)dxds. (2.6)

Assume that ‖un‖L∞(−T,T ;H1) � C for all n ∈ N , un(t) → u(t) (n → ∞) strongly in

H1(RN) for all t ∈ [−T,T ] and xun(0) → xu(0) (n → ∞) strongly in L2(RN)N . Then
xun(t) → xu(t) (n → ∞) strongly in L2(RN)N for all t ∈ [−T,T ] .

Proof. Step 1. Note that ‖xun(t)‖L2 is uniformly bounded in n ∈ N and t ∈
[−T,T ] . In fact, (2.6) implies

‖xϕ(t)‖2
L2 � ‖xϕ(0)‖2

L2 +2
∣∣∣∫ t

0
‖xϕ(s)‖2

L2 ds
∣∣∣+2

∣∣∣∫ t

0
‖∇ϕ(s)‖2

L2 ds
∣∣∣.

Hence the Gronwall inequality implies that

‖xϕ(t)‖2
L2 �

∣∣∣∫ t

0
e2|t−s|(‖xϕ(0)‖2

L2 +‖∇ϕ(s)‖2
L2)ds

∣∣∣.
It follows from the uniform boundedness of un in L∞(−T,T ;H1(RN)) that the uniform
boundedness of xun in L∞(−T,T ;L2(RN)N) .

Step 2. Since x is bounded and linear operator in L2(B(0,R)) , xun(t)→ xu(t) (n→ ∞)
strongly in L2(B(0,R))N for every R > 0 and t ∈ [−T,T ] .

Step 3. Next we show that xun(t) → xu(t) (n → ∞) weakly in L2(RN)N . First, let
ϕ ∈C∞

0 (RN)N . Then there exists R > 0 such that suppϕ ⊂ B(0,R) . Step 2 implies that

〈xun(t),ϕ〉L2 =
∫

B(0,R)
xun(t) ·ϕ dx →

∫
B(0,R)

xu(t) ·ϕ dx = 〈xu(t),ϕ〉L2 (n → ∞)

for all t ∈ [−T,T ] . In general case, fix v ∈ L2(RN)N . Then there exists {ϕm}m ∈
C∞

0 (RN)N such that ϕm → v (m → ∞) strongly in L2(RN)N .

|〈xun(t)− xu(t),v〉L2 |
� ‖xun(t)‖L2‖v−ϕm‖L2 + |〈xun(t)− xu(t),ϕm〉L2 |+‖xu(t)‖L2‖v−ϕm‖L2

→C‖v−ϕm‖L2 (n → ∞) ∀ t ∈ [−T,T ].

Here C is independent of n and m . Thus letting m → ∞ ensures xun(t) → xu(t)
(n → ∞) weakly in L2(RN)N for every t ∈ [−T,T ] .

Step 4. Since ∇un(t) → ∇u(t) (n → ∞) strongly in L2(RN)N and xun(t) → xu(t)
(n → ∞) weakly in L2(RN)N for t ∈ [−T,T ] , we see that for every t ∈ [−T,T ]∫

RN
xun(t) ·∇un(t)dx →

∫
RN

xu(t) ·∇u(t)dx (n → ∞).

On the other hand, ‖∇un(t)‖L2 and ‖xun(t)‖L2 are uniformly bounded in n ∈ N and
t ∈ [−T,T ] . Thus the dominated convergence theorem implies that ‖xun(t)‖2

L2 →
‖xu(t)‖2

L2 (n → ∞). Therefore we conclude that xun(t) → xu(t) (n → ∞) strongly
in L2(RN)N . �
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REMARK 2.1. Let u, un ∈C([−T,T ];H1(RN)) and f , fn ∈ L∞(−T,T ) . Assume
that

xun(t) → xu(t), ∇un(t) → ∇u(t) (n → ∞) strongly in L2(RN)N , t ∈ [−T,T ]
fn(t) → f (t) (n → ∞), | fn(t)| � M, t ∈ [−T,T ],

and un satisfies

‖xun(t)‖2
L2 = ‖xun(0)‖2

L2 +4t Im
∫

RN
xun(0) ·∇un(0)dx+

∫ t

0
(t − s) fn(s)ds.

Then the dominated convergence theorem asserts that

‖xu(t)‖2
L2 = ‖xu(0)‖2

L2 +4t Im
∫

RN
xu(0) ·∇u(0)dx+

∫ t

0
(t − s) f (s)ds.

2.3. Properties of kernels

In this section we consider the kernel k in the integral operator (1.1). First, we
define the kernel kR and the index γ as

kR(x,y) :=

⎧⎪⎨⎪⎩
k(x,y) |k(x,y)| � R,

R k(x,y) > R,

−R k(x,y) < −R,

(2.7)

γ :=
[
1− 1

2

( 1
α

+
1
β

)]−1 ∈
[
1,

N
N−2

]
. (2.8)

Note that kR ∈ L∞
x (L∞

y ) with ‖kR‖L∞
x (L∞

y ) � R and ‖k− kR‖Lβ
x (Lα

y )
→ 0 (R → ∞). Next

we consider the smooth approximation of k . Let ρε be the Friedrichs mollifier. Then
kε is defined

kε(x,y) :=
∫

RN

∫
RN

ρε(x− ξ )ρε(y−η)k(ξ ,η)dξdη . (2.9)

Define (kR)ε and (k−kR)ε in a way similar to (2.9). The Young inequality implies that

‖(kR)ε‖L∞
x (L∞

y ) � ‖kR‖L∞
x (L∞

y ) � R, (2.10)

‖(k− kR)ε‖L∞
x (L∞

y ) � ε−N(α−1+β−1)‖ρ1‖Lα′ ‖ρ1‖Lβ ′ ‖k− kR‖Lβ
x (Lα

y )
,

‖(k− kR)ε‖Lβ
x (Lα

y )
� ‖k− kR‖Lβ

x (Lα
y )

.

Thus we see that kε ∈ L∞
x (L∞

y ) .

Next we define two functionals Gε and G as for every ϕ ∈ H1(RN)

Gε(ϕ) :=
1
4

∫
RN

∫
RN

kε(x,y)|ϕ(x)|2|ϕ(y)|2 dxdy, (2.11)
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G(ϕ) :=
1
4

∫
RN

∫
RN

k(x,y)|ϕ(x)|2|ϕ(y)|2 dxdy. (2.12)

By virtue of [10, Lemma 3.1], (K1) and (K2) imply (G3):

|G(u)−G(v)|, |Gε(u)−Gε(v)| � c4M4 ‖k− kR‖Lβ
x (Lα

y )
+RM3‖u− v‖L2 (2.13)

for every u, v ∈ H1(RN) with ‖u‖H1 � M , ‖v‖H1 � M .

Next we show that kε is an approximation of k .

LEMMA 2.4. Let k satisfy (K1) and (K2). Then for every ϕ ∈ H1(RN)

ϕ(x)
∫

RN
(kR)ε(x,y)|ϕ(y)|2 dy → ϕ(x)

∫
RN

kR(x,y)|ϕ(y)|2 dy (2.14)

(ε → 0) strongly in L2(RN),

ϕ(x)
∫

RN
(k− kR)ε(x,y)|ϕ(y)|2 dy → ϕ(x)

∫
RN

(k− kR)(x,y)|ϕ(y)|2 dy (2.15)

(ε → 0) strongly in L2γ(RN).

Proof. Step 1. First we show that for every f ∈ L1(RN)∫
RN

(kR)ε (x,y) f (y)dy →
∫

RN
kR(x,y) f (y)dy (ε → 0) a.a. x ∈ R

N . (2.16)

It follows from (2.10) that |(kR)ε(x,y) f (y)| � R | f (y)| a.a. x,y ∈ RN . Thus we see
that (kR)ε(x,y) → kR(x,y) (ε → 0) a.a. x,y ∈ RN . Hence the dominated convergence
theorem ensures (2.16).

Step 2. Next we show that for every f ∈ Lγ (RN)∫
RN

(k− kR)ε (x,y) f (y)dy →
∫

RN
(k− kR)(x,y) f (y)dy (ε → 0) (2.17)

strongly in Lγ ′(RN) . To end this, we divide (k− kR)ε − (k− kR) into

ρε(x)∗ [ρε(y)∗ �R(x,y)− �R(x,y)]+ [ρε(x)∗ �R(x,y)− �R(x,y)],

where �R := k− kR . Since ρε(y)∗ �R(x, ·) → �R(x, ·) (ε → 0) strongly in Lα (RN) a.a.
x ∈ RN , we have

ρε(x)∗
∫

RN
[ρε(y)∗ �R(x,y)− �R(x,y)] f (y)dy → 0 (ε → 0) strongly in Lγ ′

(RN).

On the other hand, since
∫
RN �R(x,y) f (y)dy ∈ Lγ ′

(RN) , we obtain

ρε(x)∗
∫

RN
�R(x,y) f (y)dy →

∫
RN

�R(x,y) f (y)dy (ε → 0) strongly in Lγ ′
(RN).

Therefore we conclude (2.17).

Step 3. Fix ϕ ∈ H1(RN) . Then it follows from (2.16) and the dominated convergence
theorem that (2.14). On the other hand, (2.17) implies (2.15). �
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REMARK 2.2. Lemma 2.4 implies that if k satisfies (K1) and (K2), then

Gε(ϕ) → G(ϕ) (ε → 0), ϕ ∈ H1(RN). (2.18)

Finally, we consider x ·∇xk(x,y) and x ·∇xkε(x,y) . First note that (K1) implies∫
RN

∫
RN

x ·∇xk(x,y) f (x) f (y)dxdy =
∫

RN

∫
RN

y ·∇yk(x,y) f (x) f (y)dxdy.

Therefore we obtain∫
RN

∫
RN

x ·∇xk(x,y) f (x) f (y)dxdy =
∫

RN

∫
RN

k̃(x,y) f (x) f (y)dxdy. (2.19)

Now we define

k̃ε(x,y) :=
1
2
[x ·∇xkε(x,y)+ y ·∇ykε(x,y)]. (2.20)

Note that if k satisfies (K1), then k̃ε also satisfies (K1). Here k̃ε is not the approxi-
mation of k̃ defined as in (2.9), but k̃ε can be rewritten by using k and k̃ . In fact, we
obtain

k̃ε(x,y) = (k̃)ε (x,y)+
1
2

ρ̃ε(x)∗ρε(y)∗ k(x,y)+
1
2

ρε(x)∗ ρ̃ε(y)∗ k(x,y),

where (k̃)ε is the smooth approximation of k̃ defined as in (2.9) and ρ̃ε(x) := Nρε (x)+
x ·∇xρε(x) . As like the Friedrichs mollifier, we see that

ρ̃ε ∗ f → 0 (ε → 0) strongly in Lp(RN), f ∈ Lp(RN), (1 � p < ∞),

ρ̃ε ∗ f → 0 (ε → 0) a.e. on R
N , f ∈ L∞(RN).

Therefore Lemma 2.4 and (2.13) yield the following lemma.

LEMMA 2.5. Let k satisfy (K1), (K2) and (K4). Define

G̃ε(ϕ) :=
∫

RN

∫
RN

k̃ε(x,y)|ϕ(x)|2|ϕ(y)|2 dxdy, (2.21)

G̃(ϕ) :=
∫

RN

∫
RN

k̃(x,y)|ϕ(x)|2|ϕ(y)|2 dxdy, (2.22)

for ϕ ∈ H1(RN) . Then for any ϕ ∈ H1(RN)

G̃ε (ϕ) → G̃(ϕ) (ε → 0) (2.23)

and for every ε > 0 and u, v ∈ H1(RN) with ‖u‖H1 � M and ‖v‖H1 � M

|G̃ε(u)− G̃ε(v)| � 4M4 (‖k̃− k̃R̃‖Lβ̃
x (Lα̃

y )
+‖ρ̃1‖L1‖k− kR‖Lβ

x (Lα
y )

) (2.24)

+4M3 (‖ρ̃1‖L1R+ R̃)‖u− v‖L2.

REMARK 2.3. More precisely, we have

|G̃ε(u)− G̃ε(v)| � C(k)M3 ‖u− v‖H1 (2.25)

for every ε > 0 and u, v ∈ H1(RN) with ‖u‖H1 � M and ‖v‖H1 � M . Here we do not
need k+ k̃ � 0 as in (K4) and k̃− k̃R̃ → 0 ( R̃ → ∞) for (2.25).
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3. Proof of the virial identity

In this section we show the key identity which is called the virial identity of (HE)a :

‖xu(t)‖2
L2 = ‖xu0‖2

L2 +4t Im
∫

RN
xu0 ·∇u0 dx+

∫ t

0
(t− s)V (u(s))ds (3.1)

for any local weak solutions to (HE)a with initial value u(0) = u0 ∈ H1(RN)∩D(x) .
Here

V (ϕ) := 8‖∇ϕ‖2
L2 +8a

∥∥∥ ϕ
|x|

∥∥∥2

L2
−4G̃(ϕ) ϕ ∈ H1(RN)∩D(x) (3.2)

(G̃ is defined in (2.22)). We divide the proof of (3.1) into four stages:

Stage 1. First we construct approximate solutions to (HE)a :⎧⎨⎩i
∂vε,δ

∂ t
= −Δvε,δ +

avε,δ
|x|2 + δ

+ vε,δ Kε (|vε,δ |2) in R×RN,

vε,δ (0,x) = u0(x) in R
N ,

(HE)ε,δ
a

where a ∈ R , ε > 0, δ > 0 and

Kε f (x) := Kε( f )(x) =
∫

RN
kε(x,y) f (y)dy,

where kε is defined in (2.9).

Stage 2. We derive the virial identity for (HE) ε,δ
a .

Stage 3. Next we consider⎧⎨⎩i
∂uε
∂ t

=
(
−Δ +

a
|x|2

)
uε +uε Kε (|uε |2) in R×RN,

uε(0,x) = u0(x) in RN .
(HE)ε

a

The solution is the limit of vε,δ (δ → 0). By letting δ → 0 of (HE) ε,δ
a we confirm the

virial identity for (HE) ε
a .

Stage 4. We verify the virial identity for (HE)a by letting ε → 0 of (HE) ε
a .

Now we begin to prove (3.1).

Stage 1 of proof (3.1). First we consider the approximate problem (HE) ε,δ
a of (HE)a

to obtain the virial identity. Note that a(|x|2 +δ )−1 ∈ L∞(RN) . Since kε ∈ L∞
x (L∞

y ) , Kε
is locally Lipschitz continuous in L2(RN) . Therefore [3, Theorem 3.3.1] yields that for
every u0 ∈ H1(RN) there exists a global unique weak solution vε,δ ∈C(R;H1(RN))∩
C1(R;H−1(RN)) to (HE) ε,δ

a . Moreover, vε,δ satisfies the conservation laws:

‖vε,δ (t)‖L2 = ‖u0‖L2 , Eε,δ (vε,δ (t)) = Eε,δ (u0) ∀ t ∈ R, (3.3)
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where

Eε,δ (ϕ) =
1
2
‖∇ϕ‖2

L2 +
a
2

∥∥∥ ϕ√|x|2 + δ

∥∥∥2

L2
+Gε(ϕ), ϕ ∈ H1(RN).

Furthermore, if u0 ∈ H2(RN) , then vε,δ ∈C(R;H2(RN))∩C1(R;L2(RN)) .

Stage 2 of proof (3.1). Now we show the virial identity for (HE) ε,δ
a . First we calculate

the time derivative of ‖xvε,δ (t)‖2
L2 . As in [3, Lemma 6.5.2] we obtain

d
dt
‖xvε,δ (t)‖2

L2 = 4Im
∫

RN
xvε,δ (t) ·∇vε,δ (t)dx. (3.4)

Next we consider the second derivative of ‖xvε,δ (t)‖2
L2 respect to t .

LEMMA 3.1. Let vε,δ be a global weak solution to (HE) ε,δ
a with vε,δ (0) = u0 .

Assume that u0 ∈ H1(RN)∩D(x) . Then vε,δ satisfies

d2

dt2
‖xvε,δ (t)‖2

L2 = Vε,δ (vε,δ (t)) ∀ t ∈ R, (3.5)

where Vε,δ is defined as

Vε,δ (ϕ) := 8‖∇ϕ‖2
L2 +8a

∥∥∥ xϕ
|x|2 + δ

∥∥∥2

L2
−4G̃ε(ϕ), ϕ ∈ H1(RN). (3.6)

Proof. Step 1. Assume further that u0 ∈ H2(RN)∩D(x) . Then the weak solution
vε,δ belongs to C(R;H2(RN))∩C1(R;L2(RN)) . Fix μ > 0. Now we calculate

d2

dt2

∥∥∥ xvε,δ (t)√
1+ μ |x|2

∥∥∥2

L2
=

d
dt

Im
∫

RN

4xvε,δ (t)
(1+ μ |x|2)2 ·∇vε,δ (t)dx

and let μ → 0. Applying the integral by parts we obtain

d2

dt2

∥∥∥ xvε,δ (t)√
1+ μ |x|2

∥∥∥2

L2
= −Im

∫
RN

(
Mμ(x)vε,δ (t)+

8x ·∇vε,δ (t)
(1+ μ |x|2)2

)
v ′ε,δ (t)dx (3.7)

= I0(t;μ)+ I1(t;μ)+ I2(t;μ)+ I3(t;μ),

where

Mμ(x) := div
( 4x

(1+ μ |x|2)2

)
=

4N−16
(1+ μ |x|2)2 +

16
(1+ μ |x|2)3 ,

I0(t;μ) := Re
∫

RN
Mμ(x)vε,δ (t)

[
−Δvε,δ (t)+

avε,δ (t)
|x|2 + δ

+ vε,δ (t)Kε (|vε,δ (t)|2)
]
dx,

I1(t;μ) := Re
∫

RN

8x ·∇vε,δ(t)
(1+ μ |x|2)2 [−Δvε,δ (t)]dx,
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I2(t;μ) := Re
∫

RN

8x ·∇vε,δ(t)
(1+ μ |x|2)2

avε,δ (t)
|x|2 + δ

dx,

I3(t;μ) := Re
∫

RN

8x ·∇vε,δ(t)
(1+ μ |x|2)2 vε,δ (t)Kε (|vε,δ (t)|2)dx.

Since |Mμ(x)| � 4N and Mμ(x) → 4N (μ → 0) for all x ∈ RN , we have

I0(t;μ) → 4N ‖∇vε,δ (t)‖2
L2 +4aN

∥∥∥ vε,δ (t)√|x|2 + δ

∥∥∥2

L2

+4N
∫

RN
|vε,δ (t)|2Kε (|vε,δ (t)|2)dx (μ → 0) ∀ t ∈ R. (3.8)

Next we consider I1(t;μ) . Integrating by parts we have I1(t;μ) = I11(t;μ)+ I12(t;μ) ,
where

I11(t;μ) =
N

∑
j,l=1

Re
∫

RN

8δ jl(1+ μ |x|2)−32μxlx j

(1+ μ |x|2)3

∂vε,δ (t)
∂xl

∂vε,δ (t)
∂x j

dx

=
∫

RN

[ 8
(1+ μ |x|2)2 |∇vε,δ (t)|2 − 32μ |x ·∇vε,δ(t)|2

(1+ μ |x|2)3

]
dx,

I12(t;μ) =
N

∑
j,l=1

Re
∫

RN

8xl

(1+ μ |x|2)2

∂ 2vε,δ (t)
∂xl∂x j

∂vε,δ (t)
∂x j

dx

=
N

∑
j,l=1

∫
RN

4xl

(1+ μ |x|2)2

∂
∂xl

∣∣∣∂vε,δ (t)
∂x j

∣∣∣2 dx = −
∫

RN
Mμ(x) |∇vε,δ (t)|2 dx.

Thus we obtain

I1(t;μ) → (8−4N)‖∇vε,δ (t)‖2
L2 (μ → 0) ∀ t ∈ R. (3.9)

Integrating by parts we see the convergence of I2 :

I2(t;μ) = −
∫

RN
|vε,δ (t)|2 div

( 4x
(1+ μ |x|2)2

a
|x|2 + δ

)
dx (3.10)

→−
∫

RN
|vε,δ (t)|2

( 4aN
|x|2 + δ

− 8a|x|2
(|x|2 + δ )2

)
dx (μ → 0), t ∈ R.

Finally we consider I3 . In a way similar to I2 , we calculate

I3(t;μ) = −
∫

RN

∫
RN

[
Mμ(x)kε(x,y)+

4x ·∇xkε(x,y)
(1+ μ |x|2)2

]
|vε,δ (t,x)|2|vε,δ (t,y)|2 dxdy.

Thus applying (2.19) we obtain for t ∈ R

I3(t;μ) →−
∫

RN
[4N kε(x,y)+4k̃ε(x,y)]|vε,δ (t,x)|2|vε,δ (t,y)|2 dxdy (3.11)
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as μ → 0. Therefore we see that for t ∈ R

I0(t;μ)+ I1(t;μ)+ I2(t;μ)+ I3(t;μ) (3.12)

→ 8‖∇vε,δ (t)‖2
L2 +8a

∥∥∥xvε,δ (t)
|x|2 + δ

∥∥∥2

L2
−4G̃ε(vε,δ (t)) (μ → 0)

= Vε,δ (vε,δ (t)).

Step 2. Next we show the uniform boundedness:

|I j(t;μ)| � Cj(ε, ‖u0‖H1) ∀ δ > 0, ∀ μ > 0, ∀ t ∈ R. (3.13)

To end this first we confirm

‖∇vε,δ (t)‖L2 � C(ε, ‖u0‖H1) ∀ t ∈ R, ∀ δ > 0. (3.14)

By using the conservation laws (3.3) we calculate

‖∇vε,δ (t)‖2
L2 +a

∫
RN

|vε,δ (t)|2
|x|2 + δ

dx

= ‖∇u0‖2
L2 +a

∫
RN

|u0|2
|x|2 + δ

dx+2 [Gε(u0)−Gε(vε,δ (t))]. (3.15)

It follows from (2.13) with kε ∈ L∞
x (L∞

y ) and (3.3) that

|Gε (vε,δ (t))| � 4‖kε‖L∞
x (L∞

y ) ‖u0‖4
L2 .

Applying (2.4) to (3.15) we obtain(
1− 4a−

(N−2)2

)
‖∇vε,δ (t)‖2

L2 �
(
1+

4a+

(N−2)2

)
‖∇u0‖2

L2 +16‖kε‖L∞
x (L∞

y )‖u0‖4
L2 .

This is nothing but (3.14).

Now we evaluate I j ( j = 0, 1, 2, 3). We divide I0 into I01 + I02 + I03 , where

I01(t;μ) := Re
∫

RN
Mμ(x)vε,δ (t)[−Δvε,δ (t)]dx,

I02(t;μ) :=
∫

RN

aMμ(x)
|x|2 + δ

|vε,δ (t)|2 dx,

I03(t;μ) :=
∫

RN
Mμ(x)|vε,δ (t)|2 Kε (|vε,δ (t)|2)dx.

For I01 , integrating by parts we see∫
RN

Mμ(x)vε,δ (t)[−Δvε,δ (t)]dx

=
∫

RN
[∇Mμ(x) · vε,δ (t)∇vε,δ (t)+Mμ(x)|∇vε,δ (t)|2]dx.
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We see that |∇Mμ(x)| � 16(N +2) by a simple calculation. Thus we obtain

|I01(t;μ)| � 16(N +2)‖vε,δ(t)‖L2‖∇vε,δ (t)‖L2 +4N ‖∇vε,δ (t)‖2
L2 .

For I02 and I03 , we see

|I02(t;μ)| �
∫

RN
|Mμ(x)| |a| |vε,δ (t)|2

|x|2 + δ
dx � 16N |a|

(N−2)2 ‖∇vε,δ (t)‖2
L2 ,

|I03(t;μ)| �
∫

RN

∫
RN

|Mμ(x)| |kε (x,y)| |vε,δ (t,x)|2|vε,δ (t,y)|2 dxdy

� 4N ‖kε‖L∞
x (L∞

y ) ‖vε,δ (t)‖4
L2 .

Therefore we obtain the uniform boundedness of I0 :

|I0(t;μ)| � N
[
4+

16|a|
(N −2)2

]
C(ε, ‖u0‖H1)2 +16(N +2)‖u0‖L2 C(ε, ‖u0‖H1)

+4N ‖kε‖L∞
x (L∞

y ) ‖u0‖4
L2 ∀ t ∈ R. (3.16)

For I1 , we can calculate

|I1(t;μ)| �
∫

RN

8 |∇vε,δ (t)|2
(1+ μ |x|2)2 dx (3.17)

+
∫

RN

32μ |x ·∇vε,δ (t)|2
(1+ μ |x|2)3 dx+

∫
RN

|Mμ(x)| |∇vε,δ (t)|2 dx

� 4(N +10)C(ε, ‖u0‖H1)2 ∀ t ∈ R.

For I2 , using (2.3) and (3.14) we have

|I2(t;μ)| �
∫

RN

|a|Mμ(x) |vε,δ (t)|2
|x|2 + δ

dx+
∫

RN

8|a| |x|2 |vε,δ (t)|2
(1+ μ |x|2)2(|x|2 + δ )2 dx (3.18)

� 16(N +2)|a|
(N−2)2 C(ε, ‖u0‖H1)2 ∀ t ∈ R.

For I3 , note that |x ·∇xkε(x,y)| can be evaluated as ‖x ·∇xkε‖L∞
x (L∞

y ) � Ck(ε) . Hence
we see that

|I3(t;μ)| � 4[N ‖kε‖L∞
x (L∞

y ) +Ck(ε)]‖u0‖4
L2 ∀ t ∈ R. (3.19)

Since (3.16)–(3.19) are proved, we obtain (3.13),

Step 3. Combining (3.13) and (3.12) into (3.7), Remark 2.1 ensures the virial identity
for (HE) ε,δ

a (3.5) when u0 ∈ H2(RN)∩D(x) .

Step 4. We remark that Step 2 yields

|Vε,δ (vε,δ (t))| � C̃(ε, ‖u0‖H1) ∀ t ∈ R, ∀ δ > 0. (3.20)
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Step 5. Let u0 ∈H1(RN)∩D(x) . Then there exists {u0m}m ⊂H2(RN)∩D(x) such that
u0m → u0 (m→∞) in H1(RN)∩D(x) . Denote vm

ε,δ as a global weak solution to (HE)a

with initial value vm
ε,δ (0) = u0m . Since (HE) ε,δ

a verifies the continuous dependence
of initial value (see [3, Theorem 3.3.1]), we see that vm

ε,δ (t) → vε,δ (t) (m → ∞) in

C([−T,T ];H1(RN)) . Thus Vε,δ (vm
ε,δ (t)) → Vε,δ (vε,δ (t)) (m → ∞) for t ∈ [−T,T ] .

Also (3.20) ensures that |Vε,δ (vm
ε,δ (t))|�C for t ∈ [−T,T ] and m∈N . Finally, Lemma

2.3 implies that xvm
ε,δ (t) → xvε,δ (t) (m → ∞) strongly in L2(RN)N for every t ∈ R .

Thus Remark 2.1 asserts that (3.5) holds even if u0 ∈ H1(RN)∩D(x) . �
Stage 3 of proof (3.1). First note that ‖∇vε,δ (t)‖L2 is uniformly bounded in t ∈ R and
δ > 0 [ see (3.14)]. Next we prove that ‖v ′ε,δ (t)‖H−1 is uniformly bounded in t ∈ R

and δ > 0. By using (2.4) and (G2) in [10, Lemma 3.1] we have

‖v ′ε,δ (t)‖H−1 �
(
1+

4|a|
(N−2)2

)
‖vε,δ (t)‖H1 +‖kε‖L∞

x (L∞
y )‖vε,δ (t)‖3

L2 .

Applying (3.14) and (3.3), we obtain

‖v ′ε,δ (t)‖H−1 � C ′(ε, ‖u0‖H1) ∀ t ∈ R, ∀ δ > 0. (3.21)

Since (3.14) and (3.21) are verified, [3, Proposition 1.1.2] yields that for every
T > 0 there exist {δ j} j ⊂ (0,∞) and vε ∈ Cw([−T,T ];H1(RN)) such that δ j → 0
( j → ∞) and

vε,δ j
(t) → vε(t) ( j → ∞) weakly in H1(RN) ∀ t ∈ [−T,T ], (3.22)

v ′ε,δ j
→ v ′ε ( j → ∞) weakly∗ in L∞(−T,T ;H−1(RN)). (3.23)

In particular, we see from (2.5) and (3.22) that for every t ∈ [−T,T ](
−Δ+

a
|x|2 + δ j

)
vε,δ j

(t)→
(
−Δ+

a
|x|2

)
vε(t) ( j →∞) weakly in H−1(RN). (3.24)

Combining (3.24) and (3.23) with (HE) ε,δ
a , we see that there exists f such that

vε,δ j
Kε (|vε,δ j

|2) = iv ′ε,δ j
−

(
−Δ +

a
|x|2 + δ j

)
vε,δ j

→ iv ′ε −Pavε =: f ( j → ∞) weakly∗ in L∞(−T,T ;H−1(RN)).

(G5) in [10, Lemma 3.1] asserts that

Im
∫ t

0
〈 f (s),vε (s)〉H−1 ,H1 ds = 0 ∀ t ∈ [−T,T ].

Now vε satisfies iv ′ε = Pavε + f in L∞(−T,T ;H−1(RN)) . Thus we obtain the conser-
vation law of charge for vε . Combining this with (3.3) we have

‖vε(t)‖L2 = ‖u0‖L2 = ‖vε,δ j
(t)‖L2 ∀ t ∈ [−T,T ]. (3.25)
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Hence we see from (3.22) and (3.25) that vε,δ j
(t)→ vε(t) ( j → ∞) strongly in L2(RN)

for t ∈ [−T,T ] . Therefore (G5) in [10, Lemma 3.1] ensures that f = vε Kε(|vε |2) and
vε satisfies {

iv ′ε = Pavε + vε Kε (|vε |2) in L∞(−T,T ;H−1(RN)).

vε(0) = u0 ∈ H1(RN).

On the other hand, Theorem 1.1 implies that there exists a unique weak solution to
(HE) ε

a . Thus the uniqueness for (HE) ε
a implies vε = uε . Moreover, uε satisfies the

conservation laws:

‖uε(t)‖L2 = ‖u0‖L2 , Eε(uε(t)) = Eε(u0) ∀ t ∈ R, (3.26)

where the energy of (HE) ε
a is defined as

Eε(ϕ) :=
1
2
‖∇ϕ‖2

L2 +
a
2

∥∥∥ ϕ
|x|

∥∥∥2

L2
+Gε(ϕ), ϕ ∈ H1(RN). (3.27)

We have proved that vε,δ j
(t)→ uε(t) ( j →∞) strongly in L2(RN) for t ∈ [−T,T ] .

More precisely, we see that

vε,δ j
(t) → uε(t) ( j → ∞) strongly in H1(RN), t ∈ [−T,T ]. (3.28)

In fact, it follows from (3.3), (3.26) and (2.13),

‖∇vε,δ (t)‖2
L2 +a

∥∥∥ vε,δ (t)√
|x|2 + δ

∥∥∥2

L2
= 2Eε,δ (vε,δ (t))−2Gε(vε,δ (t))

→ 2E(u0)−2Gε(uε(t))

= ‖∇uε(t)‖2
L2 +a

∥∥∥uε(t)
|x|

∥∥∥2

L2
( j → ∞).

Lemma 2.2 yields (3.28). On the other hand, [3, Lemma 6.5.2] implies

‖xuε(t)‖2
L2 −‖xu0‖2

L2 = 4Im
∫ t

0

∫
RN

xuε(s) ·∇uε(s)dxds.

Thus Lemma 2.3 with (3.14) and (3.28) ensures

xvε,δ (t) → xuε(t) ( j → ∞) strongly in L2(RN), t ∈ [−T,T ].

Now we can derive the virial identity for (HE) ε
a by letting δ → 0 of (3.5):

d2

dt2
‖xuε(t)‖2

L2 = Vε(uε(t)), t ∈ R, (3.29)

where Vε is defined for ϕ ∈ H1(RN)

Vε(ϕ) := 8‖∇ϕ‖2
L2 +8a

∥∥∥ ϕ
|x|

∥∥∥2

L2
−4G̃ε(ϕ). (3.30)
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Since k̃ε ∈ L∞
x (L∞

y ) , (2.13) implies that

|G̃ε(vε,δ j
(t))− G̃ε(uε(t))| � 4‖k̃ε‖L∞

x (L∞
y )‖u0‖3

L2‖vε,δ j
(t)−uε(t)‖L2 (3.31)

→ 0 ( j → ∞) ∀ t ∈ [−T,T ].

On the other hand, (3.28) implies that for all t ∈ [−T,T ]

‖∇vε,δ j
(t)‖2

L2 +a
∥∥∥ vε,δ j

(t)√|x|2 + δ j

∥∥∥2

L2
→‖∇uε(t)‖2

L2 +a
∥∥∥uε(t)

|x|
∥∥∥2

L2
( j → ∞). (3.32)

Hence (3.31) and (3.32) yield that Vε,δ j
(vε,δ j

(t))→Vε(uε(t)) ( j → ∞) for t ∈ [−T,T ] .
Moreover, applying (3.14) and (2.4) we have

|Vε,δ j
(vε,δ j

(t))| � 8
(
1+

4a+

(N−2)2

)
‖∇vε,δ j

(t)‖2
L2 +4‖k̃ε‖L∞

x (L∞
y )‖vε,δ j

(t)‖4
L2

� 8
(
1+

4a+

(N−2)2

)
C(ε, ‖u0‖H1)+4‖k̃ε‖L∞

x (L∞
y )‖u0‖4

L2 .

Therefore Remark 2.1 ensures (3.29).

Stage 4 of proof (3.1). First we show uε → u (ε → 0).

LEMMA 3.2. Let u be a local weak solution to (HE)a in (−T1,T2) . Then uε → u
(ε → 0) strongly in L∞(−T1,T2;H1(RN)) .

Proof. Step 1. First we show the uniform boundedness of uε :

‖uε(t)‖H1 � M0 ∀ ε > 0,∀ t ∈ [−T,T ]. (3.33)

Now we denote

‖ϕ‖H̃ :=
(
‖ϕ‖2

L2 +‖∇ϕ‖2
L2 +a

∥∥∥ ϕ
|x|

∥∥∥2

L2

)1/2
= ‖(1+Pa)1/2ϕ‖L2 , ϕ ∈ H1(RN)

and set M := 2‖u0‖H̃ . Note that ‖ · ‖H̃ is equivalent to ‖ · ‖H1 [ see (2.4) with δ = 0].
Define

τε := sup
T>0

{‖uε(t)‖H̃ � M, t ∈ [−T,T ]}.

If τε = ∞ , then we have proved the uniform boundedness. Thus we assume τε < ∞ .
Since uε ∈C(R;H1(RN)) , τε satisfies

‖uε(τε )‖H̃ = M or ‖uε(−τε )‖H̃ = M. (3.34)

It follows from (3.26) and (2.13) that for t ∈ [−τε ,τε ]

‖uε(t)‖2
H̃
−‖u0‖2

H̃
= 2 [Gε(u0)−Gε(uε(t))] (3.35)

� 2c4M4 ‖k− kR‖Lβ
x (Lα

y )
+2RM3‖u0−uε(t)‖L2 .
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On the other hand, we see from (G2) in [10, Lemma 3.1] that

‖u ′
ε(t)‖H̃∗ � ‖Pauε(t)‖H̃∗ +‖uε(t)Kε(|uε(t)|2)‖H̃∗

� ‖uε(t)‖H̃ +R0‖uε(t)‖3
L2 +C‖k− kR0‖Lβ

x (Lα
y )
‖uε(t)‖3

H̃

� M +R0‖u0‖3
L2 +C‖k− kR0‖Lβ

x (Lα
y )

M3 =: C(M) ∀ t ∈ [−τε ,τε ],

where ‖·‖H̃∗ := ‖(1+Pa)−1/2 ·‖L2 ; note that ‖·‖H̃∗ is equivalent to ‖·‖H−1 . Applying
[3, Lemma 3.3.6] we obtain

‖uε(t)−uε(s)‖L2 �
√

2C(M) |t − s|1/2, t, s ∈ [−τε ,τε ]. (3.36)

Combining (3.36) with setting s = 0 into (3.35), we see that

‖uε(t)‖2
H̃
−‖u0‖2

H̃
� 2c4M4 ‖k− kR‖Lβ

x (Lα
y )

+2
√

2RM3C(M)|t|1/2.

Letting t = ±τε and applying (3.34) we have

τ1/2
ε �

3M2−8c4M4 ‖k− kR‖Lβ
x (Lα

y )

8
√

2RM3C(M)
> 0;

note that ‖k− kR‖Lβ
x (Lα

y )
→ 0 (R → ∞) implies the positivity. Thus we obtain (3.33) by

putting

TM :=
[3−8c4M2 ‖k− kR‖Lβ

x (Lα
y )

8
√

2RMC(M)

]2
> 0.

Step 2. Next we show that uε → u (ε → 0) strongly in L∞(−T1,T2;L2(RN)) and in
Lr(γ)(−T1,T2;L2γ (RN)) , where r(γ) := 4γ/[N(γ −1)] . Note that u and uε satisfy the
following integral equations:

u(t) = e−itPau0− i
∫ t

0
e−i(t−s)Pa [u(s)K(|u(s)|2)]ds,

uε(t) = e−itPau0− i
∫ t

0
e−i(t−s)Pa [uε(s)Kε (|uε(s)|2)]ds.

We divide u(t)−uε(t) into J1(t;ε)+ J2(t;ε)+ J3(t;ε) , where

J1(t;ε) := − i
∫ t

0
e−i(t−s)Pa [u(s)K(|u(s)|2)−Kε(|u(s)|2)]ds,

J2(t;ε) := − i
∫ t

0
e−i(t−s)Pa [u(s)−uε(s)]Kε (|u(s)|2)ds,

J3(t;ε) := − i
∫ t

0
e−i(t−s)Pauε(s)Kε (|u(s)|2−|uε(s)|2)]ds.
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For simply we denote

K[k̃]( f ) :=
∫

RN
k̃(x,y) f (y)dy, ‖ f‖Lτ

t (Lρ ) := ‖ f‖Lτ (−T,T ;Lρ ).

For J1 applying the Strichartz estimates (2.2) we have

‖J1‖Lτ
t (Lρ ) �;C∞,τ ‖uK[kR− (kR)ε ](|u|2)‖L1

t (L2)

+ Cr(γ),τ ‖uK[(k− kR)− (kε − (kR)ε)](|u|2)‖
L

r(γ)′
t (L(2γ)′ )

.

Applying (2.14), (2.15) and the dominated convergence theorem, we see that

‖J1‖Lτ
t (Lρ ) → 0 (ε → 0). (3.37)

For I2 applying the Strichartz estimates (2.2) we have

‖J2‖Lτ
t (Lρ ) � C∞,τ ‖(u−uε)K[(kR)ε ](|u|2)‖L1

t (L2)

+Cr(γ),τ ‖(u−uε)K[kε − (kR)ε ](|u|2)‖
L

r(γ)′
t (L(2γ)′ )

� 2C∞,τRT ‖u‖2
L∞

t (L2)‖u−uε‖L∞
t (L2)

+Cr(γ),τ(2T )1−2/r(γ)‖k− kR‖Lβ
x (Lα

y )
‖u‖2

L∞
t (L2γ )‖u−uε‖L

r(γ)
t (L2γ )

.

In a way similar to J2 , we can evaluate J3 as follows:

‖J3‖Lτ
t (Lρ ) � C∞,τ ‖uε K[(kR)ε ](|u|2−|uε |2)‖L1

t (L2)

+Cr(γ),τ ‖uε K[kε − (kR)ε ](|u|2−|uε |2)‖
L

r(γ)′
t (L(2γ)′ )

� 2C∞,τRT ‖uε‖L∞
t (L2)(‖u‖L∞

t (L2) +‖uε‖L∞
t (L2))‖u−uε‖L∞

t (L2)

+Cr(γ),τ(2T )1−2/r(γ) ‖k− kR‖Lβ
x (Lα

y )
‖uε‖L∞

t (L2γ )

×
(
‖u‖L∞

t (L2γ ) +‖uε‖L∞
t (L2γ )

)
‖u−uε‖L

r(γ)
t (L2γ )

.

Set (τ,ρ) = (∞,2) and (r(γ),2γ) . Now we put

M := max{‖u0‖L2 ,‖u‖Lr(γ)(−T,T ;L2γ ), sup
ε∈(0,1)

‖uε‖Lr(γ)(−T,T ;L2γ )} < ∞.

Case 1 (α−1 +β−1 < 4/N ). Take T0 ∈ (0,T ) such that 6(C∞,∞ +C∞,r(γ))RM2T0 � 1/2

and 3(Cr(γ),∞ +Cr(γ),r(γ))‖k− kR‖Lβ
x (Lα

y )
M2(2T0)1−2/r(γ) � 1/2. Then we obtain

‖u−uε‖Lr(γ)(−T0,T0;L2γ ) +‖u−uε‖L∞(−T0,T0;L2)

� 2‖J1‖L∞(−T0,T0;L2) +2‖J1‖Lr(γ)(−T0,T0;L2γ ). (3.38)

It follows from (3.37) that

uε → u (ε → 0) strongly in L∞(−T0,T0;L
2(RN))∩Lr(γ)(−T0,T0;L

2γ (RN)). (3.39)
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Case 2 (α−1 + β−1 = 4/N ). Fix R > 0 so that

3(C2,∞ +C2,2)‖k− kR‖Lβ
x (Lα

y )
M2 � 1/2.

Next take T0 ∈ (0,T ) such that 6(C∞,∞ +C∞,r(γ))RM2T0 � 1/2. Then we have (3.39).

Extending the interval step by step, we conclude that uε → u (ε → 0) strongly in
L∞(−T1,T2;L2(RN)) and in Lr(γ)(−T1,T2;L2γ (RN)) .

Step 3. Assume that uε 
→ u (ε → 0) in C( I ;H1(RN)) . Then there exist ε0 > 0 and
bounded sequences {εm}m ⊂ (0,1) and {tm}m ⊂ I such that

‖uεm(tm)−u(tm)‖H1 � ε0, m ∈ N.

We may also assume that εm → 0 and tm → t0 ∈ I (m → ∞) . Since u ∈C(I;H1(RN)) ,
we have ‖u(tm)−u(t0)‖H1(RN) < ε0/2 for sufficiently large m . Therefore we obtain

‖uεm(tm)−u(t0)‖H1 >
ε0

2
.

On the other hand, it follows from Step 2 that ‖uεm(tm)− u(tm)‖L2 → 0 (m → ∞).
Since u ∈ C( I ;L2(RN)) , we have ‖u(tm)− u(t0)‖L2 → 0 (m → ∞). Thus we obtain
‖uεm(tm)−u(t0)‖L2 → 0 (m→ ∞). This means that uεm(tm)→ u(t0) (m→ ∞) strongly
in L2(RN) but uεm(tm) 
→ u(t0) (m → ∞) strongly in H1(RN) .

To derive a contradiction it remains to show that

uεm(tm) → u(t0) (m → ∞) strongly in H1(RN). (3.40)

Now using the functions G, Gε [see (2.12) and (2.11)] and

Q(ϕ) :=
1
2
‖∇ϕ‖2

L2(RN) +
a
2

∥∥∥ ϕ
|x|

∥∥∥2

L2(RN )
, ϕ ∈ H1(RN),

we can write as

Eε(ϕ) = Q(ϕ)+Gε(ϕ), E(ϕ) = Q(ϕ)+G(ϕ), ϕ ∈ H1(RN). (3.41)

Now we show
Q(uεm(tm)) → Q(u(t0)) (m → ∞). (3.42)

To end this, first we see from the conservation laws (3.26) and (1.4) that

Eεm(uεm(tm)) = Eεm(u0) → E(u0) = E(u(t0)) (m → ∞). (3.43)

Next we prove
Gεm(uεm(tm)) → G(u(t0)) (m → ∞). (3.44)

Applying (2.13) we calculate

|Gεm(uεm(tm))−G(u(t0))|
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� |Gεm(uεm(tm))−Gεm(u(t0))|+ |Gεm(u(t0))−G(u(t0))|
� c4M4 ‖k− kR‖Lβ

x (Lα
y )

+RM3‖uεm(tm)−u(t0)‖L2 + |Gεm(u(t0))−G(u(t0))|
→ c4M4 ‖k− kR‖Lβ

x (Lα
y )

(m → ∞).

Since R > 0 is arbitrary, (K2) implies (3.44). Combining (3.43) and (3.44) into (3.41)
we obtain (3.42).

On the other hand, by the boundedness of ‖uεm(tm)‖H1 there exist v ∈ H1(RN)
and a weak convergent subsequence {uεm( j)(tm( j))} j such that uεm( j) (tm( j))→ v ( j→∞)

weakly in H1(RN) . Since uεm( j) (tm( j))→ u(t0) ( j → ∞) strongly in L2(RN) , we obtain

uεm( j) (tm( j)) → u(t0) ( j → ∞) weakly in H1(RN) . Therefore from the weak conver-

gence in H1(RN) of {uεm( j)(tm( j))} j to u(t0) and the convergence of the corresponding
norms we conclude (3.40), a contradiction. �

Now we are the final position to prove (3.1). First note that Lemma 2.3 yields
xuε(t) → xu(t) strongly in L2(RN)N . Next we show

Vε(uε(t)) →V (u(t)) (ε → 0), t ∈ [−T,T ]. (3.45)

Since uε → u (ε → 0) uniformly in C([−T,T ];H1(RN)) , we see that

‖∇uε(t)‖2
L2 +a

∥∥∥uε(t)
|x|

∥∥∥2

L2
→ ‖∇u(t)‖2

L2 +a
∥∥∥u(t)
|x|

∥∥∥2

L2
(ε → 0), t ∈ [−T,T ].

On the other hand, (2.25) and (2.23) yield that

G̃ε(uε(t)) = [G̃ε (uε(t))− G̃ε(u(t))]+ [G̃ε(u(t))− G̃(u(t))]+ G̃(u(t))

→ G̃(u(t)) (ε → 0), t ∈ [−T,T ].

Thus we obtain (3.45).
Next we show the uniform boundedness of Vε(uε) . It follows from (2.4) and (3.33)

that

8‖∇uε(t)‖2
L2 +8a

∥∥∥uε(t)
|x|

∥∥∥2

L2
� 8

(
1+

4a+

(N−2)2

)
M2

0 ∀ t ∈ [−T,T ].

On the other hand, (2.25) implies that

4|G̃ε(uε(t))| � 4C(k)M4
0 ∀ t ∈ [−T,T ].

Thus we have |Vε(uε(t))|�C for t ∈ [−T,T ] and ε > 0. Therefore Remark 2.1 asserts
(3.1).

4. Proof of Theorem 1.2

Proof. Assume that u is a global weak solution to (HE)a . Applying (3.1) and
(1.4) we see that

d2

dt2
‖xu(t)‖2

L2 = 16E(u0)−4
∫

RN

∫
RN

[k(x,y)+ k̃(x,y)]|u(t,x)|2|u(t,y)|2 dxdy.
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Define ϕ(t) := ‖xu(t)‖2
L2 . Thus (K4) implies that ϕ ′′(t) � 16E(u0) . Integrating twice

we have
ϕ(t) � ϕ(0)+ ϕ ′(0)t +8E(u0)t2 =: ψ(t).

Since E(u0) < 0, there exists t j > 0 ( j = 1, 2) such that ψ(−t1) = 0 = ψ(t2) . Thus
ϕ(−t1) � 0 and ϕ(t2) � 0. Since ϕ is continuous in t and ϕ(0) > 0, there exist
T1, T2 > 0 such that ϕ(−T1) = 0 = ϕ(T2) . Applying the Hölder inequality and inte-
grating by parts for

∫
xv ·∇vdx , we have

‖v‖2
L2 � 2

N
‖xv‖L2‖∇v‖L2 ∀ v ∈ H1(RN)∩D(x).

Let v := u(t) . Then (1.4) implies that

‖∇u(t)‖L2 �
N ‖u0‖2

L2

2‖xu(t)‖L2
.

Letting t →−T1 +0 or t → T2 −0, we see that

lim
t→−T1+0

‖∇u(t)‖L2 = ∞ = lim
t→T2−0

‖∇u(t)‖L2 .

This is a contradiction (see also [3, Remark 3.1.6 (ii)]). �

5. Concluding remarks

In a way similar to Sections 3 and 4, we can show the blowup in finite time for the
nonlinear Schrödinger equations with inverse-square potentials:⎧⎨⎩i

∂u
∂ t

=
(
−Δ +

a
|x|2

)
u+ f (u) in R×RN,

u(0,x) = u0(x) in RN ,
(NLS)a

where f : C → C is power type nonlinearities.

(N1) f (0) = 0 and there exist p ∈ [1,(N +2)/(N−2)) and K � 0 such that

| f (u)− f (v)| � K(1+ |u|p−1 + |v|p−1)|u− v| ∀u, v ∈ C;

(N2) f (x) ∈ R (x > 0) and f (eiθ z) = eiθ f (z) (z ∈ C , θ ∈ R);

(N3) There exist q ∈ [1,1+4/N) and L1,L2 � 0 such that

F(x) :=
∫ x

0
f (s)ds � −L1x

2−L2x
q+1 ∀ x > 0;

(N4) 2(N +2)F(x)−N x f (x) � 0 for x > 0.

In Okazawa-Suzuki-Yokota[9], unique and global existence of weak solutions to
(NLS)a is verified under the assumption (N1)–(N3). Note that unique and local exis-
tence of weak solutions to (NLS)a is assumed under (N1) and (N2).
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THEOREM 5.1. ([9, Theorem 5.1]) Let N � 3 and a > −(N − 2)2/4 . Assume
that f satisfies (N1)–(N3). Then for every u0 ∈ H1(RN) there exists a unique global
weak solution u to (NLS)a . Moreover, u belongs to C(R;H1(RN))∩C1(R;H−1(RN))
and satisfies

‖u(t)‖L2 = ‖u0‖L2 , Ẽ(u(t)) = Ẽ(u0) ∀ t ∈ R,

where Ẽ is the energy defined as

Ẽ(ϕ) :=
1
2
‖∇ϕ‖2

L2 +
a
2

∥∥∥ ϕ
|x|

∥∥∥2

L2
+

∫
RN

F(|ϕ(x)|)dx ∀ ϕ ∈ H1(RN).

The blowup results in finite time for (NLS)a is as follows:

THEOREM 5.2. Let N � 3 and a > −(N −2)2/4 . Assume that k satisfies (N1),
(N2) and (N4). Then for every u0 ∈H1(RN) with |x|u0 ∈ L2(RN) and Ẽ(u0) < 0 there
exist T1, T2 > 0 such that u ∈ C( I ;H1(RN))∩C1( I ;H−1(RN)) is a (unique) local
weak solution to (NLS)a for every open interval I with 0 ∈ I and I ⊂ (−T1,T2) and
u satisfies

lim
t→−T1+0

‖∇u(t)‖L2 = ∞ = lim
t→T2−0

‖∇u(t)‖L2 ,

that is, the weak solution blows up in finite time.

To derive the virial identity for (NLS)a we consider⎧⎨⎩i
∂vε,δ

∂ t
= −Δvε,δ +

avε,δ

|x|2 + δ
+ ρε ∗ [ f (ρε ∗ vε,δ )] in R×RN,

vε,δ (0,x) = u0(x) in RN .
(5.1)

In a way similar to Section 3, we obtain

d2

dt2
‖xu(t)‖2

L2 = Ṽ (u(t)),

where

Ṽ (ϕ) := 8‖∇ϕ‖2
L2 +8a

∥∥∥ ϕ
|x|

∥∥∥2

L2
−

∫
RN

[8N F(|ϕ |)−4N f (|ϕ |)|ϕ |]dx.

REMARK 5.1. Let k(x,y) := W (x− y) . Then (K4) is rewritten as follows: x ·
∇W ∈ L∞(RN)+L1∨(N/4)(RN) and W (x)+(1/2)x ·∇xW (x) � 0; see also [3, Theorem
6.5.4].
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et de Klein-Gordon non linéaires, C. R. Acad. Sci. Paris Sér. I Math., 293 (1981), 489–492.

[2] N. BURQ, F. PLANCHON, J. STALKER, A. S. TAHVILDAR-ZADEH,Strichartz estimates for the wave
and Schrödinger equations with the inverse-square potential, J. Funct. Anal., 203 (2003), 519–549.

[3] T. CAZENAVE, “Semilinear Schrödinger Equations,” Courant Lecture Notes in Mathematics, 10. New
York University, Courant Institute of Mathematical Sciences, New York; American Mathematical So-
ciety, 2003.

[4] J. M. CHADAM, R. T. GLASSEY, Global existence of solutions to the Cauchy problem for time-
dependent Hartree equations, J. Math. Phys., 16 (1975), 1122–1130.

[5] J. GINIBRE, G. VELO, On a class of nonlinear Schrödinger equations with nonlocal interaction,
Math. Z., 170 (1980), 109–136.

[6] R. T. GLASSEY, On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger
equations, J. Math. Phys., 18 (1977), 1794–1797.

[7] E. H. LIEB, B. SIMON, The Hartree-Fock theory for Coulomb systems, Comm. Math. Phys., 53
(1977), 185–194.

[8] T. OGAWA, Y. TSUTSUMI,Blow-up of H1 -solution for the nonlinear Schrödinger equation, J. Differ-
ential Equations, 92 (1991), 317–330.

[9] N. OKAZAWA, T. SUZUKI, T. YOKOTA, Energy methods for abstract nonlinear Schrödinger equa-
tions, Evol. Equ. Control Theory, 1 (2012), 337–354.

[10] T. SUZUKI, Energy methods for Hartree type equation with inverse-square potentials, Evol. Equ. Con-
trol Theory, 2 (2013), 531–542.

[11] M. WEINSTEIN, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math.
Phys., 87 (1982), 567–576.

(Received October 3, 2013)

(Revised March 19, 2014)

Toshiyuki Suzuki
Department of Mathematics
Tokyo University of Science

Japan
e-mail: t21.suzuki@gmail.com

Differential Equations & Applications
www.ele-math.com
dea@ele-math.com


