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BIFURCATION TYPE PHENOMENA FOR POSITIVE SOLUTIONS

OF NONLINEAR NEUMANN EIGENVALUE PROBLEMS
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(Communicated by Hiroyuki Usami)

Abstract. We consider a parametric nonlinear problem driven by the p -Laplace differential op-
erator and with a reaction which is p-superinear near +∞ but need not satisfy the usual in such
cases Ambrosetti-Rabinowitz condition. Using critical point theory and truncation and compar-
ison techniques, we prove a bifurcation-type theorem for such problems.

1. Introduction

Let Ω ⊆ R
N be a bounded domain with C2 -boundary ∂Ω . In this paper we study

the following nonlinear Neumann eigenvalue problem

{−Δpu(z)+ β (z)|u(z)|p−2u(z) = λ f (z,u(z)) in Ω,
∂u
∂n = 0 on ∂Ω, λ > 0, u > 0.

}
(1)λ

Here Δp denotes the p -Laplace differential operator define by

Δpu = div
(||Du||p−2Du

)
, (1 < p < ∞) for all u ∈W 1,p(Ω).

Also β ∈ L∞ , β � 0, β �= 0 and f (z,x) is a Caratheodory function which exhibits
a ( p -1)-superlinear growth in x ∈ R near +∞ . However, we do not assume that it
satisfies the usual in such cases Ambrosetti-Rabinowitz condition (AR-condition for
short). The aim of this work is to show the existence, nonexistence and multiplicity of
positive solutions for various values of the parameter λ > 0. More precisely, we show
that for problem (1)λ we have a bifurcation-type result, namely there exists a critical
value λ ∗ > 0 of the parameter such that if λ ∈ (0,λ ∗) , problem (1)λ has at least two
nontrivial positive smooth solutions, if λ = λ ∗ problem (1)λ has at least one positive
smooth solution and if λ > λ ∗ , then problem (1)λ has no positive solution.

This problem, has been investigated primarily in the context of Dirichlet boundary
value problems. For p = 2 (semilinear equations), we mention the works of Ambrosetti-
Brezis-Cerami [2], Delgado-Suarez [7], Maya-Shivaji [18] and Rabinowith [25]. Exten-
sions to the case of the Dirichlet p-Laplacian can be found in the works of Ambrosetti-
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Azorero- Alonso [3], Brock- Itturiaga -Ubilla [5], Dong [8], Azorero-Manfredi-Alonso
[4], Gasinski-Papageorgiou [10], Guo [11], Guo-Zhang [12], Hu-Papageorgiou [13]
and [14], Perera [24] and Takeuchi [27]. From the aforementioned works Ambrosetti-
Azorero-Alonso [3], Azorero-Manfredi- Peral Alonso [4], Guo-Zhang [12] extend the
semilinear work of Ambrosetti-Brezis-Cerami [2] and consider problems with the com-
bined effect of concave and convex terms. So, their reaction term has the form fλ (z,x)=
fλ (x) = λ |x|q−2x + |x|r−2x with q < p < r . Hu-Papageorgiou [14] also considered
problems with concave and p-superlinear nonlinearities, but had a more general reac-
tion of the form fλ (z,x) = λ |x|q−2x + f0(z,x) with f0(z,x) a Caratheodory function
satisfying the AR-condition on the positive semiaxis. Dong [8] and Takeuchi [27] deal
with logistic equations of the superdiffusive type and so their reaction term has the form
fλ (z,x) = fλ (x) = λxq−1(1− xr) with q > p and r > 0 (in Takeuchi [27] p > 2). The
works of Gasinski-Papageorgiou [10], Hu-Papageorgiou [13] and Perera [24] extend to
the p -Lapalcian the semilinear work of Maya-Shivaji [18]. In Hu-Papageorgiou [13]
the potential function is nonsmooth (hemivariational inequality) and the approach is
degree theoretic, while in Perera [24] the approach is variational based on the critical
point theory. Both works relax considerably the hypotheses of Maya-Shivaji [18] who
had a sublinear reaction. Nevertheless their framework of analysis does not incorpo-
rate p-superlinear problems. The same can be said about the work of Brock- Itturiaga
-Ubilla [5], which also excludes the possibility of p-superlinear reaction.

For the Neumann p -Laplacian, we only have the works of Motreanu-Motreanu
-Papageorgiou [20] and Wu-Chen [28]. In Motreanu-Motreanu-Papageorgiou [20] the
authors deal with problems near resonance both below and above and prove existence
and multiplicity results. In Wu-Chen [28] essin f

Ω
β > 0 and p > N (low dimensional

problem). By the Sobolev embedding theorem, this last restriction implies that the
Sobolev space W 1,p(Ω) is embedded compactly in C(Ω) and this is an essential tool in
the reasoning of Wu-Chen [28]. Moreover, their approach is completely different and
it is based on KKM-theorem (see, for example, Papageorgiou-Kyritsi [23], p.80).

2. Mathematical Background

In this section, for the convenience of the reader, we recall some of the main
mathematical tools which we will use in the sequel.

We start with critical point theory. So, let X be a Banach space and X∗ its topo-
logical dual. By < ·, · > we denote the duality brackets for the pair (X∗,X) . Given
ϕ ∈C1(X) , we say that ϕ satisfies the “C-condition” , if the following is true:

“Every sequence {un}n�1 ⊆ X such that {ϕ(un)} ⊆ R is bounded and
(1+‖un‖)ϕ ′(un) → 0 ∈ X∗, admits a strongly convergent subsequence”.

Using this compactness-type condition on ϕ , we can have the following minimax
characterization of certain critical values of ϕ . The result is known in the literature as
the “mountain pass theorem”.
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THEOREM 1. If X is Banach space, ϕ ∈ C1(X) and satisfies the C-condition,
u0, u1 ∈ X , r > 0, ||u1−u0|| > r ,

max{ϕ(u0),ϕ(u1)} < in f [ϕ(u) : ||u−u0|| = r] = ηr,

c = inf
γ∈Γ

max
0�t�1

ϕ(γ(t)) where Γ = {γ ∈C([0,1],X) : γ(0) = u0, γ(1) = u1},

then c � ηr and c is a critical value of ϕ .

In our study of problem (1)λ we will make use of the following two space:

W 1,p
n (Ω) =

{
u ∈W 1,p(Ω) : u = lim

k→+∞
uk in W 1,p(Ω),uk ∈C∞(Ω),

∂uk

∂n
= 0 on ∂Ω

}

and

C1
n(Ω) =

{
u ∈C1(Ω) :

∂u
∂n

= 0 on ∂Ω
}
.

Both these spaces are ordered Banach spaces, with order cones given by

W+ = {u ∈W 1,p
n (Ω) : u(z) � 0 a.e. on Ω}

and
C+ = {u ∈C1

n(Ω) : u(z) � 0 for all z ∈ Ω}.
Moreover, intC+ �= /0 and more precisely we have

intC+ = {u ∈C1
n(Ω) : u(z) > 0 for all z ∈ Ω}.

DEFINITION 1. A map A : X → X∗ is said to be of type (S)+ if for any sequence
{xn}n�1 ⊆ X for which xn

w−→ x in X and limsup
n→∞

< A(xn),xn−x >� 0, one has xn → x

in X .

Let A :W 1,p
n (Ω)→W 1,p

n (Ω)∗ be the nonlinearmap corresponding to −Δp , namely

< A(x),y >=
∫

Ω
||Dx||p−2(Dx,Dy)RN dz for all x,y ∈W 1,p

n (Ω). (1)

Hereafter, by < ·, · > we denote the duality brackets for the pair (W 1,p
n (Ω)∗,

W 1,p
n (Ω)) . For the map A , we have the following result (see, for example, Aizicovici-

Papageorgiou-Staicu [1], Proposition 2).

PROPOSITION 1. The map A : W 1,p
n (Ω) → W 1,p

n (Ω)∗ defined by (1) is of type
(S)+ .
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3. The bifurcation-type result

The hypotheses on the reaction function f (z,x) are:
H : f : Ω×R → R is a Caratheodory function such that f (z,0) = 0 a.e. in Ω and

(i) | f (z,x)| � a(z)+ c|x|r−1 for a.a z ∈ Ω , all x ∈ R , with a ∈ L∞(Ω)+ , c > 0 and

p < r < p∗ , where p∗ =

⎧⎪⎨
⎪⎩

Np
N− p

, p < N

+∞, p � N

(ii) if F(z,x) =
∫ x
0 f (z,s)ds , then

lim
x→+∞

F(z,x)
xp = +∞ uniformly for a.a z ∈ Ω (2)

and there exist γ ∈ ((r− p)max{1, N
p }, p∗) and β0 > 0 s.t

β0 � limin f
x→+∞

f (z,x)x− pF(z,x)
xγ uniformly for a.a z ∈ Ω;

(iii) f (z,x) > 0 for a.a z ∈ Ω , all x > 0, inf[ f (z,x) : x � s] � μs > 0 for a.a z ∈ Ω ,
s > 0 and there exist η ∈ L∞(Ω)+ , η �= 0 and τ ∈ (1, p) s.t

f (z,x) � η(z)xτ−1 for a.a z ∈ Ω, all x � 0;

(iv) for every θ > 0 and every bounded interval I of (0,+∞) , there exists σθ ,I > 0 s.t
x → λ f (z,x)+ σθ ,Ixp−1 is nondecreasing on [0,θ ] for a.a z ∈ Ω and all λ ∈ I .

REMARK 1. Since we are interested in positive solutions and both the conditions
near infinity (see H(ii)) and near zero (see H(iii)), involve only the positive semiaxis, we
may (and will) assume without any loss of generality that f (z,x) = 0 for a.a z ∈ Ω , all
x � 0. Hypothesis H(ii) classifies the problem as ”p-superlinear”. However, note that
we do not use AR-condition which is a common feature in most superlinear problems
studied in the literature. We remind the reader that AR-condition (unilateral version,
since in our case f (z,x) = 0 for a.a z ∈ Ω , all x � 0) says that there exist μ > p and
M > 0 s.t

0 < μF(z,x) � f (z,x)x for a.a z ∈ Ω, all x � M. (3)

Integrating (3) we obtain the weaker condition

c0x
μ � F(z,x) for a.a z ∈ Ω, all x � M and some c0 > 0. (4)

Clearly (4) implies (2). In fact (2) is much weaker than (4) and permits a much
slower growth for F(z, ·) (see the example below). Analogous conditions were also
used by Costa-Magalhaes [6] (Dirichlet pde’s) and Fei [9] (Hamiltonian systems). Other
generalizations of AR-condition can be found in the works of Jeanjean [16], Miyagaki-
Souto [19] and Schechter-Zou [26].
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EXAMPLE 1. The following function satisfies hypotheses H (for the sake of sim-
plicity we drop the z-dependence):

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

0, x < 0,

ηxτ−1 −η0xq−1, 0 � x � 1 with 1 < τ < q,η > η0 > 0,

xp−1 lnx+ η −η0, 1 < x.

Note that f (·) does not satisfies the AR-condition (see (3)).

Let J = {λ > 0 : problem (1)λ has a positive solution} . Using variational meth-
ods combined with suitable truncation techniques, we show that J �= /0 . We will need
the following simple lemma (see [23]):

LEMMA 1. If β ∈ L∞(Ω) , β � 0 , β �= 0 ,
then there exists ξ0 > 0 s.t.

‖Du‖p
p +

∫
Ω

β |u|pdz � ξ0‖u‖p for all u ∈W 1,p(Ω).

PROPOSITION 2. If hypotheses H hold,
then J �= /0 and if λ ∈ J and μ ∈ (0,λ ) , then μ ∈ J .

Proof. The map A+ βKp : W 1,p
n (Ω) →W 1,p

n (Ω)∗ is maximal monotone, strictly
monotone and for all u ∈W 1,p

n (Ω) we have

< (A+ βKp)(u),u > = ||Du||pp +
∫

Ω
β |u|pdz

� ξ0||u||p (see Lemma 1)

⇒ u → (A+ βKp)(u) is coercive.

Hence u → (A+βKp)(u) is surjective (see, for example, Papageorgiou-Kyritsi [23], p.
172), where Kp : Lp(Ω) → Lp′(Ω) (1/p+ 1/p′ = 1) is the map defined by Kp(u) =
|u|p−2u . Therefore we can find unique (due to the strict monotonicity) u ∈W 1,p

n (Ω)\
{0} s.t

A(u)+ βKp(u) = 1, (5)

⇒−Δpu(z)+ β (z)|u(z)|p−2u(z) = 1 a.e in Ω,
∂ u
∂n

= 0 on ∂Ω (6)

(see Motreanu-Papageorgiou [21]).

From (6) and the nonlinear regularity theory (see Hu-Papageorgiou [15] and Lieberman
[17]), we have u ∈C1

n(Ω) . On (5) we act with −u− ∈W 1,p
n (Ω) and obtain

||Du−||pp +
∫

Ω
β (u−)pdz � 0,
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⇒u− = 0, i.e., u ∈C+ \ {0} (see Lemma 1).

From (6) we have

Δpu(z) � ||β ||∞u(z)p−1 a.e. in Ω,

⇒u ∈ intC+ (see Vazquez [29]).

Hence there exists ξ1 > 0 s.t. ξ1 � u(z) for all z ∈ Ω . Let λ = 1/||Nf (u)||∞ where
Nf (u)(·) = f (·, u(·)) (see hypothesis H(i)). Then we have

A(u)+ β up−1 = 1 � λNf (u). (7)

We consider the following truncation of the nonolinearity f (z, ·) :

g(z,x) =

⎧⎪⎪⎨
⎪⎪⎩

0, x < 0,

f (z,x), 0 � x � u(z),

f (z, u(z)), u(z) < x.

(8)

Clearly, this is a Caratheodory function. We set G(z,x) =
∫ x
0 g(z,s)ds and consider the

C1 -functional ϕ̂λ : W 1,p
n (Ω) → R defined by

ϕ̂λ (u) =
1
p
||Du||pp +

1
p

∫
Ω

β |u|pdz−λ
∫

Ω
G(z,u)dz for all u ∈W 1,p

n (Ω).

Exploiting the compact embedding of W 1,p
n (Ω) into Lr(Ω) (recall r < p∗ ), we can

easily check that ϕ̂λ is sequentially weakly lower semicontinuous. Moreover, because
of (8) and Lemma 1, it is clear that ϕ̂λ is coercive. So, by virtue of the Weierstrass

theorem we can find u0 ∈W 1,p
n (Ω) s.t.

ϕ̂λ (u0) = inf[ϕ̂λ (u) : u ∈W 1,p
n (Ω)] = m̂λ . (9)

Let ξ ∈ (0,ξ1) (recall ξ1 � min
Ω

u ). Then

ϕ̂λ (ξ ) =
ξ p

p

∫
Ω

βdz−λ
∫

Ω
F(z,ξ )dz (see (8))

� ξ p

p

∫
Ω

βdz− λ
τ

ξ τ
∫

Ω
ηdz (see H(iii))

= ξ τ [
ξ p−τ

p

∫
Ω

βdz− λ
τ

∫
Ω

ηdz]. (10)

Since τ < p , by choosing ξ ∈ (0,ξ1) even small if necessary, from (10) we infer that

ϕ̂λ (ξ ) < 0,
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⇒ϕ̂λ (u0) = m̂λ < 0 = ϕ̂λ (0) (see (9)),

⇒u0 �= 0.

From (9), we have

ϕ̂
′
λ
(u0) = 0,

⇒A(u0)+ β |u0|p−2u0 = λNg(u0) (11)

(where Ng(u)(·) = g
(·,u(·)) for all u ∈W 1,p

n (Ω)).

On (11) we act with −u−0 ∈W 1,p
n (Ω) and obtain

||Du−0 ||pp +
∫

Ω
β |u−0 |pdz = 0, (see (8)),

⇒ξ0||u−0 ||p � 0, (see Lemma 1), i.e., u0 � 0,u0 �= 0.

Also, on (11) we act with (u0− u)+ ∈W 1,p
n (Ω) and obtain

< A(u0),(u0− u)+ > +
∫

Ω
βup−1

0 (u0 − u)+dz

= λ
∫

Ω
g(z,u0)(u0− u)+dz

= λ
∫

Ω
f (z, u)(u0 − u)+dz (see (8))

�< A(u),(u0− u)+ > +
∫

Ω
β up−1(u0− u)+dz (see (7)),

⇒ < A(u)−A(u0),(u0 − u)+ > +
∫

Ω
β (up−1−up−1

0 )(u0− u)+dz � 0

⇒u0 � u.

Therefore, we have that u0 ∈ [0, u] = {u∈W 1,p
n (Ω) : 0 � u(z) � u(z) a.e. in Ω} . Hence

because of (8), we see that (11) becomes

A(u0)+ βup−1
0 = λNf (u0),

⇒−Δpu0(z)+ β (z)u0(z)p−1 = λ f (z,u0(z)) a.e. in Ω,
∂u0

∂n
= 0 on ∂Ω,

⇒u0 ∈ intC+ (nonlinear regularity and Vazquez [29]), and J �= /0.

Now, let λ ∈ J and μ ∈ (0,λ ) . We can find a nontrivial solution u ∈ W 1,p
n (Ω) of

(1)λ satisfying u � 0. Nonlinear regularity and the Vazquez maximum principle imply
that u ∈ intC+ . We have

A(u)+ βup−1 = λNf (u) � μNf (u) (see H(iii) and recall μ < λ ).

Then truncating f (z, ·) at u(z) and reasoning as above via the direct method we
obtain the solution û ∈ [0,u]∩ intC+ of (1)μ . Therefore μ ∈ J . �
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Next λ ∗ = supJ . Next we show that λ ∗ < +∞ . In what follows û1 denotes
the positive Lp -normalized (that is ||û1||p = 1) principal eigenfunction of −Δu +
β |u|p−2u . We know that û1 ∈ intC+ .

PROPOSITION 3. If hypotheses H hold,
then λ ∗ < +∞ .

Proof. Hypotheses H imply that we can find λ > 0 s.t.

λ f (z,x) � ||β ||∞xp−1 for a.a. z ∈ Ω, all x � 0. (12)

Let λ > λ and suppose that problem (1)λ admits a positive solution u . We know that
u∈ intC+ . We can find t > 0 s.t. tû1 � u . Let t > 0 be the biggest such coefficient. Set
θ = ||u||∞ , I = [λ ,λ +ν] with ν � λ −λ > 0 (so λ ∈ I ) and let σθ > 0 be as postulated
by hypothesis H(iv). Let δ ∈ (0,min

Ω
u) (recall u ∈ intC+ ) and set uδ = u−δ ∈ intC+ .

We have

−Δpuδ (z)+ (β (z)+ σθ)uδ (z)p−1

=−Δpu(z)+ (β (z)+ σθ)u(z)p−1−w(δ ) (with w(δ ) → 0+ as δ → 0+)

=λ f (z,u(z))+ σθ u(z)p−1−w(δ )

=λ f (z,u(z))+ σθ u(z)p−1 +(λ −λ) f (z,u(z))−w(δ )

�λ f (z,u(z))+ σθ u(z)p−1 +(λ −λ)μs−w(δ )
(with s = min

Ω
u and μs > 0 as postulated by H(iii))

�λ f (z, tû1(z))+ σθ (tû1(z))p−1 +(λ −λ)μs −w(δ ).

Recall that w(δ ) → 0+ as δ → 0+ . So, for δ ∈ (0,1) small we will have w(δ ) �
(λ −λ)μs . Hence

−Δpuδ (z)+ (β (z)+ σθ )uδ (z)p−1

� λ f (z,tû1(z))+ σθ (tû1(z))p−1

� (β (z)+ σθ )(tû1(z))p−1 (see (12))

= −Δp(tû1(z))+ (β (z)+ σθ )(tû1(z))p−1,

⇒ uδ � tû1 for δ ∈ (0,1) small,

⇒ u− tû1 ∈ intC+, contradicting the maximality of t > 0.

Therefore it follows that for λ > λ problem (1)λ has no positive solution and so λ ∗ �
λ < +∞ . �

We show that in fact λ ∗ ∈ J .

PROPOSITION 4. If hypotheses H hold, then λ ∗ ∈ J .
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Proof. Let {λn}n�1 ⊆ J be an increasing sequence s.t. λn → (λ ∗)− as n → ∞ .
For every n � 1, we can find un ∈ intC+ s.t.

A(un)+ βup−1
n = λnNf (un) for all n � 1. (13)

Since f � 0 (see H(iii)) and {λn}n�1 is increasing, we see that if m > n , then,

A(um)+ βup−1
m � λnNf (um).

Then truncating f (z, ·) at um ∈ intC+ and reasoning as in the proof of Proposition 2,
we obtain a solution un ∈ intC+ of (1)λn s.t. ϕλn(un) < 0. Therefore, we may assume
without any loss of generality that

ϕλn(un) < 0 for all n � 1. (14)

On (13) we act with un ∈ intC+ and obtain

−||Dun||pp−
∫

Ω
βup

ndz+ λn

∫
Ω

f (z,un)undz = 0 for all n � 1. (15)

Also, from (14) we have

||Dun||pp +
∫

Ω
βup

ndz−λn

∫
Ω

pF(z,un)dz < 0 for all n � 1. (16)

We add (15) and (16)

λn

∫
Ω
[ f (z,un)un− pF(z,un)]dz < 0 for all n � 1. (17)

By virtue of hypothesis H(ii), we can find β1 ∈ (0,β0) and M1 > 0 s.t.

β1x
γ � f (z,x)x− pF(z,x) for a.a. z ∈ Ω, all x � M1. (18)

Moreover, hypothesis H(i) implies that

| f (z,x)x− pF(z,x)| � M2 for a.a. z ∈ Ω, all x < M1 and some M2 > 0. (19)

From (18) and (19) it follows that

β1(x+)γ −M3 � f (z,x)x− pF(z,x) for a.a. z ∈ Ω, all x ∈ R and some M3 > 0. (20)

Returning to (17) and using (20), we obtain

β1

∫
Ω

uγ
ndz � M3 for all n � 1 (recall un ∈ intC+),

⇒{un}n�1 ⊆ Lγ (Ω) is bounded. (21)

It is clear that in hypothesis H(ii), we may assume γ � r < p∗ . Suppose N �= p . Then
we can find t ∈ [0,1) s.t. 1/r = (1− t)/γ + t/p∗ . Invoking the interpolation inequality,
we have

||un||r � ||un||1−t
γ ||un||tp∗ ,
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⇒||un||r � M4||un||t for some M4 > 0, all n � 1 (see (21))

⇒||un||rr � M4||un||rt (22)

Hypothesis H(i) implies that

| f (z,x)x| � â(z)+ ĉ|x|r for a.a. z ∈ Ω, all x ∈ R, with â ∈ L∞(Ω)+, ĉ > 0. (23)

On (13) we act with un ∈ intC+ and obtain

||Dun||pp +
∫

Ω
βup

ndz = λn

∫
Ω

f (z,un)undz

� λnc1(1+ ||un||rr) for some c1 > 0, all n � 1 (see (23))

� λnc2(1+ ||un||tr) for some c2 > 0, all n � 1 (see (22)),

⇒ ξ0||un||p � λ ∗c2(1+ ||un||tr) for all n � 1 (see Lemma 1). (24)

From the restriction on γ (see H(ii)), we have that tr < p and so from (24), it follows
that

{un}n�1 ⊆W 1,p
n (Ω) is bounded. (25)

If N = p , then by definition p∗ = +∞ and by the Sobolev embedding theorem, W 1,p
n (Ω)

is embedded compactly into Ls(Ω) for all s∈ [1,∞) . Let γ � r < s and choose t ∈ [0,1)
s.t. 1/r = (1−t)/γ + /s , hence tr = s(r−γ)/(s−γ) . Note that s(r−γ)/(s−γ)→ r−γ
as s → +∞ = p∗ and by hypothesis H(ii), r− γ < p (recall N = p ). Hence for s > p
large enough, we will have tr < p and so the previous argument with p∗ replaced by
this large s > p works and gives again (25). Because of (25), we may assume that

un
w→ u∗ in W 1,p

n (Ω) and un → u∗ in Lr(Ω) as n → ∞. (26)

On (13) we act with un−u∗ ∈W 1,p
n (Ω) , pass to the limit as n → ∞ and use (26). Then

lim
n→∞

< A(un),un−u∗ >= 0,

⇒un → u∗ in W 1,p
n as n → ∞ (since A is of type (S)+). (27)

So, if in (13) we pass to the limit as n → ∞ and use (27), we obtain

A(u∗)+ β (u∗)p−1 = λ ∗Nf (u∗),
⇒u∗ ∈C+ solves (1)λ ∗ .

It remains to show that u∗ �= 0, hence u∗ ∈ intC+ (by the nonlinear maximum princi-
ple of Vazquez). To this end, we consider the following auxiliary nonlinear Neumann
problem {−Δpu(z)+ β (z)|u(z)|p−2u(z) = μ̂η(z)u(z)τ−1 in Ω,

∂u
∂n = 0 on ∂Ω, u > 0.

}
(28)

Here μ̂ ∈ (0,λ1) . Let ψ0 : W 1,p
n (Ω) → R be the energy functional for problem (28)

defined by

ψ0 =
1
p
||Du||pp +

1
p

∫
Ω

β |u|pdz− μ̂
τ

∫
Ω

η(u+)τdz
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� ξ0

p
||u||p− c3

τ
||u||τ for some c3 > 0, all u ∈W 1,p

n (Ω). (29)

Since τ < p (see H(iii)), from (29) we infer that ψ0 is coercive. It is also sequen-
tially weakly lower semicontinuous. So, by the Weierstrass theorem, we can find
ũ ∈W 1,p

n (Ω) s.t.
ψ0(ũ) = inf[ψ0(u) : u ∈W 1,p

n (Ω)] = m̃. (30)

Note that if ξ ∈ (0,1) , then

ψ0(ξ ) � ξ p

p

∫
Ω

βdμ − ξ μ μ
τ

∫
Ω

ηdz.

Since τ < p , by choosing ξ ∈ (0,1) small enough we have ψ0(ξ ) < 0⇒ ψ0(ũ) = m̃ <
0 = ψ0(0) ⇒ ũ �= 0. Then from (30) we have

ψ ′
0(ũ) = 0,

⇒A(ũ)+ β ũp−1 = μ̂η(ũ+)p−1. (31)

On (31) we act with −ũ− ∈W 1,p
n (Ω) and obtain

||Dũ−||pp +
∫

Ω
β (ũ−)pdz = 0

⇒ξ0||ũ−||p � 0, i.e. ũ � 0, ũ �= 0 (see Lemma 1).

From (31), we have

−Δpũ(z)+ β (z)ũ(z)p−1 = μ̂η(z)ũ(z)τ−1 � 0 a.e. in Ω,
∂ ũ
∂η

= 0 on ∂Ω,

⇒ũ ∈ intC+ (nonlinear regularity theory and Vazquez).

Since un ∈ intC+ , we can find the biggest constant tn > 0 s.t. tnũ � un . Suppose
tn ∈ (0,1) . Let θn = ||un||∞ and let σn > 0 be the positive real postulated by hypothesis
H(iv). For δ ∈ (0,min

Ω
un) (recall un ∈ intC+ ), as before (see the proof of Proposition

3), we set uδ
n = un− δ ∈ intC+ . We have

−Δpu
δ
n (z)+ (β (z)+ σn)uδ

n (z)p−1

=−Δpun(z)+ (β (z)+ σn)un(z)p−1−wn(δ ) (with wn(δ ) → 0+ as δ → 0+)

=λn f (z,un(z))+ σnun(z)p−1−wn(δ )

�μ̂ f (z,un(z))+ σnun(z)p−1 +(λn− μ̂) f (z,un(z))−wn(δ )
(since λn � λ1 > μ̂ for all n � 1 and f � 0)

�μ̂ f (z, tnũ(z))+ σn(tnũ(z))p−1 +(λn− μ̂)μn−wn(δ )
(where μn = μsn > 0, sn = min

Ω
un, see H(iii), (iv))
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�μ̂η(z)(tnũ(z))τ−1 + σn(tnũ(z))p−1 +(λn− μ̂)μn−wn(δ ) (see H(iii)).

Because wn(δ ) → 0+ as δ → 0+ , for δ ∈ (0,1) small we have (λn − μ̂)μn � wn(δ ) .
Therefore

−Δpu
δ
n (z)+ (β (z)+ σn)uδ

n (z)p−1

� μ̂η(z)(tnũ(z))τ−1 + σn(tnũ(z))p−1

� μ̂t p−1
n η(z)(tnũ(z))τ−1 + σn(tnũ(z))p−1 (since tn ∈ (0,1), τ < p)

= −Δp(tnũ(z))+ (β (z)+ σn)(tnũ(z))p−1 a.e. in Ω (see (28)),

⇒uδ
n � tnũ,

⇒un− tnũ ∈ intC+ contradicting the maximality of tn > 0.

So, tn � 1 for all n � 1 and we have ũ � un for all n � 1, hence ũ � u , i.e., u ∈
intC+ . �

Next we show that, for λ ∈ (0,λ ∗) , we have two positive solutions.

PROPOSITION 5. If hypotheses H hold and λ ∈ (0,λ ∗) ,
then problem (1)λ has at least two positive smooth solutions

u0, û ∈ intC+, u0 � û, û �= u0.

Proof. Let u∗ ∈ intC+ be a solution for problem (1)λ ∗ (it exists by virtue of
Proposition 4). Then

A(u∗)+ β (u∗)p−1 = λ ∗Nf (u∗) � λNf (u∗) (since f � 0 and λ < λ ∗ ). (32)

As before, truncating the reaction f (z, ·) at u∗(z) and using the direct method and (32),
we obtain a solution u0 ∈ [0,u∗]∩ intC+ for problem (1)λ . In fact we may assume that
u0 is the biggest solution of (1)λ in the order interval [0,u∗] . The existence of this
extremal solution can be established as in Aizicovici-Papageorgiou-Staicu [1], Propo-
sition 8) using the Kuratowski-Zorn lemma.

Using u0 , we will produce a second positive smooth solution for problem (1)λ .
To the end, we consider the following truncation of the reaction f0(z,x) :

f0(z,x) =

⎧⎨
⎩

f (z,u0(z)), x � u0(z),

f (z,x), u0(z) < x.
(33)

This is a Caratheodory function. We set F0(z,x) =
∫ x
0 f0(z,s)ds and consider the C1 -

functional ϕλ
0 : W 1,p

n (Ω) → R defined by

ϕλ
0 (u) =

1
p
||Du||pp +

1
p

∫
Ω

β |u|pdz−λ
∫

Ω
F0(z,u)dz for all u ∈W 1,p

n (Ω).

Claim 1: ϕλ
0 satisfies the C- condition
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Let {un}n�1 ⊆W 1,p
n (Ω) be a sequence s.t.

|ϕλ
0 (un)| � M5 for some M5 > 0, all n � 1 (34)

and(1+ ||un||)(ϕλ
0 )′(un) → 0 in W 1,p

n (Ω)∗ as n → ∞. (35)

From (35) we have

| < (ϕλ
0 )′(un),h > | � εn||h||

1+ ||un|| for all h ∈ W 1,p
n (Ω) with εn → 0+ ,

⇒ | < A(un),h > +
∫

Ω
β |un|p−2unhdz−λ

∫
Ω

f0(z,un)hdz|

� εn||h||
1+ ||un|| for all n � 1. (36)

In (36), we choose h = −u−n ∈W 1,p
n (Ω) and obtain

ξ0||u−n ||p−λ
∫

Ω
f (z,u0)(−u−n )dz � εn (see Lemma 1)

⇒u−n → 0 in W 1,p
n (Ω) as n → ∞ (see H(iii)).

Next on (36), we use h = u+
n ∈W 1,p

n (Ω) and obtain

−||Du+
n ||pp−

∫
Ω

β (u+
n )pdz+ λ

∫
Ω

f0(z,un)u+
n dz � εn for all n � 1. (37)

On the other hand from (34) and since u−n → 0 for n → ∞ , we have

||Du+
n ||pp +

∫
Ω

β (u+
n )pdz−λ

∫
Ω

pF0(z,u+
n )dz � pM5 for all n � 1. (38)

Adding (37) and (38), we obtain

λ
∫

Ω
[pF0(z,u+

n )− f0(z,u+
n )u+

n ]dz � M6 for some M6 > 0, all n � 1,

⇒
∫

Ω
[pF(z,u+

n )− f (z,u+
n )u+

n ]dz � M7 for some M7 > 0, all n � 1 (39)

(see (33)).

Using (39) and reasoning as in the proof of Proposition 4, via hypothesis H(ii) and the
interpolation inequality, we show that {un}n�1 ⊆W 1,p

n is bounded. So, we may assume
that

un
w→ u in W 1,p

n (Ω) and un → u in Lr(Ω) as n → ∞. (40)

Therefore, if in (36) we set h = un − u ∈ W 1,p
n (Ω) , passing to the limit as n → ∞

and using (40) and the (S)+ -property of A , we obtain un → u ∈ W 1,p
n (Ω) and so we
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conclude that ϕλ
0 satisfies the C-condition. This proves Claim 1.

Claim 2: u0 ∈ intC+ is a local minimizer of ϕλ
0

We consider the following truncation of the nonlinearity f0(z, ·) :

g0(z,x) =

⎧⎨
⎩

f (z,x), x � u∗(z),

f0(z,u∗(z)), u∗(z) < x.
(41)

This is a Caratheodory function. We set G0(z,x) =
∫ x
0 g0(z,s)ds and introduce the C1 -

functional ψλ
0 : W 1,p

n (Ω) → R defined by

ψλ
0 (u) =

1
p
||Du||pp +

1
p

∫
Ω

β |u|pdz−λ
∫

Ω
G0(z,u)dz for all u ∈W 1,p

n (Ω).

Clearly, ψλ
0 is sequentially weakly lower semicintinuous. Moreover, because of (41)

we see that ψλ
0 is coercive. Hence, by the Weierstrass theorem, we can find û0 ∈

W 1,p
n (Ω) s.t.

ψλ
0 (û0) = in f [ψλ

0 (u) : u ∈W 1,p
n (Ω)]. (42)

From (42), we have

(ψλ
0 )′(û0) = 0,

⇒A(û0)+ β |û0|p−2û0 = λNg0(û0). (43)

On (43) we act with (u0− û0)+ ∈W 1,p
n (Ω) and obtain

< A(û0),(u0− û0)+ > +
∫

Ω
β |û0|p−2û0(u0 − û0)+dz

=λ
∫

Ω
g0(z, û0)(u0− û0)+dz

=λ
∫

Ω
f (z,u0)(u0− û0)+dz (see (41))

= < A(u0),(u0− û0)+ > +
∫

Ω
βup−1

0 (u0− û0)+dz

(since u0 ∈ intC+ is a solution of (1)λ ),

⇒ < A(û0)−A(u0),(u0− û0)+ > +
∫

Ω
β (|û0|p−2û0−up−1

0 )(u0− û0)+dz = 0,

⇒|{u0 > û0}|N = 0, i.e., u0 � û0 (44)

Also, on (43) we act with (û0−u∗)+ ∈W 1,p
n (Ω) and have

< A(û0),(û0−u∗)+ > +
∫

Ω
β ûp−1

0 (û0−u∗)+dz

=λ
∫

Ω
g0(z, û0)(û0−u∗)+dz
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=λ
∫

Ω
f0(z,u∗)(û0−u∗)+dz (see (41))

=λ
∫

Ω
f (z,u∗)(û0−u∗)+dz (see (32) and recall that u0 � u∗)

� < A(u∗),(û0−u∗)+ > +
∫

Ω
β (u∗)p−1(û0−u∗)+dz (see (32)),

⇒0 �< A(u∗)−A(û0),(û0 −u∗)+ > +
∫

Ω
β ((u∗)p−1− ûp−1

0 )(û0 −u∗)+dz,

⇒|{û > u∗}|N = 0, i.e., û0 � u∗. (45)

From (44) and (45), we see that û0 ∈ [u0,u∗] and so (43) becomes

A(û0)+ β ûp−1
0 = λNf (û0)dz (see (41) and (33)),

⇒û0 ∈ intC+ solves problem (1)λ (nonlinear regularity).

Recall that u0 is the biggest solution of (1)λ in the order interval [0,u∗] . Hence û0 =
u0 . Let δ > 0 and set uδ

0 = u0 + δ ∈ intC+ . Then for θ = ||u∗||∞ , I = (0,λ ∗] , λ ∈ I
and σθ > 0 as postulate by hypothesis H(iv), we have

−Δpu
δ
0 (z)+ β (z)uδ

0 (z)p−1 + σθuδ
0 (z)p−1

=−Δpu0(z)+ (β (z)+ σθ )u0(z)p−1−ρ0(δ ) (with ρ0(δ ) → 0+ as δ → 0+)

=λ f (z,u0(z))+ σθu0(z)p−1 + ρ0(δ )

=λ ∗ f (z,u0(z))+ σθu0(z)p−1− (λ ∗−λ ) f (z,u0(z))+ ρ0(δ )

�λ ∗ f (z,u∗(z))+ σθu∗(z)p−1− (λ ∗−λ )μs + ρ0(δ )
(where s = min

Ω
u0, see H(iii)).

Recall that ρ0(δ ) → 0+ as δ → 0+ . So for δ ∈ (0,1) small, we have ρ0(δ ) � (λ ∗ −
λ )μs . Hence

A(uδ
0 )+ (β + σθ )(uδ

0 )p−1

� λ ∗Nf (u∗)+ σθ (u∗)p−1

= A(u∗)(β + σθ )(u∗)p−1 (see (32)),

⇒uδ
0 � u∗,

⇒u∗ −u0 ∈ intC+.

Since u0 ∈ intC+ , we see that u0 = û0 ∈ intC1
n(Ω)[0,u∗] . Therefore u0 is a local C1

n(Ω)-

minimizer of ψλ
0 . But note that ψλ

0 |[0,u∗]= ϕλ
0 |[0,u∗] . Hence u0 is a local C1

n(Ω)-
minimizer of ϕλ

0 , and this implies that u0 is a local W 1,p
n (Ω)-minimizer of ϕλ

0 (see
Motreanu-Papageorgiou [22]). This proves Claim 2.

We may assume that u0 ∈ intC+ is an isolated critical point of ϕλ
0 . Indeed, oth-

erwise we have a whole sequence of distinct solution of (1)λ belonging in intC+ and
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so we are done. Then as in Aizicovici-Papageorgiou-Staicu [1], Proposition 5, we can
find ρ ∈ (0,1) small s.t.

ϕλ
0 (u0) < in f [ϕλ

0 (u) : ||u−u0|| = ρ ] = ηρ . (46)

Hypothesis H(ii) implies that

ϕλ
0 (ξ ) →−∞ as ξ → +∞,ξ ∈ R. (47)

Then (46), (47) and Claim 1 permit the application of mountain pass theorem and so,
we obtain û ∈W 1,p

n (Ω) s.t.

(ϕλ
0 )′(û) = 0 (48)

and ϕλ
0 (u0) < ηρ � ϕλ

0 (û). (49)

From (49), it follows that û �= u0 . From (48), we have

A(û)+ β |û|p−2û = λNf (û). (50)

As in the proof of Claim 2, acting on (50) with (u0 − û)+ ∈ W 1,p
n (Ω) , we show that

û � u0 . Hence because of (33) we conclude that û∈ intC+ (nonlinear regularity) solves
(1)λ . �

Summarizing the situation, we can formulate the following bifurcation-type result
for problem (1)λ .

THEOREM 2. If hypotheses H hold,
then there exists λ ∗ > 0 s.t. (a) for all λ ∈ (0,λ ∗) , problem (1)λ has at least two
positive solutions u0, û ∈ intC+ , u0 � û , u0 �= û ;

(b) for λ = λ ∗ , problem (1)λ has at least one positive solution u∗ ∈ intC+ ;

(c) for all λ > λ ∗ , problem (1)λ has no positive solution.

Acknowledgements. The author wishes to thank a knowledgeable referee for his/her
corrections and remarks that improved the paper considerably.

RE F ER EN C ES

[1] S.AIZICOVICI, N.S. PAPAGEORGIOU, V. STAICU, Existence and multiple solutions with precise sign
information for superlinear Neumann problems, Annali di Mat. Pura Appl., 188, (2009), 679–719.

[2] A. AMBROSETTI, H. BREZIS, G. CERAMI, Combined effects of concave and convex nonlinearities
in some elliptic problems, Journal of Functional Analysis, 122 (1994), 519–543.

[3] A. AMBROSETTI, G. AZORERO, P. ALONSO,Multiplicity of solutions for semilinear and quasi-linear
elliptic problems, Journal of Functional Analysis, 137 (1996), 219–242.

[4] J.G. AZORERO, J.J. MANFREDI, I.P. ALONSO, Sobolev versus Hölder local minimizer and global
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