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OSCILLATION CRITERIA FOR HALF–LINEAR

DIFFERENTIAL EQUATIONS WITH p(t)–LAPLACIAN

YUTAKA SHOUKAKU

(Communicated by Qihu Zhang)

Abstract. This paper presents suffient conditions for oscillation of solutions of half-linear differ-
ential equations with p(t) -Laplacian. As an application of generalized Riccati-type inequality,
some new oscillation theorems are established.

Dedicated to Professor Norio Yoshida on the occasion of his 65-th birthday

1. Introduction

The differential equations and variational problems with p(x)-growth conditions
arise from nonlinear elasticity theory, electrorheological fluids, etc. (see [3]–[5]). Es-
pecially, we have much interest in studying oscillation problem for the p(·)-Laplacian
equation.

In 2007, Zhang [6] was treated oscillation problem for nonlinear equations with
p(t)-Laplacian

(|u′(t)|p(t)−2u′(t))′ + c(t)g(t,u) = 0, t > 0.

Motivated by this article [6], Yoshida[10],[11] established Picone identities and
Strumian comparison theorems for half-linear elliptic inequalities with p(x)-Laplacian

vQ[v] � 0,

where

Q[v] ≡ ∇ · (A(x)|∇v|p(x)−1∇v)−A(x)∇p(x)(log |v|)|∇v|p(x)−1∇v

+B(x)|∇v|p(x)−1∇v+C(x)|v|p(x)−1v.

It notes in above inequality that log |v| has singularities at zeros of v(x) , but v log |v| is
continuous at every zero x0 , that is, limε→+0 ε logε = 0 when v log |v| = 0 at x = x0 .
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There are few papers dealing the oscillation problems of p(·)-Laplacian type
equation[7],[8]. It is easy to consider that p(t)-Laplacian equation

(|u′(t)|p(t)−2u′(t))′ + c(t)|u|p(t)−2u = 0, t > 0

is not half-linear, if p(t) is not a constant.
Recently, Adamowicz and Hästö introduced a new varient of the p(·)-Laplacian in

[1], [2]. They were baced on the strong form of the p-Laplace equation div(|∇u|p−2∇u)
= 0, i.e.

Δpu = |∇u|p−4

[
(p−2)∑

i, j

uxi,x j uxiux j + |∇u|2Δu

]
= 0.

If p is replaced by p(x) and defines this operator as Δ̃p(·) , then we note that

Δ̃p(·)u ≡ div(|∇u|p(x)−2∇u)−|∇u|p(x)−2 log(|∇u|)∇u ·∇p.

Furthermore we found in [1] that the following simple result:

PROPOSITION 1. Let p be Lipschitz with 1 < p− � p+ < ∞ . Then

Δ̃p(·)(λu) = λ p(·)−1Δ̃p(·)u

in the sense of distributions for u ∈W 1,p(·)(Ω) and λ ∈ [0,∞) . In particular, if u is a
solution, then so is λu.

Therefore, our aim in this article is to obtain sufficient conditions for the oscillation
of solutions of half-linear differential equations with p(t)-Laplacian

(|u′(t)|p(t)−2u′(t))′ − p′(t)(log |u′(t)|)|u′(t)|p(t)−2u′(t)

+ c(t)|u(t)|p(t)−2u(t) = 0, t > 0. (E)

DEFINITION 1. A solution of (E) is said to be oscillatory if it has arbitrarily large
zeros, otherwise it is nonoscillatory.

PROPOSITION 2. The p(t)-Laplacian equation (E) is half-linear in the sense that
u is solution of (E), then ku is also solution of (E) for any constant k .

Proof. Let u be any solution of (E), and k be any constant. We see that

(|k|p(t)−2k · |u′(t)|p(t)−2u′(t))′

− p′(t) log(|k| · |u′(t)|) · |k|p(t)−2k · |u′(t)|p(t)−2|u′(t)|
+ c(t) · |k|p(t)−2k · |u(t)|p(t)−2u = 0. (1.1)

By direct calculation, it is easy to see that

(|k|p(t)−2k · |u′(t)|p(t)−2u′(t))′
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= |k|p(t)−2k · (|u′(t)|p(t)−2u′(t))′

+ p′(t) log |k| · |k|p(t)−2k · |u′(t)|p(t)−2u′(t). (1.2)

Substituting (1.1) into (1.2) yields

|k|p(t)−2k

{
(|u′(t)|p(t)−2u′(t))′ − p′(t)(log |u′(t)|)|u′(t)|p(t)−2u′(t)

+ c(t)|u(t)|p(t)−2u(t)
}

= 0

for any constant k . Hence, we conclude that (E) is half-linear.

2. Main results

First let us present a direct extension of the work [9] to the generalized Riccati
inequality.

PROPOSITION 3. If there exists a function φ(t) ∈C1([T0,∞);(0,∞)) such that

∫ ∞

T1

(
α(t)−1

α(t)

)(
p(t)|φ ′(t)|α(t)

φ(t)

) 1
α(t)−1

dt < ∞,

∫ ∞

T1

φ(t)q(t)dt = ∞

for some T1 � T0 , then the Riccati inequality

x′(t)+
1

p(t)
|x(t)|α(t) � −q(t), (2.1)

has no positive solution on [T,∞) for all large T , where α(t) ∈ C(R;(1,∞)) , p(t) ∈
C([T0,∞);(0,∞)) and q(t) ∈C([T0,∞);R) .

Proof. Suppose that (2.1) has a positive solution x(t) , then there exists a T0 > 0
such that x(t) > 0 for t � T0 . Mutiplying (2.1) by φ(t) and integrating both sides over
[T0,t] , we have

∫ t

T0

(
φ(s)
p(s)

)
x(s)α(s)ds−

∫ t

T0

x(s)φ ′(s)ds+
∫ t

T0

q(s)φ(s)ds � x(T0)φ(T0). (2.2)

By Young’s inequality we obtain

x(s)|φ ′(s)| � x(s)
(

φ(s)
p(s)

) 1
α(s) ·

(
p(s)
φ(s)

) 1
α(s) |φ ′(t)|

� 1
α(s)

(
φ(s)
p(s)

)
x(s)α(s)
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+
α(s)−1

α(s)

((
p(s)
φ(s)

) 1
α(s) |φ ′(s)|

) α(s)
α(s)−1

.

This and (2.2) imply that∫ t

T0

(
1− 1

α(s)

)(
φ(s)
p(s)

)
x(s)α(s)ds

−
∫ t

T0

(
α(s)−1

α(s)

)((
φ(s)
p(s)

)
|φ ′(s)|α(s)

) 1
α(s)−1

ds

+
∫ t

T0

q(s)φ(s)ds � x(T0)φ(T0). (2.3)

Therefore, the left hand side of (2.3) is finite, which cotradicts the condition. The proof
is complete.

THEOREM 1. Assume that the following hypothesis holds:

(H) c(t) ∈ C((0,∞);(0,∞)) , and increasing function p(t) ∈ C1(R;(1,∞)) satisfying
1+ p′(t) < p(t) and

1 < inf
t∈R

p(t) � sup
t∈R

p(t) < ∞.

If there exists φ(t) ∈C1((0,∞);(0,∞)) such that

∫ ∞
{

|φ ′(t)|
p(t)+1
p(t)(

p′(t)
(
p(t)−1− p′(t)

)p(t)−1
) 1

p(t) φ(t)

}p(t)

dt < ∞,

∫ ∞
φ(t)c(t)dt = ∞,

then every solution u(t) of (E) is oscillatory.

Proof. Suppose to the contrary that (E) admits a positive solution u(t) . This shows
that there exists a t0 > 0 satisfying u(t) > 0 for t � t0 . Here we see that

(
e−

∫ t
t0

p′(s) log |u′(s)|ds|u′(t)|p(t)−2u′(t)
)′

= −c(t)e−
∫ t
t0

p′(s) log |u′(s)|ds|u(t)|p(t)−2u(t) < 0, t � t0. (2.4)

That is, for some t1 > t0 , we see that u′(t) > 0 or u′(t) � 0, t � t1 . In the latter case,
it follows from (2.4) that

e−
∫ t
t0

p′(s) log |u′(s)|ds|u′(t)|p(t)−2u′(t) � e−
∫ t1
t0

p′(s) log |u′(s)|ds|u′(t1)|p(t1)−2u′(t1),

and then
−(−u′(t))p(t)−1 � −e

∫ t
t1

p′(s) log |u′(s)|ds|u′(t1)|p(t1)−1.
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Hence it is easy to see that

u′(t) � −e
1

p(t)−1

∫ t
t1

p′(s) log |u′(s)|ds|u′(t1)|
p(t1)−1
p(t)−1 . (2.5)

On the other hand, equation (E) shows(
|u′(t)|p(t)−2u′(t)

)′
� p′(t) log |u′(t)|

(
|u′(t)|p(t)−2u′(t)

)
.

So we derive

−
(
|u′(t)|p(t)−1

)′
|u′(t)|p(t)−1

� −p′(t) log |u′(t)|,

which can be rewritten as

−
{

p′(t) log |u′(t)|+(p(t)−1)
|u′(t)|′
|u′(t)|

}
� −p′(t) log |u′(t)|.

Consequently it is easy to see that

|u′(t)|′
|u′(t)| � 0, t � t1. (2.6)

Integrating (2.6) over [t1,t] yields

log |u′(t)| � log |u′(t1)|. (2.7)

Combining (2.4) with (2.6), we obtain

u′(t) � −e
p(t)−p(t1)

p(t)−1 log |u′(t1)||u′(t1)|
p(t1)−1
p(t)−1

� −min
t�t1

{
e

p(t)−p(t1)
p(t)−1 log |u′(t1)||u′(t1)|

p(t1)−1
p(t)−1

}
≡−a < 0.

Integrating the above inequality yields

u(t) � −a(t− t1)+u(t1) →−∞

by letting as t → ∞ . This is a contradiction. This leads to u′(t) > 0, t � t2 for some
t2 � t1 . Let the function w(t) be defined by

w(t) =
(

u′(t)
u(t)

)p(t)−1

> 0, t � t2.

Differentiating w(t) shows that

w′(t) = p′(t) log |u′(t)|w(t)− c(t)

−w(t)
{

p′(t) logu(t)+ (p(t)−1)
(

u′(t)
u(t)

)}
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= −c(t)+ p′(t)w(t) log

(
u′(t)
u(t)

)

− (p(t)−1)w(t)
p(t)

p(t)−1 , t � t2.

In view of the inequality ex � ex for all x > 0, we obtain

w′(t) � −c(t)+ p′(t)w(t)
{(

u′(t)
u(t)

)
−1

}

− (p(t)−1)w(t)
p(t)

p(t)−1

� −c(t)−
{

p′(t)w(t)+ (p(t)−1− p′(t))w(t)
p(t)

p(t)−1

}
.

Applying Young’s inequality and following notation:

p− ≡ inf
t�T

p(t), p+ ≡ sup
t�T

p(t),

it is not difficult to see that

w′(t) � −c(t)− p(t)
1

p(t)

(
p(t)

p(t)−1

) p(t)−1
p(t) ×

× (p′(t)) 1
p(t)
(

p(t)−1− p′(t)
) p(t)−1

p(t)
w(t)

p(t)+1
p(t)

� −c(t)− (p−)
1

p+

(
p−

p+−1

) p−−1
p+

×

×
{

p′(t)
(

p(t)−1− p′(t)
)p(t)−1

} 1
p(t)

w(t)
p(t)+1
p(t) .

Therefore, the conclusion follows from Proposition 2. The proof is complete.

REMARK 1. If u(t) is an eventually negative solution of (E), then we set v(t) ≡
−u(t) . Clearly, v(t) is an eventually positive solution of (E).

EXAMPLE 1. Consider the equation

(|u′(t)| t
t+1 u′(t))′ − 1

(t +1)2 (log |u′(t)|)|u′(t)| t
t+1 u′(t)

+ |u(t)| t
t+1 u(t) = 0, (2.8)

where p(t) = 3− 1
t+1 and c(t) = 1 for t > 0. Let φ(t) = (t + 1)−1 , then it is easy to

verify that the conditions of Theorem 1 hold, since

∫ ∞
{

(t +1)1− 1
t+1

t2−
1

t+1 (2t +3)2− 1
t+1

}
dt �

∫ ∞ 1

t2−
1

t+1 (t +1)
dt �

∫ ∞ dt
t2

< ∞
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and ∫ ∞
(t +1)−1dt = ∞.

Hence, every solution of (2.8) is oscillatory.

EXAMPLE 2. Consider the equation

(|u′(t)|− e−t

1+e−t u′(t))′ − e−t

(1+ e−t)2 (log |u′(t)|)|u′(t)|− e−t

1+e−t u′(t)

+ |u(t)|− e−t

1+e−t u(t) = 0, (2.9)

where p(t) = 1+ 1
1+e−t and c(t) = 1 for t > 0. If we set φ(t) = (1+ e−t)−1 , then we

obtain the following conditions:

∫ ∞
{

(e−t + e−2t)1+ 1
1+e−t

(1+ e−t)2

}
dt �

∫ ∞
(e−t + e−2t)dt < ∞

and ∫ ∞
(1+ e−t)−1dt = ∞.

Thus by Theorem 1, every solution of (2.9) is oscillatory.
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