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EXISTENCE RESULTS FOR SOME NONLOCAL PROBLEMS

PROSENJIT ROY

(Communicated by Jean-Pierre Gossez)

Abstract. We consider nonlocal elliptic boundary value problems of the form

−div (A (x,u)∇u) = λ f (u)

with Dirichlet boundary conditions where A is a nonlocal function. We prove existence of
nontrivial positive solutions if the graph of the non linear function f is of single positive loop
type. Methods of approximation and Schauder fixed point theorem are the main tools to be used
here.

1. Introduction

Let Ω be a bounded, open subset of R
d with smooth boundary. We denote by A ,

a nonlocal function defined on Ω×Lp(Ω) , p � 1, with values in R such that

x �→ A (x,u) is measurable ∀u ∈ Lp(Ω). (1.1)

There exists two constants a0, a∞ such that

0 < a0 � A (x,u) � a∞ a.e. x ∈ Ω, ∀u ∈ Lp(Ω). (1.2)

We further assume that the operator

T̃ : Lp(Ω) → L∞(Ω)

defined by,
T̃ (u)(x) = A (x,u) is continuous. (1.3)

The operator T̃ makes sense because of (1.2).
We are interested in the following problem{

−div(A (x,u)∇u) = λ f (u) in Ω
u = 0 on ∂Ω,

(1.4)

where λ is a positive parameter. We will consider existence results for the problem

(1.4) when f satisfies one of the following two conditions:
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(a) Let θ > 0 and f : R → R be a Lipschitz continuous function satisfying

f ′(0) > 0,

f (t) > 0 ∀t ∈ (0,θ ) and f (t) = 0 otherwise,

t �→ f (t)/t is strictly decreasing in (0,θ ].
(1.5)

A typical example of such function would be f (t) = sin t on 0 � t � π or 0
otherwise.

(b) f (t) = t . Clearly in this case we are considering an eigenvalue problem for the
nonlocal operator.

Here ∂Ω denotes the boundary of Ω . Clearly the nature of the problem (1.4) is
non-variational. In [4], Chipot and Corrêa have studied the existence results of the
problem

−A (x,u)�u = λ f (u), (1.6)

with Dirichlet boundary condition. Recently in [11], Chipot and Roy proved the ex-
istence of n solutions if the nonlinear function f has n positive loops, for the same
problem (2.16). They also considered asymptotic behavior of the soultions as the pa-
rameter λ → ∞ . However due to lack of maximum principle (which was available in
[4] and [11]) for our operator, the situation becomes much more difficult. Similar prob-
lems in a local framework were well studied, we refer to [3, 13, 15, 16]. Problems of
such kind in nonlocal settings were considered in [4, 5, 6, 8, 9, 10, 12]. Similar issues
were also studied in the frame work of asymptotic behavior of parabolic equations (see
[6] and [8] ).

The paper is organized as follows. In the next section we prove existence of non-
trivial solution with f satisfying conditions in (1.5). At the end of this section we will
present various examples of local and nonlocal operators A from the point of view
of application. In the last section we study eigenvalue problem for the same nonlocal
operator.

2. Some generalizations

In this section we study existence of nontrivial solution for the problem (1.4) when
f satisfies (1.5). The condition t �→ f (t)

t is strictly decreasing is generally assumed to
get existence of unique solution for semilinear problems [1].

Let g : [0,θ ] → R be any strictly decreasing function such that g(θ ) = 0. Define
f (t) := tg(t) . It can be easily checked that such a f satisfies the conditions in (1.5).

A solution of (1.4) is understood in weak sense, i.e. a function u ∈ H1
0 (Ω) satis-

fying ∫
Ω

A (x,u)∇u ·∇φ = λ
∫

Ω
f (u)φ , ∀φ ∈ H1

0 (Ω). (2.1)

Our main result of this section is the following:
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THEOREM 1. Under the assumptions (1.1), (1.2), (1.3) and the first condition in
(1.5) then the problem (1.4) admits a positive solution if λ > a∞λ1

f ′(0) .

The theorem will be proved as a consequense of several Lemmas. We recall some
basic definitions and properties about mollifiers.

Define for all u ∈ Lp(Ω),

An(x,u) = A (x,u)∗ψ 1
n
,

where A (x,u) is extended by a0 outside Ω , ψ 1
n

is the standard mollifier and “ ∗ ”

denotes the operation of mollification. From the definition of the operation of mollifi-
cation

An(x,u) :=
∫

B(0, 1
n )

A (x− y,u)ψ 1
n
(y)dy =

∫
Ω

A (y,u)ψ 1
n
(x− y)dy.

Let us recall the definition of standard mollifier ψ 1
n
. Define ψ ∈C∞(Rd) by

ψ(x) :=

{
Ce

1
|x|2−1 |x| < 1

0 |x| � 1,

the constant C is chosen such that
∫
Rd ψ = 1. For each positive integer n , set

ψ 1
n
(x) = ndψ(nx).

LEMMA 1. For each u ∈ Lp(Ω) it holds ∀n,

a0 � An(x,u) � a∞ a.e. x ∈ Ω. (2.2)

Proof. By definition of An ,

An(x,u) =
∫

B(0, 1
n )

A (x− y,u)ψ 1
n
(y)dy � a∞

∫
B(0, 1

n )
ψ 1

n
(y)dy = a∞.

As A is extended by a0 outside Ω , the other inequality also holds similarly.

LEMMA 2. For each fixed n and x ∈ Ω , the mapping u → An(x,u) is continuous
from Lp(Ω) to R .

Proof. Let wm → w in Lp(Ω) , then for fixed x and n ,

|An(x,wm)−An(x,w)| �
∫

Ω
|A (y,wm)−A (y,w)|ψ 1

n
(x− y)dy

� |Ω|||ψ 1
n
||∞ ||A (x,wm)−A (x,w)||∞.
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The lemma then follows from (1.3).

Consider the problem{
−div(An(x,u)∇u) = λ f (u) in Ω,

u = 0 on ∂Ω.
(2.3)

First we will prove existence of nontrivial solution for the above problem and then pass
through the limit as n → ∞ , to get existence results for the problem (2.1).

For fixed w ∈ L2(Ω) , consider the problem

{
−div(An(x,w)∇u) = λ f (u) in Ω,

u = 0 on ∂Ω.
(2.4)

For fixed w ∈ L2(Ω) , consider the energy functional Jn
w : H1

0 (Ω) → R associated
to (2.4), given by

Jn
w[u] =

1
2

∫
Ω

An(x,w)|∇u|2 −λ
∫

Ω
F(u),

where F(t) =
∫ t
0 f (s)ds . Put

mn
w = inf

u∈H1
0 (Ω)

Jn
w[u]. (2.5)

From the standard results of calculus of variation, we know that mn
w is attained by some

function un
w ∈ H1

0 (Ω) , that is
mn

w = Jn
w[un

w] (2.6)

and the same function solves (2.4) weakly. The function un
w may not be unique.

Fix an ε > 0 small enough such that f ′(0)−ε > 0. Such a choice of ε is possible
since it is assumed that f ′(0) > 0. Again using f ′(0) > 0, u1 > 0 and that u1 ∈ L∞(Ω)
it is possible to find small tε > 0 such that

f (tεu1) � ( f ′(0)− ε)tεu1 (2.7)

where u1 is as in (3.2).

LEMMA 3. If δ > 0 be a fixed small positive number and λ > a∞λ1+δ
f ′(0)−ε . Then ∀n

and ∀w ∈ L2(Ω),

−λF(θ )|Ω| � mn
w � −δ t2ε

2
(2.8)

where ε, tε is as in (2.7) and |Ω| denotes the d - dimensional Lebesgue measure of the
set Ω .
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Proof. For fixed u ∈ H1
0 (Ω) , we have from (1.5) and the definition of F ,

F(u) � F(θ ).

Since An > 0, we have
Jn
w[u] � −λF(θ )|Ω|.

Now the left hand side inequality in (2.8) follows since u is arbitrary in the above
inequality. For the other side of the inequality, first we estimate the term F(tεu1) by
using (1.5) and (2.7).

F(tεu1) =
∫ tε u1

0
f (s)ds =

∫ tε u1

0

f (s)
s

sds � f (tεu1)
tεu1

∫ tε u1

0
sds

� f (tε u1)tεu1

2
� ( f ′(0)− ε)

t2ε u2
1

2
. (2.9)

Using u = tεu1 in (2.5) along with (2.9), we get

mn
w � Jn

w[tεu1] � a∞t2ε
2

∫
Ω
|∇u1|2−λ

∫
Ω

F(tεu1) � λ1a∞t2ε
2

− λ t2ε
2

( f ′(0)− ε).

Now if we choose λ > a∞λ1+δ
f ′(0)−ε , we have

mn
w � −δ t2ε

2
.

This finishes the proof of the lemma.

REMARK 1. Last lemma says us that for λ > a∞λ1+δ
f ′(0)−ε , un

w is nontrivial, since
mn

w < 0.

LEMMA 4. If λ > a∞λ1+δ
f ′(0)−ε holds then

0 < un
w � θ , a.e. x ∈ Ω,

where un
w is as in (2.6).

Proof. Since f � 0 and λ > 0 we have

div(An(x,w)∇un
w) � 0.

Hence from Strong maximum principle we have, either un
w > 0 a.e. x ∈ Ω or u ≡ 0.

From the last remark, we know that un
w is nontrivial. Hence we can conclude that

un
w > 0 a.e. x ∈ Ω .

For the other side of the inequality, let us assume that un
w > θ on a set of positive

measure in Ω . Define v ∈ H1
0 (Ω) by

v = un
w∧θ
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where a∧b = min{a,b} . Clearly 0 � v � θ a.e. x ∈ Ω . Moreover

Jn
w[v] =

1
2

{∫
{un

w�θ}
An(x,w)|∇un

w|2 +
∫
{un

w�θ}
An(x,w)|∇θ |2

}

−λ
{∫

{un
w�θ}

F(un
w) +

∫
{un

w>θ}
F(θ )

}

=
1
2

∫
Ω

An(x,w)|∇un
w|2 −λ

∫
Ω

F(un
w) − 1

2

∫
{un

w>θ}
An(x,w)|∇un

w|2

+ λ
∫
{un

w>θ}
{F(un

w)−F(θ )} .

Since F(t) = F(θ ) for all t � θ , we have

Jn
w[v] � Jn

w[un
w]− 1

2

∫
{un

w>θ}
An(x,w)|∇un

w|2 < Jn
w[un

w],

which contradicts (2.5).

REMARK 2. One should note that if u is any nontrivial solution of (2.4) then
u > 0 a.e. x ∈ Ω holds from maximum principle.

It is to be noted that if u is any solution of (2.4), then u ∈ L∞(Ω) , follows from
elliptic regularity theory [14]. Next lemma is a well known result, we refer to [2]. We
will use this lemma without a proof.

LEMMA 5. Let u1 and u2 be two distinct non trivial solutions of (2.4), then u1
u2

and u2
u1

are in L∞(Ω).

LEMMA 6. There exists at most one nontrivial solution to (2.4).

Proof. Let u1,u2 ∈ H1
0 (Ω) be two nontrivial solutions of (2.4). Fix ε > 0. Using

φ1 = (u2
1−u2

2)/(u1 + ε) ∈ H1
0 (Ω) in the Euler-Lagrange equation of u1 , we get

∫
Ω

An(x,w)∇u1 ·∇φ1 = λ
∫

Ω
f (u1)φ1 . (2.10)

Similarly, using φ2 = (u2
1 − u2

2)/(u2 + ε) ∈ H1
0 (Ω) , in the Euler-Lagrange equation of

u2 , we obtain ∫
Ω

An(x,w)∇u2 ·∇φ2 = λ
∫

Ω
f (u2)φ2 . (2.11)

Explicit calculations in (2.10) gives

∫
Ω

An(x,w)∇u1 ·
{

(u1 + ε)(2u1∇u1−2u2∇u2)− (u2
1−u2

2)∇u1

(u1 + ε)2

}
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= λ
∫

Ω
f (u1)

u2
1−u2

2

u1 + ε
. (2.12)

Similarly, from (2.11) it follows

∫
Ω

An(x,w)∇u2 ·
{

(u2 + ε)(2u1∇u1−2u2∇u2)− (u2
1−u2

2)∇u2

(u2 + ε)2

}

= λ
∫

Ω
f (u2)

u2
1−u2

2

u2 + ε
. (2.13)

Subtracting the right hand side of (2.13) from the right hand side of (2.12), we get

∫
Ω

An(x,w)∇u1 ·
{

(u1 + ε)(2u1∇u1−2u2∇u2)− (u2
1−u2

2)∇u1

(u1 + ε)2

}

−
∫

Ω
An(x,w)∇u2 ·

{
(u2 + ε)(2u1∇u1−2u2∇u2)− (u2

1−u2
2)∇u2

(u2 + ε)2

}

=
∫

Ω
An(x,w)|∇u1|2

{
u2

1 +u2
2 +2εu1

(u1 + ε)2

}
+

∫
Ω

An(x,w)|∇u2|2
{

u2
1 +u2

2 +2εu1

(u2 + ε)2

}

−2
∫

Ω
An(x,w)∇u1 ·∇u2

{
u1

u2 + ε
+

u2

u1 + ε

}

=
∫

Ω
An(x,w)|∇u1|2

{
1+

u2
2

(u1 + ε)2 −
ε2

(u1 + ε)2

}

+
∫

Ω
An(x,w)|∇u2|2

{
1+

u2
1

(u2 + ε)2 −
ε2

(u2 + ε)2

}

−2
∫

Ω
An(x,w)∇u1 ·∇u2

{
u1

u2 + ε
+

u2

u1 + ε

}

=
∫

Ω
An(x,w)

{∣∣∣∣∇u1− u1

u2 + ε
∇u2

∣∣∣∣
2

+
∣∣∣∣∇u2− u2

u1 + ε
∇u1

∣∣∣∣
2
}

− ε2
∫

Ω
An(x,w)

{ |∇u1|2
(u1 + ε)2 +

|∇u2|2
(u2 + ε)2

}
(2.14)

Subtracting (2.13) from (2.12), we get

∫
Ω

An(x,w)

{∣∣∣∣∇u1− u1

u2 + ε
∇u2

∣∣∣∣
2

+
∣∣∣∣∇u2− u2

u1 + ε
∇u1

∣∣∣∣
2
}

− ε2
∫

Ω
An(x,w)

{ |∇u1|2
(u1 + ε)2 +

|∇u2|2
(u2 + ε)2

}

= λ
∫

Ω

{
f (u1)
u1 + ε

− f (u2)
u2 + ε

}
(u2

1−u2
2). (2.15)

Let us denote by Lε and Rε the left and the right hand side of (2.15) respectively. We
want to show that,

lim
ε→0

Lε = lim
ε→0

Rε = 0.
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First note that
Lε � −

∫
Ω

An(x,w)gε (x), (2.16)

where

gε(x) = ε2
{ |∇u1|2

(u1 + ε)2 +
|∇u2|2

(u2 + ε)2

}
.

Clearly gε � 0 in Ω and gε → 0 point wise. For each fixed x ∈ Ω as u1(x), u2(x) > 0,
we have

gε(x) � |∇u1(x)|2 + |∇u2(x)|2.
Since |∇u1(x)|2 + |∇u2(x)|2 ∈ L1(Ω) , we can apply dominated convergence theorem
to get

lim
ε→0

∫
Ω

An(x, w)gε(x) = 0.

Hence from (2.16),
lim inf

ε→0
Lε � 0.

Set Rε = λ Iε + λJε , where

Iε =
∫
{u1>u2}

{
f (u1)
u1 + ε

− f (u2)
u2 + ε

}
(u2

1−u2
2)

and

Jε =
∫
{u1�u2}

{
f (u1)
u1 + ε

− f (u2)
u2 + ε

}
(u2

1−u2
2).

Using (1.5) we estimate Iε from above,

Iε =
∫
{u1>u2}

{
f (u1)
u1 + ε

− f (u2)
u2 + ε

}
(u2

1−u2
2)

� ε
∫
{u1>u2}

f (u2)
u2

{
(u1−u2)(u2

1 −u2
2)

(u1 + ε)(u2 + ε)

}

� εL
∫
{u1>u2}

u3
1 +u3

2

(u1 + ε)(u2 + ε)

� εL
∫
{u1>u2}

u2
1

u2
+ εL

∫
{u1>u2}

u2
2

u1

� εL|Ω|(||u1

u2
||∞||u1||∞ + ||u2

u1
||∞||u2||∞).

Since the right hand side goes to 0 as ε → 0. We have

lim sup
ε→0

Iε � 0.

Using a similar argument for Jε , it can be shown that

lim sup
ε→0

Jε � 0.
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Combining the last two inequality, we have

lim sup
ε→0

Rε � 0

and hence
lim
ε→0

Lε = lim
ε→0

Rε = 0.

This means that

lim
ε→0

∫
Ω

{
f (u1)
u1 + ε

− f (u2)
u2 + ε

}
(u2

1−u2
2) = 0. (2.17)

Let us now consider the sequence hε(x) =
{

f (u1)
u1 + ε

− f (u2)
u2 + ε

}
(u2

1−u2
2) . For any fixed

x ∈ Ω one has

hε(x) →
{

f (u1)
u1

− f (u2)
u2

}
(u2

1−u2
2), as ε → 0. (2.18)

Using f (0) = 0 and the Lipschitz continuity of f , we get

|hε(x)| �
{

f (u1)
u1 + ε

+
f (u2)
u2 + ε

}
(u2

1 +u2
2) �

{
f (u1)
u1

+
f (u2)
u2

}
(u2

1 +u2
2)

� 2L(||u1||2∞ + ||u2||2∞),

where L denotes the Lipschitz constant of f . Hence from dominated convergence
theorem, we obtain ∫

Ω

{
f (u1)
u1

− f (u2)
u2

}
(u2

1−u2
2) = 0

which is possible if and only if u1 = u2 a.e. x ∈ Ω . This concludes the proof of the
lemma.

REMARK 3. From the last theorem we know that (2.4) has an unique nontrivial
solution. Also from Lemma 3 we have un

w is a nontrivial solution of (2.4), for λ >
a∞λ1+δ
f ′(0)−ε . Hence un

w is the only nontrivial solution of the problem (2.4).

THEOREM 2. For λ > a∞λ1+δ
f ′(0)−ε the problem (2.3) admits a positive solution.

Proof. Define the set

K =
{
u ∈ L2(Ω)

∣∣ 0 � u � θ a.e. x ∈ Ω
}

.

Clearly K is a closed convex subset of L2(Ω) . Fix w ∈K . Define the map T : K →
L2(Ω) as

T (w) = un
w

where un
w is as in the last remark.
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1. 0 does not belong to T (K ) .
The claim follows from the definition of T .

2. T maps K to K .

This claim is a consequence of Lemma 4.
3. Continuity of T .

Let {wk}k ⊂ K be such that

wk → w in L2(Ω). (2.19)

The Euler-Lagrange equation associated to (2.4) satisfied by wk is given by∫
Ω

An(x,wk)∇T (wk) ·∇v = λ
∫

Ω
f (T (wk))v, ∀v ∈ H1

0 (Ω). (2.20)

Taking v = T (wk) in (2.20), we obtain using Hölder and Poincaré inequality

(∫
Ω
|∇T (wk)|2

) 1
2

� λ || f ||∞
a0

√
|Ω|
λ1

where λ1 is as in (3.2). Thus the sequence {T (wk)}k is bounded in H1
0 (Ω) , hence

there exists a function p ∈H1
0 (Ω) such that up to a subsequence {wkm}m of {wk}k , we

have
T (wkm) → p in L2(Ω),

T (wkm) ⇀ p in H1
0 (Ω),

∇T (wkm) ⇀ ∇p in L2(Ω).

(2.21)

First we show that p is nontrivial. From Lemma 3 we have

1
2

∫
Ω

An(x,wmk )|∇T (wmk )|2 −λ
∫

Ω
F(T (wmk )) � − t2ε δ

2
.

Using An � a0 , we have

a0

2

∫
Ω
|∇T (wmk )|2 −λ

∫
Ω

F(T (wmk )) � − t2ε δ
2

.

Using the lower semi continuity for the weak convergence of H1
0 norm and the conti-

nuity of F , we have

a0

2

∫
Ω
|∇p|2 −λ

∫
Ω

F(p) � − t2ε δ
2

< 0.

This proves that p cannot be trivial. Now considering the left hand side of (2.20), we
have

∫
Ω

An(x,wkm )∇T (wkm) ·∇v
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=
∫

Ω

{
An(x,wkm )−An(x,w)

}
∇T (wkm) ·∇v+

∫
Ω

An(x,w)∇T (wkm) ·∇v

:= Im
1 + Im

2 .

We first estimate the term Im
1 .

|Im
1 | �

∫
Ω
|An(x,wkm )−An(x,w)||∇T (wkm)||∇v|

�
(∫

Ω
|An(x,wkm)−An(x,w)|2|∇v|2

) 1
2
(∫

Ω
|∇T (wkm)|2

) 1
2

.

Now using
∫

Ω |∇T (wkm )|2 � C2 , where C = λ || f ||∞
a0

√
|Ω|
λ1

, we get

|Im
1 | � C

(∫
Ω
|An(x,wkm)−An(x,w)|2|∇v|2

) 1
2

. (2.22)

From (2.19) we have
wn → w a.e. x ∈ Ω.

Since wn � θ forall n , this implies from Lebesgue theorem that

wn → w in Lp(Ω), ∀p.

Therefore from (3.1) we have

An(x,wkm) → An(x,w) a.e. x ∈ Ω.

Also
|An(x,wkm)−An(x,w)|2|∇v|2 � 4a2

∞|∇v|2, ∀v ∈ H1
0 (Ω).

Now since 4a2
∞|∇v|2 ∈ L1(Ω) , we can pass trough the limit in (2.22) using dominated

convergence theorem to get
Im
1 → 0.

Also by (2.21),

Im
2 →

∫
Ω

An(x,w)∇p ·∇v.

Therefore ∫
Ω

An(x,wkm )∇T (wkm) ·∇v →
∫

Ω
An(x,w)∇p ·∇v.

Using Lipschitz continuity of f and (2.20), we have∫
Ω

f (T (wkm))v →
∫

Ω
f (p)v.

Therefore we have∫
Ω

An(x,w)∇p ·∇v = λ
∫

Ω
f (p)v, ∀v ∈ H1

0 (Ω).
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Hence from the above equation we get T (w) = p and since the possible limit is unique
we have,

T (wk) → T (w), in L2(Ω).

This completes the proof of continuity of T .

4. Compactness of T

Let wn → w in L2(Ω) . We want to show that

T (wk) → T (w) in H1
0 (Ω).

Compactness of the mapping T then follows from the compact embedding of H1
0 (Ω)

in L2(Ω) . The Euler-Lagrange equation satisfied by T (wk) is∫
Ω

An(x,wk)∇T (wk) ·∇v = λ
∫

Ω
f (T (wk))v, ∀v ∈ H1

0 (Ω). (2.23)

That is
∫

Ω
An(x,wk)∇(T (wk)−T (w)) ·∇v+

∫
Ω

(An(x,wk)−An(x,w))∇T (w) ·∇v

= λ
∫

Ω
f (T (wk))v−

∫
Ω

An(x,w)∇T (w) ·∇v = λ
∫

Ω
{ f (T (wk))− f (T (w))}v.

Using v = T (wk)−T (w) , (1.2) and Lipschitz continuity of f , we have

a0

∫
Ω
|∇(T (wk)−T(w)) |2 � λL

∫
Ω
|T (wk)−T(w)|2

+
∫

Ω
|An(x,wk)−An(x,w)||∇(T (wk)−T(w)) ||∇T (w)|. (2.24)

Application of Young’s inequality gives

a0

∫
Ω
|∇(T (wk)−T(w)) |2 � λL

∫
Ω
|T (wk)−T(w)|2

+
a0

2

∫
Ω
|∇(T (wk)−T(w)) |2 +

2
a0

∫
Ω
|An(x,wk)−An(x,w)|2|∇T (w)|2.

This implies that

a0

2

∫
Ω
|∇(T (wk)−T(w)) |2 � λL

∫
Ω
|T (wk)−T(w)|2

+
2
a0

∫
Ω
|An(x,wk)−An(x,w)|2|∇T (w)|2.

The first integral on the RHS of the above inequality tends to 0 from the last part
and the second integral converges to 0, following a similar argument, that shows the
convergence of the I1

m in (2.22).

Schauder fixed point theorem.
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The map T : K → K is compact and K is closed, convex set in L2(Ω) . By
Schauder fixed point theorem T has a fixed point. Since the function 0 doesn’t belongs
to T (K ) , the above obtained fixed point is nontrivial. This finishes the proof of the
theorem.

Let un denotes the nontrivial solution obtained for the problem (2.3) for large λ .
In the above theorem it should be noted that the choice of λ doesn’t depends on n .
Now the goal is to pass through the limit in (2.3) and obtain a nontrivial solution for the
problem (1.4).

Proof of Theorem 1

First of all it is clear that

An(x,u) → A (x,u)

for each fixed x ∈ Ω and u ∈ L2(Ω) . This follows from the property of mollification.
The equation satisfied by un is written as, for fixed φ ∈ H1

0 (Ω) ,∫
Ω

An(x,un)∇un ·∇φ = λ
∫

Ω
f (un)φ . (2.25)

Using φ = un in (2.25), we get∫
Ω

An(x,un)|∇un|2 = λ
∫

Ω
f (un)un.

Since An � a0 , we have

a0

∫
Ω
|∇un|2 � λ || f ||∞

∫
Ω

un � λ || f ||∞|Ω| 1
2

(∫
Ω
|un|2

) 1
2

.

Now using Poincaré’s inequality, we get

(∫
Ω
|∇un|2

) 1
2

� λ || f ||∞|Ω| 1
2

a0
√

λ1
.

Thus for a subsequence, which we again denote by {n} , there exist u0 ∈ H1
0 (Ω) such

that
un ⇀ u0 in H1

0 (Ω)

and strongly in L2(Ω) . The theorem will be proved if we show that u0 ∈ Lp(Ω), ∀p �
1, nontrivial and for fixed φ , the following holds∫

Ω
A (x,u0)∇u0 ·∇φ = λ

∫
Ω

f (u0)φ .

For all n , one has from Lemma 4 that

0 < un � θ , a.e. x ∈ Ω.
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This implies that 0 � u0 � θ a.e. x ∈ Ω from almost every where convergence of un to
u0 . Hence u0 ∈ Lp(Ω), ∀p � 1.

Now let us start from the left hand side of (2.25).

∫
Ω

An(x,un)∇un ·∇φ =
∫

Ω

{
An(x,un)−An(x,u0)

}
∇un ·∇φ

+
∫

Ω

{
An(x,u0)−A (x,u0)

}
∇un ·∇φ +

∫
Ω

A (x,u0)∇un ·∇φ

:= I1
n + I2

n + I3
n .

Clearly from the weak convergence of un to u0 , we have

I3
n →

∫
Ω

A (x,u0)∇u0 ·∇φ .

We claim that both I1
n and I2

n converges to 0. First we will estimate the term I1
n .

|I1
n | �

∫
Ω
|An(x,un)−An(x,u0)||∇un||∇φ |

�
∫

Ω

(∫
B(0, 1

n )

∣∣A (x− y,un)−A (x− y,u0)
∣∣ψ 1

n
dy

)
|∇un| |∇φ |.

Using |A (x−y,un)−A (x−y,u0)|� ||A (x,un)−A (x,u0)||∞ and
∫
B(0, 1

n ) ψ 1
n
= 1, we

get

|I1
n | � ||A (x,un)−A (x,u0)||∞

∫
Ω
|∇un||∇φ |

� ||A (x,un)−A (x,u0)||∞ ||∇un||L2 ||∇φ ||L2

� C||∇φ ||L2 ||A (x,un)−A (x,u0)||∞,

where C = λ || f ||∞|Ω| 12
a0

√
λ1

.

Now as un → u0 in Lp(Ω) , this implies from (1.3) that

||A (x,un)−A (x,u0)||∞ → 0

and hence
I1
n → 0.

Let us now estimate the term I2
n .

|I2
n | �

∫
Ω
|An(x,u0)−A (x,u0)||∇φ ||∇un|

� ||{An(x,u0)−A (x,u0)}|∇φ |||L2 ||∇un||L2

� C||{An(x,u0)−A (x,u0)}|∇φ |||L2 .
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As mentioned above in the beginning of the proof, we have

An(x,u0) → A (x,u0) a.e. x ∈ Ω.

Also
|An(x,u0)−A (x,u0)|2|∇φ |2 � 4a2

∞|∇φ |2

where |∇φ |2 ∈ L1(Ω) . Therefore by dominated convergence theorem, we have

||{An(x,u0)−A (x,u0)}|∇φ |||L2 → 0.

Thus we have proved that
∫

Ω
An(x,un)∇un ·∇φ →

∫
Ω

A (x,u0)∇u0 ·∇φ .

The right hand side of (2.25) can be written as
∫

Ω
f (un)φ =

∫
Ω
{ f (un)− f (u0)}φ +

∫
Ω

f (u0)φ .

Now as n → ∞ , we have

|
∫

Ω
{ f (un)− f (u0)}φ | � L

∫
Ω
|un−u0||φ | � L||un −u0||L2 ||φ ||L2 → 0.

Hence we have ∫
Ω

f (un)φ →
∫

Ω
f (u0)φ .

The proof will be completed once we show u0 is not identically equals to 0. For
proving that we use the weak lower semi continuity of the H1

0 norm, the Lipschitz
continuity of F and the energy estimates done in Lemma 3. We have

a0

∫
Ω
|∇un|2 −λ

∫
Ω

F(un) �
∫

Ω
An(x,un)|∇un|2−λ

∫
Ω

F(un) � − t2ε δ
2

.

Again since un ⇀ u0 , we have

a0

∫
Ω
|∇u0|2−λ

∫
Ω

F(u0) � liminf
n→∞

a0

∫
Ω
|∇un|2−λ

∫
Ω

F(un).

Combining the last two equations we get

a0

∫
Ω
|∇u0|2−λ

∫
Ω

F(u0) � − t2ε δ
2

< 0

which is impossible if u0 identically vanishes. In particular, if u0 is not trivial then it
has to be strictly positive in Ω . This again follows from the maximum principle.

Since the choice of ε, δ > 0 is kept arbitrary, this proves Theorem 1.
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SOME APPLICATIONS

Now we turn to examine the kinds of A that is suitable to fulfill our assumptions.
For now let B(x,u) denote a Carathéodory function, that is B is defined from Ω×R

into R such that

x �→ B(x,u) is measurable ∀u ∈ R,

u �→ B(x,u) is Lipschitz continuous a.e. ∀x ∈ Ω,

with the Lipschitz constant independent of x , and satisfying for some positive constants

0 < a0 � B(x,u) � a∞ a.e. x ∈ Ω, ∀u ∈ R.

At first we look at the population distribution model. Let

A (x,u) = B(x,
∫

Ω
u). (2.26)

If u denotes the density of population, then the total population is denoted by
∫

Ω u .
One can also look at the total population of a sub region, by replacing

∫
Ω u by∫

Ω′
u where Ω′ ⊂ Ω.

Then it is quite obvious that A (x,u) defined by (2.26) satisfies our assumptions.

One can also consider non locality of the type

A (u) = a

(∫
Ω

gu

)

with Lipschitz continuous function a . From the point of view of application when

g =
1
|Ω|

with |Ω| denoting the Lebesgue measure of Ω and if f (u) is replaced by a force term f
in (1.4), then the global minimization of the appropriate energy functional corresponds
to the displacement of an elastic membrane spanned along the boundary of Ω , and
submitted to a force f . Uniqueness, non-uniqueness issues for such kind of operator is
studied in [7].

Another important class of nonlocal operator that suits our criterion is as follows.
If Ω is a domain of A− type , that is for fixed 0 < r < diam(Ω) , there exists a con-
stant A > 0 such that |Ω(x,r)| � Ard where Ω(x,r) = Ω∩B(x,r) . If a is a Lipschitz
continuous function then the nonlocal operator defined by

A (x,u) = a

(
1

|Ω(x,r)|
∫

Ω(x,r)
u(y)dy

)

also satisfies our criterion.
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3. An eigenvalue problem.

In this section we will work with an weaker condition than (1.3). We assume the
mapping

u �→ A (x,u) is continuous from Lp(Ω) into R , a.e. x ∈ Ω. (3.1)

It is easy to check that (1.3) implies the above condition. We will restrict ourself to the
case of p = 2.

Let λ1 and u1 denotes the first eigenvalue and first eigenfunction of the problem⎧⎪⎨
⎪⎩
−Δu1 = λ1u1 in Ω,

u1 = 0 on ∂Ω,

u1 > 0,
∫

Ω u2
1 = 1.

(3.2)

The main result of this section is the following.

THEOREM 3. Under the assumption (1.1)-(1.2), the problem⎧⎪⎨
⎪⎩
−div(A (x,u)∇u) = λu in Ω,

u = 0 on ∂Ω,∫
Ω u2 = 1,

(3.3)

admits a nontrivial solution for some λ = λ ∗ . Further λ ∗ ∈ [a0λ1,a∞λ1] , where λ1 is
as in (3.2).

Proof. Fix w ∈ L2(Ω) and consider the following problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−div(A (x,w)∇u) = λu in Ω,

u = 0 on ∂Ω,∫
Ω u2 = 1,

u > 0 a.e. x ∈ Ω.

(3.4)

The above problem is an eigenvalue problem for an elliptic operator in divergence form.
From the standard results of elliptic theory, we can conclude that there exists unique
λ = λ 1

w and u = uw that solves (3.4), where λ 1
w denotes the first eigenvalue and uw is

the corresponding first eigenfunction. It is also well known that λ 1
w has the following

characterisation,

λ 1
w = inf

u∈H1
0 (Ω)\{0}

∫
Ω A (x,w)|∇u|2∫

Ω u2 (3.5)

and uw > 0 a.e. x ∈ Ω .

1. Forall w ∈ L2(Ω), we have λ 1
w ∈ [a0λ1,a∞λ1].
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From (1.2) we have

a0

∫
Ω |∇u|2∫

Ω u2 �
∫

Ω A (x,w)|∇u|2∫
Ω u2 � a∞

∫
Ω |∇u|2∫

Ω u2 .

The claim then follows by taking infimum over the set H1
0 (Ω)\ {0}.

Define the set

K =
{

u ∈ L2(Ω)
∣∣ ∫

Ω
|∇u|2 � a∞λ1

a0

}
.

The set K is a compact, convex subset of L2(Ω) . Define the map T : K → L2(Ω) as

T (w) = uw,

where uw solves (3.4). Clearly any fixed point of T is a solution of the problem (3.3).

2. T maps K to K .

Fix w ∈ K . From (3.4) and (3.5) we have

λ 1
w =

∫
Ω

A (x,w)|∇uw|2.

Now using the last claim and (1.2), we get uw ∈ K .
3. T : K → K is continuous.

Let {wk}k ⊂ K be such that

wk → w in L2(Ω). (3.6)

Since T (wk) ∈ K , the sequence {T (wk)}k is bounded in H1
0 (Ω) . Hence there

exists a function p ∈ H1
0 (Ω) such that up to a subsequence {wkm}m of {wk}k , we can

have

T (wkm) → p in L2(Ω),
T (wkm) ⇀ p in H1

0 (Ω),
T (wkm) → p a.e. x ∈ Ω. (3.7)

Since T (wkm) > 0 a.e. x ∈ Ω , it follows from the convergence above that

p � 0 a.e. x ∈ Ω

and
∫

Ω p2 = 1. This implies that p cannot be a trivial function. Since λ 1
wkm

∈ [a0λ1,a∞λ1],
there exists a further subsequence

{
kmj

}
j
of {km}m , such that

λ 1
wkmj

→ λ ∗
w

where λ ∗
w ∈ [a0λ1,a∞λ1]. The Euler-Lagrange equation satisfied by T (wkmj

) is given
by ∫

Ω
A (x,wkmj

)∇T (wkmj
)∇v = λ 1

wkmj

∫
Ω

T (wkmj
)v, ∀v ∈ H1

0 (Ω). (3.8)
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Consider the left hand side of (3.8),

∫
Ω

A (x,wkmj
)∇T (wkmj

)∇v

=
∫

Ω

{
A (x,wkmj

)−A (x,w)
}

∇T (wkmj
)∇v +

∫
Ω

A (x,w)∇T (wkmj
)∇v

:= I j
1 + I j

2.

We first estimate the term I j
1 .

|I j
1 | �

∫
Ω
|A (x,wkmj

)−A (x,w)||∇T (wkmj
)||∇v|

�
(∫

Ω
|A (x,wkmj

)−A (x,w)|2|∇v|2
) 1

2
(∫

Ω
|∇T (wkmj

)|2
) 1

2

.

Now using
∫

Ω |∇T (wkmj
)|2 � a∞λ1

a0
we get

|I j
1 | �

(
a∞λ1

a0

) 1
2
(∫

Ω
|A (x,wkmj

)−A (x,w)|2|∇v|2
) 1

2

. (3.9)

From (3.1) and (3.6) we have

A (x,wkmj
) → A (x,w) a.e. x ∈ Ω

and
|A (x,wkmj

)−A (x,w)|2|∇v|2 � 4a2
∞|∇v|2, ∀v ∈ H1

0 (Ω).

Now since 4a2
∞|∇v|2 ∈ L1(Ω) , we can pass trough the limit in (3.9) using dominated

convergence theorem to get
I j
1 → 0.

From (3.7),

I j
2 →

∫
Ω

A (x,w)∇p∇v.

Therefore ∫
Ω

A (x,wkmj
)∇T (wkmj

)∇v →
∫

Ω
A (x,w)∇p∇v.

From (3.7) it also follows that ∫
Ω

T (wkmj
)v →

∫
Ω

pv.

Therefore we have ∫
Ω

A (x,w)∇p∇v = λ ∗
w

∫
Ω

pv, ∀v ∈ H1
0 (Ω).
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It is well known [14] that the first eigenfunction of the problem (3.4) is its only solution,
that has a strict sign almost everywhere. Since p is nontrivial and p � 0, it has to be
the first eigenfunction and λ ∗

w has to be the first eigenvalue (λ 1
w) . Therefore∫

Ω
A (x,w)∇p∇v = λ 1

w

∫
Ω

pv, ∀v ∈ H1
0 (Ω).

Hence T (w) = p holds. Since the possible limit is unique, we have

T (wk) → T (w) in L2(Ω).

This proves continuity of the map T .

4. Schauder fixed point theorem.

The map T : K → K is continuous where K is compact and convex subset of
L2(Ω) . Therefore from Schauder fixed point theorem the map T has a fixed point, that
is T (z) = z for some z ∈ K .

Non triviality of z follows since
∫

Ω |T (w)|2 = 1, ∀w ∈ K . It is also clear from
the definition of T that λ ∗ = λ 1

z and hence λ ∗ ∈ [a0λ1,a∞λ1] . This finishes the proof
of the theorem.
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