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ON ENTIRE SOLUTIONS FOR AN INDEFINITE

QUASILINEAR SYSTEM OF MIXED POWER
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Abstract. We prove non-existence and existence of entire positive solutions for a Schrödinger
quasilinear elliptic system. To prove the non-existence, we combine a carefully-chosen test
function with some results that we proved concerning the positivity of a kind of principal eigen-
value of a eigenvalue problem in R

N with indefinite weights. Contrary to the existence, the
non-existence results for this class of problems have not been studied very much in recent years.
For the existence we mainly used upper and lower solution methods combined with comparison
principles.

1. Introduction

In this paper, our main purpose is to establish non-existence and existence of so-
lutions for the problem⎧⎪⎨⎪⎩

−Δpu+m1(x)up−1 = a(x)uβ1 + λb(x)uγ1vδ1 + f (x) in R
N

−Δqv+m2(x)vq−1 = c(x)vβ2 + μd(x)vγ2uδ2 +g(x) in R
N

u,v > 0 in R
N ; u(x),v(x)

|x|→∞−→ 0,

(1.1)

where Δr is the usual r-Laplacian operator with 1 < r = p,q < N ; a,b,c,d, f ,g : R
N →

[0,∞) are continuous functions; m1,m2 : R
N → R are continuous functions which can

change signs; βi,γi,δi for i = 1,2 are appropriate real constants; N � 1 and λ ,μ � 0
are real parameters.

In particular, we note that in our results the coefficients a,b,c and d can vanish in
open sets of R

N and mi < 0 will be permitted. This possibility can lead the principal
part of the operator to have a non-coercive behavior.

A solution of (1.1) is understood as a pair of positive functions in C1(RN) con-
verging to zero at infinity which satisfy the equations in (1.1) in the distributional sense.

This problem belongs to the class of cooperative systems, because b,d � 0 and
δ1,δ2 � 0 too. The study of this class of problems is motivated by various nonlinear
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phenomena, for instance, in the non-Newtonian fluid theory [10], in the generalized
reaction-diffusion theory [13], nonlinear elasticity [4] and references therein.

There is at present a large number of papers and an extensive literature studying
the existence of positive solutions for multi-parameters problems by using several and
different techniques. While the study of nonexistence of positive solutions for this class
of multi-parameters problems including Laplacian and r-Laplacian operators both in
bounded and unbounded domains has not been much intensive.

Problems like (1.1) for smooth bounded domains have been intensively studied in
recent years. We quote for instance Giacomoni et al [12], Zou [32], Zhen [31], Yan and
Lu [27], Chen and Lu [5], Clement et al [6], Velin [25], Ahammou [1] and references
therein.

In these works, many and different techniques have been used to deal with them.
For existence of solutions, the main tools that have been used are variational and topo-
logical methods and for the nonexistence the moving planes, moving spheres techniques
and the classical test functions methods have been considered.

In our result of existence, the direct application of these techniques does not seem
to be so appropriate, because of the possibility of the powers either be very small
(negative) or very large (positive). So, we have principally used the lower-upper so-
lutions technique and comparison principle results. To do this, we constructed an up-
per solution by appropriated parameters and we solved a sublinear problem with the
Schrödinger operator in RN whose solution is already built less than or equal to upper
solution and it is a lower solution of problem (1.1) too.

For the non-existence, first we proved an important result about of the positivity
of a kind of eigenvalue of an eigenvalue problem with Schrödinger operator in RN . So,
combining this result (Lemma 2.4 which was proved by using the classical Picone’s
inequality) and a test function carefully chosen in C∞

0 (Ω) , we were able to construct a
contradiction for large parameters by assuming the existence of solutions.

An overview about nonexistence. With regards to powers of problem (1.1), Miti-
dieri [16] (for δ1,δ2 > 1) and Serrin and Zou [22] (for δ1,δ2 > 0) showed that problem⎧⎪⎨⎪⎩

−Δu = vδ1 in R
N

−Δv = uδ2 in R
N

u,v > 0 in R
N ,

(1.2)

has no radial solution, if 1/(δ1 +1)+ 1/(δ2 +1) > (N−2)/N. More, it was proved
in [23] that (1.2) admits infinitely many radial solutions provided that 1/(δ1 +1) +
1/(δ2 +1) � (N−2)/N.

That is, the labeled Hardy-Littlewwod-Sobolev hyperbola given by

1
δ1 +1

+
1

δ2 +1
=

N−2
N

is critical for existence and nonexistence of classical radial solutions. It is conjectured
that it is critical for non-radial solutions too, but this conjecture has not still been solved
completely.
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Still in [16], it was proved that the problem⎧⎪⎨⎪⎩
−Δu = auβ1 +bvδ1 in R

N

−Δv = cvβ2 +duδ2 in R
N

u,v > 0 in R
N ,

(1.3)

has no classical solutions, if a,b,c,d are positive constants, β1,β2,δ1,δ2 > 1 and

max
{ 1

β1−1
,

δ1 +1
δ1δ2−1

,
1

β2−1
,

δ1 +1
δ2δ2−1

}
� N−2

N
.

Later, De Figueiredo and Siracov [11] proved that the system (1.3) has no classical
bounded solution, if

δ1 = β1
β2−1
β1−1

and δ2 = β2
β1−1
β2−1

, where 1 < β1,β2 <
N +2
N−2

.

In this same sense, Zhang and Zhu [30] showed non-existence of solutions for a problem
like (1.3), where a,b,c,d are positive constants, 0 < βi,γi,δi,γi +δi < (N +2)/(N−2)
for i = 1,2.

Recently, Wang and Hong [26] improved these results by proving that if (u,v) ∈
(C2(RN))2 is a solution of (1.3), under the hypotheses that a,b,c,d are positive con-
stants, β1,β2,δ1,δ2 > 0 and there exist ρ ,ν � N−2 such that ρ +4 � max{β1ρ ,δ1ν}
and ν +4 � max{β2ν,β1ρ} , then β1 = β2 = δ1 = δ2 = (N +2)/(N−2) and

u(x) =
( c1

d + |x− x|2
)(N−2)/2

and v(x) =
( c2

d + |x− x|2
)(N−2)/2

, x ∈ R
N ,

for some d > 0, x ∈ R
N and c1,c2 appropriate positive constants.

Motivated principally by the above works, we have proved some results that im-
prove or complement the prior results. In order to state them, we are going to define the
non-negative and continuous function

m(x) = min{a(x),b(x),c(x),d(x)}, x ∈ R
N

and we shall assume

(H1 ) −∞ < β1 < p−1 � γ1 + δ1 (H2 ) −∞ < γ1 + δ1 � p−1 < β1 ,

(K1 ) −∞ < β2 < p−1 � γ2 + δ2 (K2 ) −∞ < γ2 + δ2 � p−1 < β2 .

So, our first result is:

THEOREM 1. [Non−existence] : Suppose (Hi) and (Kj) for some i, j ∈ {1,2} ,
m �= 0 , mi continuous functions, p = q and δi � 0 for i = 1,2 hold. Then, there exist
0 � λ ∗,μ∗ < ∞ such that the system (1.1) has no solution for every (λ ,μ) > (λ ∗,μ∗)
given, where the size of λ ∗,μ∗ � 0 depends on m1,m2 and m behavior.
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To highlight the last result and dependance of λ ∗,μ∗ � 0 of m1,m2 and m behav-
ior (see, for instance (3.1) and (3.2)), we restate it in a particular case.

COROLLARY 1. Assume that (Hi) and (Kj) hold for some i, j ∈ {1,2} , m1,m2 �
0 , the terms a,b,c and d satisfy |x|pa(x), |x|pb(x), |x|pc(x), |x|pd(x) → ∞ when |x| →
∞ and and δi � 0 for i = 1,2 . Then, the problem⎧⎪⎨⎪⎩

−Δpu = m1(x)up−1 +a(x)uβ1 + λb(x)uγ1vδ1 in R
N

−Δpv = m2(x)vp−1 + c(x)vβ2 + μd(x)vγ2uδ2 in R
N

u,v > 0 in R
n; u(x),v(x)

|x|→∞−→ 0

has no solution for all λ ,μ > 0 .

REMARK 1. Theorem 1 and Corollary 1 hold for the more general system⎧⎪⎨⎪⎩
−Δpu+m1(x)up−1 = a(x)uβ1vθ1 + λb(x)uγ1vδ1 + f (x) in R

N

−Δpv+m2(x)vq−1 = c(x)vβ2uθ2 + μd(x)vγ2uδ2 +g(x) in R
N

u,v > 0 in R
n; u(x),v(x)

|x|→∞−→ 0,

with θi,δi � 0 for i = 1,2, β1 replaced by β1+θ1 at (H1) and (H2) and β2 substituted
by β2 + θ2 at (K1) and (K2) , respectively and the potentials in x like in Theorem 1
and Corollary 1.

About the existence of solution for (1.1), recently Moussaoui, Khodja and Tas
in [17] applied Schauder’s fixed point theorem in a regularized system to prove the
existence of solution for⎧⎪⎨⎪⎩

−Δu+m1(x)u = b(x)vδ1 in R
N

−Δv+m2(x)v = d(x)vγ2uδ2 in R
N

u,v > 0 in R
N ; u(x),v(x)

|x|→∞−→ 0

with δ1 < 0, −1 < γ2 < 0, δ2 > 0 such that δ2 +γ2 � 1 and the functions b,d,m1,m2 ∈
L∞

loc(R
N) are such that m1(x) � α0 , m2(x) � β0 for |x|� R for some α0,β0,R > 0 with

b,d � 0.
For a quasilinear problem, Manouni and Touzani in [9] used the Mountain Pass

Theorem and local minimization for showing the existence of solutions of the problem⎧⎪⎨⎪⎩
−Δpu+m1(x)up−1 = b(x)uγvδ+1 in R

N

−Δqv+m2(x)vq−1 = b(x)vδ uγ+1 in R
N

u,v > 0 in R
N ; u(x),v(x)

|x|→∞−→ 0,

where 1 < p,q < N , 0 < γ � p− 1, 0 < δ � q− 1, max{(N− p)/N,(N−q)/N} <
(γ +1)/p∗ + (δ +1)/q∗ < 1, b � 0, the functions m1,m2 are continuous functions
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which satisfy m1(x) � α0 > 0, m2(x) � β0 > 0, x ∈ R
N and m1(x),m2(x) → ∞ when

|x| → ∞ .
Yin and Yan in [28], by using sub and super solutions methods, showed existence

of solution for small parameters and non-existence for large ones for the following
problem with parameters⎧⎪⎨⎪⎩

−Δpu = a(x)uβ1 + λc(x)vδ in R
N

−Δqv = b(x)vβ2 + μc(x)uδ in R
N

u,v > 0 in R
N ; u(x),v(x)

|x|→∞−→ 0,

where −∞ < β1 < p− 1 < δ ; −∞ < β2 < q− 1 < δ and a,b,c � 0 are appropriate
continuous terms.

Serag and Zahrani in [21] have obtained the existence of solution for the problem⎧⎪⎨⎪⎩
−Δpu+m1(x)up−1 = b(x)uγvδ+1 + f (x) in R

N

−Δqv+m2(x)vq−1 = d(x)vδ uγ+1 +g(x) in R
N

u,v > 0 in R
N ; u(x),v(x)

|x|→∞−→ 0.

They used the lower-upper solution method and considered m1,m2 < 0; b,d > 0;
f ,g non-negative appropriate functions and γ,δ > 0 such that (γ +1)/p+(δ +1)/q =
1.

Using Schauder’s fixed point theorem, Leadi and Marcos in [14], have showed that
the following system has at least one solution,⎧⎪⎨⎪⎩

−Δpu+a1m1(x)up−1 = λb(x)vδ1 + f (x) in R
N

−Δqv+a2m2(x)vq−1 = μd(x)uδ2 +g(x) in R
N

u,v > 0 in R
N ; u(x),v(x)

|x|→∞−→ 0,

where m1,m2,b,d > 0; f ,g � 0 are suitable functions, δ1,δ2 � 1, δ2/p+ 1/q = 1,
δ1/q+1/p = 1 and appropriate λ ,μ � 0 depending on a1 and a2 .

Inspired in these results, we proved the next result that improves or complements
the last results in some sense. To enunciate it, we shall define Mf ,Mg � 0 by

Mf (x) := max{a(x),b(x), f (x)}, x ∈ R
N ,

Mg(x) := max{c(x),d(x),g(x)}, x ∈ R
N

and assume that the problems{
−Δpu+m+

1 (x)up−1 = Mf (x) in R
N

u > 0 in R
N ; u(x)

|x|→∞−→ 0
(1.4)

and {
−Δqv+m+

2 (x)vq−1 = Mg(x) in R
N

v > 0 in R
N ; v(x)

|x|→∞−→ 0
(1.5)



388 CARLOS ALBERTO SANTOS AND MARIANA RAMOS REIS

have solutions in C1(RN) , where we are denoting by m+
i (x) = max{mi(x),0} and

m−
i (x) = max{−mi(x),0} for x ∈ R

N .
Additionally, we are going to assume that m−

1 /Mf ∈L∞(RN) , if m−
1 �= 0; m−

2 /Mg ∈
L∞(RN) , if m−

2 �= 0; to denote by ‖ · ‖∞ the L∞(RN)-norm and to consider

(H3 ) 1−
∥∥∥∥m−

1

Mf

∥∥∥∥
∞
‖w1‖p−1

∞ > 0 and 1−
∥∥∥∥m−

2

Mg

∥∥∥∥
∞
‖w2‖q−1

∞ > 0,

where w1,w2 ∈C1(RN) are the solutions of problems (1.4) and (1.5), respectively.

THEOREM 2. [Existence ]: Assume that (1.4) and (1.5) have solutions in C1(RN) ,
(H3) , a,c �= 0 , δ1,δ2 � 0 , −∞ < β1 < p−1 and −∞ < β2 < q−1 holds. Then, there
exist (λ∗,μ∗) > (0,0) such that the problem (1.1) has at least one solution for each
(0,0) < (λ ,μ) < (λ∗,μ∗) given. Besides this,

(i) λ∗ = ∞ , if γ1 + δ1 < p−1 and γ2 + δ2 � q−1 and

(ii) μ∗ = ∞ , if γ2 + δ2 < q−1 and γ1 + δ1 � p−1 .

REMARK 2. We proved in the Appendix that problem (1.4) admits a solution in
C1(RN) , if for instance

∫ ∞

0

[
s1−N

∫ s

0
tN−1M̂f (t)dt

] 1
p−1

ds < ∞,

where M̂f (t) = max
|x|=t

Mf (x), t � 0; m+
1 ,Mf ∈C(RN) and 1 < p < N. (The same result

holds for problem (1.5) , when m+
2 and Mg satisfy similar hypotheses.)

This paper is organized into four sections. In Section 2, we give some results
concerning the first eigenvalue of a problem with an indefinite weight. In particular, we
prove that the positivity of this eigenvalue is related to the existence of solution of an
inhomogeneuos problem. In Sections 3 and 4, we prove our main results. Finally, an
auxiliary result is proved in Appendix 5.

2. Auxiliary Results

Due to our approach, to prove theorems (1) and (2), we are going to use the solu-
tion of the problem

{
−Δpu+V(x)up−1 = ρ(x) in Ω,

u > 0 in Ω; u = 0 on ∂Ω,
(2.1)

where Ω is a smooth and bounded domain and ρ ,V : Ω →R are suitable functions. As
a particular case of a result in [18], we have.



Differ. Equ. Appl. 6 (2014), 383–401. 389

LEMMA 1. Suppose that ρ ,V ∈ L∞(Ω) are non-negative functions with ρ �= 0
and 1 < p < N . Then there exists a unique u ∈W 1,p

0 (Ω)∩C1(Ω)∩C(Ω) solution of
(2.1) .

Also, we are going to use some facts concerning the following eigenvalue problem,{
−Δpu+V(x)up−1 = λ ρ(x)up−1 in Ω
u > 0 in Ω; u = 0 on ∂Ω,

(2.2)

where ρ ,V are such that

(H4) ρ ,V ∈ Lr(Ω), where r > N/p if 1 < p � N and r = 1 if p > N.

We are going to denote by Ω+(ρ) = {x ∈ Ω / ρ(x) > 0} and to introduce

αΩ(V,ρ) = inf

{∫
Ω
(|∇u|p +V |u|p)dx / u ∈W 1,p

0 (Ω),∫
Ω
|u|pdx = 1,

∫
Ω

ρ |u|pdx = 0

}
.

So, for V,ρ satisfying (H4) , we have −∞ < αΩ(V,ρ) � ∞ with αΩ(V,ρ) < ∞ if and
only if |Ω+(ρ)| < |Ω| (see [7]). Besides this, αΩ2(V,ρ) � αΩ1(V,ρ) if Ω1 ⊆ Ω2 for
Ω1,Ω2 ⊆ Ω smooth bounded domains.

It follows from Cuesta and Quoirin in [7, Theorem 7], that

LEMMA 2. Assume ρ ,V satisfies (H4) and ρ � 0 with |Ω+(ρ)| > 0 . Then there
exists a principal eigenvalue of (2.2) if and only if αΩ(V,ρ) > 0 . In this case, the
principal eigenvalue is unique and is characterized by

λ1,Ω(V,ρ) := inf

{∫
Ω
(|∇u|p +V |u|p)dx / u ∈W 1,p

0 (Ω);
∫

Ω
ρ |u|pdx = 1

}
∈ (−∞,∞).

Now, we establish a version of the [19, Theorem 1.2, Lemma 2.3] for our class of
problems.

LEMMA 3. Assume (H4) , ρ � 0 with |Ω+(ρ)|> 0 , αΩ(V,ρ) > 0 and that given
a λ ∈ R there exists a 0 < v = vλ ∈W 1,p

loc (Ω) such that −Δpv+Vvp−1 � λ ρvp−1 in Ω
in the distributional sense. Then λ � λ1,Ω(V,ρ) . In particular, if there exists a 0 < w ∈
W 1,p

loc (Ω)∩L∞(Ω) satisfying −Δpw+Vwp−1 � ρ in Ω , then λ1,Ω(V,ρ) � ‖w‖1−p
L∞(Ω) .

Proof. Pick {ϕn}n∈N ⊂ C∞
0 (Ω) with ϕn � 0 and ϕn → φ1 in W 1,p

0 (Ω) , where
φ1 = φ1,Ω(V,ρ) > 0 is the first eigenfunction of the problem (2.2) associated to its first
eigenvalue λ1,Ω(V,a) . So, applying Picone’s identity (see [2]) and density arguments,
we have

0 �
∫

Ω
|∇ϕn|pdx−

∫
Ω
|∇v|p−2∇v∇

(
ϕ p

n

vp−1

)
dx
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�
∫

Ω
|∇ϕn|pdx+

∫
Ω

Vϕ p
n dx−

∫
Ω

λ ρ(x)ϕ p
n dx.

Now, making n → ∞ , we have

λ1,Ω(V,ρ)
∫

Ω
ρφ p

1 dx =
∫

Ω
|∇φ1|pdx+

∫
Ω

Vφ p
1 dx � λ

∫
Ω

ρφ p
1 dx,

that is, λ � λ1,Ω(V,ρ) because ρ is non-negative and not identically zero. To finish
our proof, we define for each τ > 0, v(x) = vτ(x) = τ‖w‖−1

L∞(Ω)w(x) , x ∈ Ω . So, we
have that 0 < v � τ and

∫
Ω
|∇v|p−2∇v∇ϕdx+

∫
Ω

V (x)vp−1ϕdx

=
τ p−1

‖w‖p−1
L∞(Ω)

[∫
Ω
|∇w|p−2∇w∇ϕdx+

∫
Ω

V (x)wp−1ϕdx

]
� 1

‖w‖p−1
L∞(Ω)

∫
Ω

ρ(x)τ p−1ϕdx � 1

‖w‖p−1
L∞(Ω)

∫
Ω

ρ(x)vp−1ϕdx,

for all ϕ ∈C∞
0 (Ω) , ϕ � 0. So, from the first part, with λ = ‖w‖1−p

L∞(Ω) , the proof ends.

Now, given functions ρ ,V : R
N → R such that ρ ,V satisfy

(H4)′ ρ ,V ∈ Lr
loc(R

N), where r > N/p if 1 < p � N and r = 1 if p > N ,

we can define
α(V,ρ) = lim

k→∞
αBk(V,ρ) ∈ [−∞,∞],

because of the monotonicity of αBk(V,ρ) in k = 1,2, · · · , where Bk is the ball centered
at the origin of the R

N with radius k . Besides this, if ρ � 0, |{x∈R
N / ρ(x) > 0}|> 0

and αBk(V,ρ) > 0 for all k = 1,2, · · · we can let

λ1(V,ρ) := lim
k→∞

λ1,Bk(V,ρ) ∈ [−∞,∞) (2.3)

because λ1,Bk+1(V,ρ) � λ1,Bk(V,ρ) .

REMARK 3. We have α(V,ρ) > 0 if, for instance, ρ > 0 a.e. in R
N , because

|(Bk)+(ρ)| = |Bk| for every k ∈ N . In particular, we have well-defined λ1(V,ρ) .

REMARK 4. It follows from Lemmas 1− 3 that λ1(V,ρ) � 0 for ρ ,V ∈ C(RN)
with ρ ,V � 0, ρ �= 0 and 1 < p < N . In fact, in this case, we note that αBk(V,ρ) �
λ1,Bk(0,1) > 0 for all k ∈ N . Hence, there exists λ1,Bk(V,ρ) and it satisfies

λ1,Bk(V,ρ) � ‖wk‖L∞(Bk),

where wk is the solution of (2.1) given by Lemma 2.1.
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So, as an application the of the last results, we have that

LEMMA 4. Assume (H4)′ with ρ � 0 and |{x∈R
N / ρ(x)> 0}|> 0 , αBk(V,ρ)>

0 for k = 1,2, · · · and that given λ ∈R there exists a 0 < v = vλ ∈W 1,p
loc (RN) satisfying

−Δpv+Vvp−1 � λ ρvp−1 in R
N in distributional sense. Then, λ � λ1(V,ρ) . In partic-

ular, if there exists a function 0 < w∈W 1,p
loc (RN)∩L∞(RN) such that −Δpw+Vwp−1 �

ρ in R
N , then λ1(V,ρ) � ‖w‖1−p

L∞(RN) .

In the sequel, we are going to use some of the last results to ensure the existence
of solution for the problem{

−Δpu+V(x)up−1 = ρ(x)uβ in Ω
u > 0 in Ω; u = 0 on ∂Ω.

(2.4)

So, we have

THEOREM 3. Assume ρ ,V ∈ L∞(Ω) are non-negative functions with ρ �= 0 and
−∞ < β < p−1 < N−1 hold. Then, there exists a solution u∈C1(Ω)∩C(Ω) of (2.4)
such that

0 < ‖u‖∞ � max
{

1,
[(

2− β
p−1

)2‖wρ‖∞

] p−1
p−1−β

}
,

where wρ ∈C1(Ω)∩C(Ω) is the solution of (2.1) given by Lemma 1 .

Proof. We are going to follow an idea as in [19] or [20]. Defining

Φ(s) =
s2− β

p−1(
2− β

p−1

)2
τ∞

, s > 0,

where

τ∞ = max
{

1,
[(

2− β
p−1

)2‖wρ‖∞

] p−1
p−1−β

}
and v(x) = Φ−1(wρ (x)) , x∈ Ω , we have v∈C1(Ω)∩C(Ω) , 0 < v(x) = Φ−1(wρ(x)) �
Φ−1(‖wρ‖∞) � τ∞, x ∈ Ω and v(x) = Φ−1(wρ (x)) = 0 on ∂Ω .

Besides this, given ϕ ∈ C∞
0 (Ω) with ϕ � 0, it follows from (Φ−1(s))′ > 0 and

(Φ−1(s))′′ < 0, s > 0 that∫
Ω
|∇v|p−2∇v∇ϕdx+

∫
Ω

V (x)vp−1ϕdx

=
∫

Ω
[(Φ−1)′(wρ )]p−1|∇wρ |p−2∇wρ ∇ϕdx

+
∫

Ω
V (x)[Φ−1(wρ)]p−1ϕdx
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=
∫

Ω
|∇wρ |p−2∇wρ ∇((Φ−1)′(wρ)p−1ϕ)dx

−
∫

Ω
(p−1)[(Φ−1)′(wρ)]p−2[(Φ−1)′′(wρ)]|∇wρ |pϕdx

+
∫

Ω
V (x)[Φ−1(wρ)]p−1ϕdx

�
∫

Ω
|∇wρ |p−2∇wρ ∇((Φ−1)′(wρ)p−1ϕ)dx

+
∫

Ω
v(x)[Φ−1(wρ)]p−1ϕdx.

Since wρ (x)[(Φ−1)′(wρ (x))] � Φ−1(wρ (x)) , x∈Ω holds (to prove this inequality,
first show that Φ(t)[(Φ−1)′(Φ(t))] � Φ−1(Φ(t)), t > 0), it follows∫

Ω
|∇v|p−2∇v∇ϕdx+

∫
Ω

V (x)vp−1ϕdx

�
∫

Ω
|∇wρ |p−2∇wρ ∇((Φ−1)′(wρ)p−1ϕ)dx

+
∫

Ω
V (x)wp−1

ρ [(Φ−1)′(wρ)]p−1ϕdx

=
∫

Ω
a(x)[(Φ−1)′(wρ )]p−1ϕdx

=
∫

Ω
ρ(x)

(
2− β

p−1

)p−1

τ p−1
∞ vβ−p+1ϕdx.

So, as β1 < p−1 and a � 0, we have∫
Ω
|∇v|p−2∇v∇ϕdx+

∫
Ω

V (x)vp−1ϕdx

�
∫

Ω
ρ(x)τ p−1

∞ vβ−p+1ϕdx �
∫

Ω
ρ(x)vβ ϕdx. (2.5)

In particular, v is an upper solution of (2.4) . Now, since V � 0, it follows
that αΩ(V,ρ) � λ1,Ω(0,1) > 0. So, from Lemmas 2 and 3, we have λ1,Ω(V,ρ) �
‖wρ‖1−p

∞ > 0. Now, define w = φ1,Ω with

‖w‖p−1−β
∞ � min

{
τ p−1−β

∞ ,1/λ1,Ω(V,ρ)
}

,

where φ1,Ω > 0 and λ1,Ω(V,ρ) are the first eigenfunction and eigenvalue of eigenvalue
problem (2.2), respectively.

Hence,∫
Ω
|∇w|p−2∇w∇ψdx+

∫
Ω

V (x)wp−1ψdx �
∫

Ω
wβ−p+1ρ(x)wp−1ψdx,

for all ψ ∈C∞
0 (Ω),ψ � 0. In particular, w is a lower solution of (2.4) . Besides this,

it follows from ‖w‖∞ � τ∞ , that
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Ω
|∇w|p−2∇w∇ψdx+

∫
Ω

V (x)wp−1ψdx

�
∫

Ω
wβ−p+1τ p−1

∞ ρ(x)ψdx,∀ ψ ∈C∞
0 (Ω). (2.6)

Now, applying the comparison principle of Tolksdorf (see Lemma 3.1 in [24]),
it follows from (2.5) and (2.6) that 0 < w(x) � v(x), x ∈ Ω. Therefore, by the lower
and upper solution principle of Lee, Shivaji and Ye in [15, Lemma 1.8] there exists a
u ∈C1(Ω)∩C(Ω) solution of (2.4). This completes the proof of Theorem 2.1.

Our main tool for the proof of the existence of solution will be a general method
of lower and upper solution. Consider the system{

−Δpu = f1(x,u,v) in R
N

−Δqv = f2(x,u,v) in R
N ,

(2.7)

where the functions fi : R
N ×R×R→ R are continuous.

In order to enunciate a version of the lower and upper-solution method for our
class of problems, we will introduce some definitions.

DEFINITION 1. A pair of functions (u,v) ∈ C1(RN)×C1(RN) is called a weak
lower solution of the problem (2.7) if∫

RN
|∇u|p−2u∇ϕdx �

∫
RN

f1(x,u,v)ϕdx,∫
RN

|∇v|q−2v∇ψdx �
∫

RN
f2(x,u,v)ψdx,

for all ϕ ,ψ ∈C∞
0 (RN) with ϕ ,ψ � 0.

Similarly, an upper solution (u,v) of (2.7) is defined by considering the converse
inequality in the above definition.

The proof of the theorem below follows arguments as in [15].

THEOREM 4. Assume that fi : R
N × (0,∞)× (0,∞) → R for i = 1,2 are contin-

uous functions satisfying:

(F1) f1(x,s, t) is nondecreasing in t > 0 for all fixed (x,s) ∈ R
N × (0,∞) ,

f2(x,s, t) is nondecreasing in s > 0 for all fixed (x,t) ∈ R
N × (0,∞) ,

(F2) given ai,bi ∈ (0,∞) , i = 1,2 , with a1 < a2 , b1 < b2 , then

f1(· ,s,t), f2(· ,s,t) ∈ L∞
loc(R

N)

for all (s, t) ∈ [a1,a2]× [b1,b2] .

Suppose that (u,v),(u,v) are a weak lower-solution and a weak upper-solution, re-
spectively, of system (2.7) with

(u,v) � (u,v) a.e. R
N .

Then the problem (2.7) has at least one solution in [u,u]× [v,v] .
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3. Proof of theorem 1

The proof of this theorem is based on an argument by contradiction which involves
the results about the positivity of eigenvalues treated early and a special carefully-
chosen test function.

Proof. First, let us define the continuous function M(x) = max{m1(x),m2(x)} ,
x ∈ R

N . So, we have by definition, that

αBk(M
+,m) � λ1,Bk(0,1) > 0,

for k = 1,2, · · · .
So, since m,M+ ∈ L∞(Bk) for all k > 1 and m �= 0 in R

N , it follows from Lemmas
1-3 that there exists λ1,Bk(M

+,m) for all k � k0 for some k0 > 0 and it satisfies

λ1,Bk(M
+,m) � ‖wk‖1−p

L∞(Bk)
for all k > k0,

where wk ∈ C1(Ω)∩C(Ω) is the unique solution of (2.1) with V = M+ , ρ = m and
Ω = Bk given by Lemma 2.1.

So, from (2.3), we have that λ1(M+,m) � 0. Now we are going to define λ ∗ �
0 and μ∗ � 0 as λ ∗ = λ1(M+,m) , if γ1 + δ1 = p− 1 in (Hi) for i = 1,2; μ∗ =
λ1(M+,m) , if γ2 + δ2 = p−1 in (Kj) for j = 1,2 and for the other cases

λ ∗ = λ1(M+,m)
γ1+δ1−β1
p−1−β1

(
p−1−β1

γ1 + δ1−β1

)(
γ1 + δ1− p+1

γ1 + δ1−β1

) γ1+δ1−β1
p−1−β1 � 0, (3.1)

and

μ∗ = λ1(M+,m)
γ2+δ2−β2
p−1−β2

(
q−1−β2

γ2 + δ2−β2

)(
γ2 + δ2−q+1

γ2 + δ2−β2

) γ2+δ2−β2
q−1−β2 � 0. (3.2)

Now, given (λ ,μ) > (λ ∗,μ∗) , we are going to suppose by contradiction that prob-
lem (1.1) has a solution (u,v) = (uλ ,μ ,vλ ,μ) . So defining hλ ,hμ : (0,∞) −→ (0,∞) by

hλ (t) = tβ1−p+1 + λ tγ1+δ1−p+1 and hμ(t) = tβ2−p+1 + μtγ2+δ2−p+1,

it follows from (Hi ) and (Kj ) for some i, j ∈ {1,2} that

hλ (t) > λ1(M+,m) and hμ(t) > λ1(M+,m) for all t > 0. (3.3)

Now, defining

Ω1 = {x ∈ R
N ;u � v}, Ω2 = {x ∈ R

N ;u > v}
and, for each n , qn : R

N → [0,1] by qn(x) = ρn((u− v)(x)) , where ρn : R −→ [0,1] is
chosen satisfying ρn ∈C1(R) , ρ ′

n � 0 on (0,1/n) , ρn(t) = 0 if t � 1/n and ρn(t) = 1,
if t � 0, it follows that qn satisfies

qn(x) =

{
0, if u(x) � v(x)+ 1

n ,

1, if u(x) � v(x).
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Hence, qn ∈W 1,p
loc (RN)∩L∞(RN) , ‖qn‖∞ � 1, ∇qn = ρ ′

n(u− v)∇(u− v) and

qn(x)
n→∞−→

{
0, if x ∈ Ω2,

1, if x ∈ Ω1.

Now, define U(x) = min{u(x),v(x)} , x ∈ R
N . Given ϕ ∈C∞

0 (RN) with ϕ � 0, it
follows after some calculations that∫

RN
|∇U |p−2∇U∇ϕdx+

∫
RN

M+(x)U p−1ϕdx

�
∫

Ω1

|∇u|p−2∇u∇ϕdx+
∫

Ω1

m1(x)up−1ϕdx

+
∫

Ω2

|∇v|p−2∇v∇ϕdx+
∫

Ω2

m2(x)vp−1ϕdx

� limsup
n→∞

∫
RN

qn(|∇u|p−2∇u∇ϕ +m1(x)up−1ϕ)dx

+ limsup
n→∞

∫
RN

(1−qn)(|∇v|p−2∇v∇ϕ +m2(x)vp−1ϕ)dx. (3.4)

Since ∇(qnϕ) = qn∇ϕ + ϕ∇qn , we have that∫
RN

qn|∇u|p−2∇u∇ϕdx+
∫

RN
m1(x)up−1(qnϕ)dx =

∫
RN

|∇u|p−2∇u∇(qnϕ)dx

+
∫

RN
m1(x)up−1(qnϕ)dx−

∫
RN

(|∇u|p−2∇u∇qn
)
ϕdx

=
∫

RN

(
a(x)uβ1 + λb(x)uγ1vδ1 + f (x)

)
(qnϕ)dx (3.5)

−
∫

Ωn

(|∇u|p−2∇u∇qn
)
ϕdx

and ∫
RN

(1−qn)|∇v|p−2∇v∇ϕdx+
∫

RN
m2(x)vp−1(1−qn)ϕdx (3.6)

=
∫

RN
(c(x)vβ2 + μd(x)vγ2uδ2 +g(x))(1−qn)ϕdx+

∫
Ωn

(|∇v|p−2∇v∇qn
)
ϕdx,

where Ωn = {x ∈ R
N ,v(x) � u(x) < v(x)+1/n} .

So, from (3.4), (3.5), (3.6), (|∇v|p−2∇v− |∇u|p−2∇u)∇(v− u) � 0 and ρ ′(u−
v) � 0 in Ωn , we obtain, passing to the limit with n → ∞ , that∫

RN
|∇U |p−2∇U∇ϕdx+

∫
RN

M+(x)U p−1ϕdx

�
∫

Ω1

(a(x)uβ1 + λb(x)uγ1vδ1)ϕdx

+
∫

Ω2

(c(x)vβ2 + μd(x)vγ2uδ2)ϕdx
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�
∫

Ω1

m(x)(uβ1 + λuγ1+δ1)ϕdx

+
∫

Ω2

m(x)(vβ2 + μvγ2+δ2)ϕdx

=
∫

Ω1

m(x)hλ (u)up−1ϕdx+
∫

Ω2

m(x)hμ(v)vp−1ϕdx

�
∫

Ω1

min{hλ (t),hμ(t)}m(x)U p−1ϕdx

+
∫

Ω2

min{hλ (t),hμ(t)}m(x)U p−1ϕdx

=
∫

RN
min{hλ (t),hμ(t)}m(x)U p−1ϕdx.

So, from Lemma 2.4, it follows that min{hλ (t),hμ(t)} � λ1(M+,m) . But it is impos-
sible by (3.3). This ends the proof.

REMARK 5. In ( Hi ) for i = 1,2, we can assume β1 = p−1, if λ1(M+,m) < 1.
In this case, we should define λ ∗ = 0. In a similar way, we can have in ( Kj ) for
j = 1,2 the equality β1 = p−1, if once again λ1(M+,m) < 1. Now, we define μ∗ = 0.

REMARK 6. In the proof of Theorem 1.1, we have not used the condition

u(x),v(x) → 0 as |x| → ∞.

Proo f o f Corollary 1.1. As a consequence of the proof of Theorem 1.1, to prove that
λ ∗ = μ∗ = 0 it is enough to prove λ1(M+,m) = 0. First, it follows from M � 0 and
properties of the first eigenvalue, that

0 < λ1,Bk(M
+,m) = λ1,Bk(0,m) � λ1,Bk(0,m̂), for all k > 1,

where m̂(|x|) = m̂(r) := min|x|=r m(x),r > 0.
Hence, by definition, we have

0 � λ1(M+,m) = λ1(0,m) � λ1(0,m̂). (3.7)

Now, suppose, by contradiction, that λ1(0,m) > 0. So, by (3.7), we would have
λ1(0,m̂)> 0. Considering λ := λ1(0,m̂) and taking the unique solution u∈C2((0,∞))∩
C1([0,∞)) of the initial value problem{

−(rN−1|u′|p−2u′)′ = λ rN−1m̂(r)up−1 in (0,∞)
u(0) = 1; u′(0) = 0,

it follows that v∈C2(RN \{0})∩C1(RN) defined by v(x) = u(|x|), x∈R
N is a solution

of {
−Δpu = λ m̂(x)up−1 in R

N ,

u(0) = 1.
(3.8)
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On the other hand, we point out that |x|pa(x), |x|pb(x), |x|pc(x), |x|pd(x) → ∞
when |x| → ∞ implies |x|pm(x) → ∞ when |x| → ∞ . So, as a consequence of this,
we have |x|pm̂(|x|) → ∞ when |x| → ∞ . Indeed, suppose that there exists rn → ∞
such that liminfrp

n m̂(rn) < ∞ . We can see that m̂(rn) = m(xn) with |xn| = rn . So,
lim |xn|pm(xn) = limrp

n m̂(rn) < ∞, when n→ ∞ , what is an absurd, since |xn|pm(xn)→
∞ .

So, since |x|pm̂(x)→∞ when |x|→∞ , it follows by a result in [3] that the problem
(3.8) does not have any positive entire solution. So, there exists a R > 0 such that
u(R) = 0. With this, v satisfies{

−Δpu = λ m̂(x)up−1 in BR(0)
u > 0 in BR(0); u = 0 on ∂BR(0).

Hence, by well-known properties concerning to the eigenvalue problems in bounded
domain, we have

λ1(0,m̂) := λ = λ1,BR(0)(0,m̂) > λ1(0,m̂).

This is impossible. So, we have showed that λ1(0,m̂) = 0. So, from (3.7), it follows
that λ1(M+,m) = λ1(0,m) = 0.

4. Proof of Theorem 2

Proof. First, we are going to construct an upper solution of (1.1) of the form
(u,v) = (tw1, tw2), for some t = tλ ,μ > 0, where w1,w2 are solutions of (1.4) and
(1.5) , respectively. For this, it is enough to find a tλ ,μ > 0 satisfying

t p−1
λ ,μ � tβ1

λ ,μ‖w1‖β1
∞ + λ tγ1+δ1

λ ,μ ‖w1‖γ1
∞ ‖w2‖δ1

∞ +1+
∥∥m−

1 /Mf
∥∥

∞ t p−1
λ ,μ ‖w1‖p−1

∞ (4.1)

and

tq−1
λ ,μ � tβ2

λ ,μ‖w2‖β2
∞ + λ tγ2+δ2

λ ,μ ‖w1‖γ2
∞ ‖w2‖δ2

∞ +1+
∥∥m−

2 /Mg
∥∥

∞ tq−1
λ ,μ ‖w2‖q−1

∞ . (4.2)

So defining h,k : (0,∞) −→ R by

h(t) =
1

‖w1‖γ1∞ ‖w2‖δ1∞

[
A1t

p−1−γ1−δ1 −‖w1‖β1
∞ tβ1−γ1−δ1 − t−γ1−δ1

]
and

k(t) =
1

‖w2‖γ2∞ ‖w1‖δ2∞

[
A2t

q−1−γ2−δ2 −‖w2‖β2
∞ tβ2−γ2−δ2 − t−γ2−δ2

]
,

where

A1 =
(
1−

∥∥∥∥m−
1

Mf

∥∥∥∥
∞
‖w1‖p−1

∞

)
and A2 =

(
1−

∥∥∥∥m−
2

Mg

∥∥∥∥
∞
‖w2‖q−1

∞

)
,

we have that the existence of tλ ,μ > 0 satisfying (4.1) and (4.2) is the same as showing
that h(tλ ,μ) � λ and k(tλ ,μ) � μ for λ > 0 and μ > 0 given.
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Now, denoting by

Im+(g) = {t > 0 / g(t) > 0} for g = h,k

and
Im+(h,k) = {t ∈ Im+(h)∩ Im+(k) / h(t) = k(t)}

we are going to consider some cases.

Case 1. p− 1 < γ1 + δ1 and q− 1 < γ2 + δ2 . We have that h(t),k(t) −→ −∞ if
t → 0 and h(t),k(t) −→ 0 if t → ∞ . Since Im+(h), Im+(k) �= /0 , we have just two
possibilities:

If Im+(h,k) �= /0 , then take a t0 ∈ Im+(h,k) . So, it follows from the behavior of
h(t),k(t) that we can take λ∗ = μ∗ = h(t0) = k(t0) > 0.

On the other hand, if Im+(h,k) = /0 , then we are going to define λ∗ = μ∗ =
min{maxt>0 h(t),maxt>0 k(t)} > 0.

Case 2. p−1 < γ1 + δ1 and q−1 = γ2 + δ2 . Now, we have that h(t),k(t) −→−∞ if
t → 0, h(t) −→ 0, if t → ∞ and

k(t) →
( 1

‖w2‖γ2∞ ‖w1‖δ2∞

)(
1−

∥∥∥∥m−
2

Mg

∥∥∥∥
∞
‖w2‖q−1

∞

)
, t → ∞.

Again, we have Im+(h), Im+(k) �= /0 . So, if Im+(h,k) �= /0 we can consider λ∗ =
μ∗ > 0 as the last case. If Im+(h,k) = /0 , we will define λ∗ = μ∗ = maxt>0 h(t) > 0.

Case 3. p−1 < γ1 +δ1 and q−1 > γ2 +δ2 . Since h(t)→−∞ and k(t) →−c2 when
t → 0, for some c2 ∈ [0,∞] , h(t)→ 0 and k(t)→∞ , if t →∞ and Im+(h), Im+(k) �= /0 ,
it follows that if Im+(h,k) �= /0 , then we can consider λ∗ = μ∗ > 0 as in the case 1. If
Im+(h,k) = /0 , we will define λ∗ = μ∗ = maxt>0 h(t) > 0 as in the last case.

Case 4. p− 1 > γ1 + δ1 and q− 1 > γ2 + δ2 . Since h(t),k(t) −→ ∞ , if t → ∞ and
considering the different subcases βi < γi +δi , βi = γi +δi and βi > γi +δi , for i = 1,2,
we can prove that h(t) −→−c1 and k(t) −→−c2 , if t → 0, for some c1,c2 ∈ [0,∞] .
So, we have Im+(h) = [h1,∞) and Im+(k) = [k1,∞) , for some h1,k1 > 0. That is, we
can take λ∗ = μ∗ = ∞ .

Thus, in all the cases above, for each (0,0) < (λ ,μ) � (λ∗,μ∗) given, there exists
a t = tλ ,μ > 0 such that k(tλ ,μ) > μ and h(tλ ,μ) > λ . Now, computing, we show that
(u,v) = (tw1, tw2) is an upper solution of (1.1). The other five possible cases are treated
in a similar way.

Below we are going to construct a lower solution of the problem (1.1). Since
a,c,m1,m2 ∈ L∞(Bk) for all k > 1 and a,c � 0, a,c �= 0, it follows from theorem 3
that there exists (uk,vk) satisfying⎧⎪⎨⎪⎩

−Δpu+m+
1 (x)up−1 = a(x)uβ1 in Bk(0)

−Δqv+m+
2 (x)vq−1 = c(x)vβ2 in Bk(0)

u,v > 0 in Bk(0); u = v = 0 on ∂Bk(0)



Differ. Equ. Appl. 6 (2014), 383–401. 399

for all k > k0 , for some k0 > 0 such that Bk0 ⊇ {x ∈ R
N / a(x),c(x) �= 0}.

So, defining uk(x) = vk(x) = 0 for |x| > k , it follows that

u1(x) � u2(x) � . . . � uk(x) � uk+1(x) � . . . � u(x), x ∈ R
N , (4.3)

v1(x) � v2(x) � . . . � vk(x) � vk+1(x) � . . . � v(x), x ∈ R
N .

Thus, letting u = lim
k→∞

uk(x) , v = lim
k→∞

vk(x) and following an idea similar to that of

[29, Theorem 1.1], we show that (u,v) satisfies⎧⎪⎨⎪⎩
−Δpu+m+

1 (x)up−1 = a(x)uβ1 in R
N

−Δqv+m+
2 (x)vq−1 = c(x)vβ2 in R

N

u,v > 0 in R
N ; u(x),v(x)

|x|→∞−→ 0.

So, (u,v) is a lower solution of (1.1) and from (4.3), we have (0,0) < (u,v) �
(u, v) . Therefore, by Theorem 4, there exists a (u,v) ∈C1(RN)×C1(RN) solution of
(1.1) such that (u,v) � (u,v) � (u, v).

5. Appendix

In this Appendix, we are going to sketch the proof of Remark 1.2.

Proof. First, we note that by defining w1(x) = v1(|x|) , x ∈ R
N , where

v1(r) =
∫ ∞

r

[
s1−N

∫ s

0
tN−1M̂1(t)dt

] 1
p−1

ds, r � 0

it is easy to check that w1 ∈ C1(RN) is a positive upper solution of (1.4) such that
w1(x) → 0 when |x| → ∞ .

On the other hand, by Lemma 1, there exists a unique uk ∈C1(Bk)∩C(Bk) solution
of

(P)k

{
−Δpu+m+

1 (x)up−1 = Mf (x) in Bk,

u > 0 in Bk; u(x) = 0 on ∂Bk.

Now, considering uk = 0 in R
N \Bk , we have by a comparison principle that

u1(x) � u2(x) � . . . � uk(x) � uk+1(x) � . . . � w1(x), x ∈ R
N .

So, after some standard calculations, we obtain the result claimed.
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