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EXISTENCE AND ASYMPTOTIC BEHAVIOR OF POSITIVE

SOLUTIONS FOR A CLASS OF (p(x),q(x))– LAPLACIAN SYSTEMS

HONGHUI YIN AND ZUODONG YANG

Abstract. In this paper, our main purpose is to establish the existence of positive solution of the
following system ⎧⎪⎨

⎪⎩

−Δp(x)u = uα(x) +λ p(x)vm(x), x ∈ Ω
−Δq(x)v = vβ(x) +θ q(x)un(x), x ∈ Ω
u = v = 0, x ∈ ∂Ω,

where Ω ⊂ R
N is a bounded domain with C2 boundary, p(x),q(x) are functions which satisfy

some conditions, −Δp(x)u = −div(|∇u|p(x)−2∇u) is called p(x) -Laplacian. We give the exis-
tence results of positive solutions and consider the asymptotic behavior of the solutions near the
boundary. The approach is based on the sub- and super-solution method.
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