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Abstract. In this paper, our main purpose is to establish the existence of positive solution of the
following system ⎧⎪⎨

⎪⎩
−Δp(x)u = uα(x) +λ p(x)vm(x), x ∈ Ω
−Δq(x)v = vβ(x) +θ q(x)un(x), x ∈ Ω
u = v = 0, x ∈ ∂Ω,

where Ω ⊂ R
N is a bounded domain with C2 boundary, p(x),q(x) are functions which satisfy

some conditions, −Δp(x)u = −div(|∇u|p(x)−2∇u) is called p(x) -Laplacian. We give the exis-
tence results of positive solutions and consider the asymptotic behavior of the solutions near the
boundary. The approach is based on the sub- and super-solution method.

1. Introduction

In this paper, our main purpose is to establish the existence results of positive
solutions of the following system

⎧⎨
⎩

−Δp(x)u = uα(x) + λ p(x)vm(x), x ∈ Ω
−Δq(x)v = vβ (x) + θ q(x)un(x), x ∈ Ω
u = v = 0, x ∈ ∂Ω,

(1.1)

where Ω ⊂ R
N is a bounded domain with C2 boundary, and p,q ∈C1(Ω) are positive

functions, the operator −Δp(x)u = −div(|∇u|p(x)−2∇u) is called p(x)-Laplacian and
the corresponding problem is called a variable exponent problem.

The study of differential equations and variational problems with nonstandard
p(x)-growth conditions is a new and interesting topic. It aries from nonlinear elasticity
theory, electro-rheological fluids, etc. (see [16,23]). Many results have been obtained
on such problems, for example [1-2,5-8,10,14]. For the regularity of weak solutions for
differential equations with nonstandard p(x)-growth conditions, we refer to [1-2,5-7].
For the existence results for the elliptic systems with variable exponents, we refer to
[8,14,19-22].
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When p(x) ≡ p,q(x) ≡ q ( p,q are positive constants), system (1.1) becomes the
well known (p,q)-Laplacian system, such problems have been considered widely, see
[3,13,18] and the reference therein.

In [13], the authors studied the existence of positive weak solutions for the follow-
ing problem ⎧⎨

⎩
−Δpu = λ f (v), x ∈ Ω
−Δpv = λg(u), x ∈ Ω
u = v = 0, x ∈ ∂Ω.

(1.2)

Under the condition of

lim
s→∞

f (M[g(s)]
1

p−1 )
sp−1 = 0, ∀M > 0, (1.3)

the authors gave the existence of positive solutions for problem (1.2).
In [3], the author considered the existence and nonexistence of positive weak so-

lutions to the following problem⎧⎨
⎩

−Δpu = λuαvγ , x ∈ Ω
−Δqv = λuδ vβ , x ∈ Ω
u = v = 0, x ∈ ∂Ω.

(1.4)

Recently, in [18], the authors considered the existence and nonexistence of entire
positive solutions to the following problem⎧⎨

⎩
−Δpu = a(x)uα + λc(x)vm, x ∈ R

N

−Δqv = b(x)vβ + θc(x)vn, x ∈ R
N

u,v > 0, x ∈ R
N and u → 0,v → 0 as |x| → ∞.

(1.5)

Under suitable conditions, they obtained the following results:
(i) there exists (0,0) < (λ∗,θ∗) < (∞,∞) such that the system (1.5) has at least

one positive solution, if (0,0) � (λ ,θ ) � (λ∗,θ∗)
(ii) there exists (0,0) < (λ ∗,θ ∗) < (∞,∞) such that the system (1.5) has no posi-

tive solution, if (λ ∗,θ ∗) < (λ ,θ ) .
Here we use (λ ,θ ) > (λ ∗,θ ∗) to denote λ > λ ∗ ,θ > θ ∗ and the same meaning

for other cases in this paper.
We note that in order to obtain the existence results, the first eigenfunction of

−Δp is used to construct the sub-solution for problems (1.2),(1.4) and (1.5). But for
the variable exponent problems, maybe the first eigenvalue and the first eigenfunction
of the operator −Δp(x) do not exist. Even if the first eigenfunction of −Δp(x) exists,
because of the nonhomogeneity of −Δp(x) , we still cannot to construct the sub-solution
of variable exponent problems with the first eigenfunction. In many cases, the radial
symmetric conditions are affective to deal with variable exponent problems, there are
many papers about the radial variable exponent problems, see [8-9,20,22] and reference
therein. In [19,20], with a condition similar to (1.3), the author discussed the existence
of positive solutions of the following problem⎧⎨

⎩
−Δp(x)u = λ f (v), x ∈ Ω
−Δp(x)v = λg(u), x ∈ Ω
u = v = 0, x ∈ ∂Ω.
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Recently, in [21], the author considered the existence and asymptotic behavior of
positive solutions of the following system

⎧⎨
⎩

−Δp(x)u = λ p(x)(uα(x)vγ(x) +h1(x)), x ∈ Ω
−Δq(x)v = λ q(x)(uδ (x)vβ (x) +h2(x)), x ∈ Ω
u = v = 0, x ∈ ∂Ω.

Motivated by the above results, we study problem (1.1) in this paper. Our aim is
to give the existence and asymptotic behavior of positive weak solutions for problem
(1.1). By a new method to construct sub-supersolution, we obtain the existence of
positive weak solutions for problem (1.1) via sub-supersolution method.

The paper is organized as follows. In section 2, we recall some facts that will be
needed in the paper. In section 3, we give the proofs of main result. We will show the
asymptotic behavior of the positive solutions of problem (1.1) in the last section.

2. Notations and preliminaries

In order to deal with p(x)-Laplacian problem, we need some theories on spaces
Lp(x)(Ω) , W 1,p(x)(Ω) and properties of p(x)-Laplacian which we will use later(see[6,15-
17]). For any f ∈C(Ω) , we write

f + = max
x∈Ω

f (x), f− = min
x∈Ω

f (x).

Denote

Lp(x)(Ω) =
{

u| u is a measurable real-valued funcion,
∫

Ω
|u(x)|p(x)dx < ∞

}
.

We can introduce a norm on Lp(x)(Ω) by

|u|p(x) = inf
{

λ > 0|
∫

Ω
| u(x)

λ
|p(x)dx � 1

}

and (Lp(x)(Ω), | · |p(x)) becomes a Banach space. We call it variable exponent Lebesgue
space.

The space W 1,p(x)(Ω) is defined by

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω)| |∇u| ∈ Lp(x)(Ω)},

and it can be equipped with the norm

‖u‖ = |u|p(x) + |∇u|p(x), ∀u ∈W 1,p(x)(Ω).

We denote by W 1,p(x)
0 (Ω) the closure of C∞

0 (Ω) in W 1,p(x)(Ω) , and we call it variable
exponent Sobolev space. From [6], we know that spaces Lp(x)(Ω) , W 1,p(x)(Ω) and

W 1,p(x)
0 (Ω) are separable, reflexive and uniform convex Banach spaces.
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We define

(L(u),v) =
∫

Ω
|∇u|p(x)−2∇u∇vdx, ∀u,v ∈W 1,p(x)

0 (Ω),

then L : W 1,p(x)
0 (Ω) → (W 1,p(x)

0 (Ω))∗ is a continuous, bounded and strictly monotone
operator, and it is a homeomorphism(see[10,Theorem 3.1]).

DEFINITION 2.1. (1) (u,v)∈W 1,p(x)
0 (Ω)×W 1,q(x)

0 (Ω) is called a (weak) solution
of problem (1.1) if it satisfies

{∫
Ω |∇u|p(x)−2∇u∇ϕdx =

∫
Ω(uα(x) + λ p(x)vm(x))ϕdx∫

Ω |∇v|q(x)−2∇v∇ψdx =
∫

Ω(vβ (x) + θ q(x)un(x))ψdx

for any (ϕ ,ψ) ∈W 1,p(x)
0 (Ω)×W1,q(x)

0 (Ω) .

(2) (u,v) ∈ W 1,p(x)
0 (Ω)×W 1,q(x)

0 (Ω) is called a sub-solution (super-solution) of
problem (1.1) if (u,v) � (� )(0,0) on ∂Ω and

{∫
Ω |∇u|p(x)−2∇u∇ϕdx � (�)

∫
Ω(uα(x) + λ p(x)vm(x))ϕdx∫

Ω |∇v|q(x)−2∇v∇ψdx � (�)
∫

Ω(vβ (x) + θ q(x)un(x))ψdx

for any (ϕ ,ψ) ∈W 1,p(x)
0 (Ω)×W1,q(x)

0 (Ω) with (ϕ ,ψ) � (0,0) .

DEFINITION 2.2. Let u1,u2 ∈W 1,p(x)(Ω) . We say that −Δp(x)u1 � −Δp(x)u2 if

for all ϕ ∈W 1,p(x)
0 (Ω) with ϕ � 0, we have

∫
Ω
|∇u1|p(x)−2∇u1∇ϕdx �

∫
Ω
|∇u2|p(x)−2∇u2∇ϕdx.

Now we give a comparison principle as follows.

LEMMA 2.1. (see [4,Lemma 2.2]) Let u1,u2 ∈W 1,p(x)(Ω) . If

−Δp(x)u1 � −Δp(x)u2 and u1 � u2 on ∂Ω (i.e.(u1−u2)+ ∈W 1,p(x)
0 (Ω)) ,

then u1 � u2 in Ω .

Throughout this paper, we assume the following conditions:
(D1) Ω ⊂ R

N is an open bounded domain with C2 boundary ∂Ω ;
(D2) p,q ∈C1(Ω) and 1 < p− � p+ ,1 < q− � q+ ;
(D3) α,β ,m,n ∈C(Ω) satisfying α(x),β (x) � 0 and m(x),n(x) > 0 on Ω ;
(D4) 0 < α+ < p−−1, 0 < β + < q−−1 and (p−−1)(q−−1) > m+n+ .
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3. Existence of positive solutions

Now, we consider problem (1.1) in a bounded domain Ω with C2 boundary, we
use d(x) denote the distance of x ∈ Ω to the boundary of Ω . From Lemma 14.16
in [12], there exists a constant 0 < δ small enough such that d(x) ∈ C2(Ω3δ ) and
|∇d(x)| ≡ 1, where Ωε = {x ∈ Ω|d(x) < ε} .

Then we can denote

v1(x) =

⎧⎪⎨
⎪⎩

ξd(x), d(x) < δ ;

ξ δ +
∫ d(x)

δ ξ ( 2δ−t
δ )

2
p−−1 dt, δ � d(x) < 2δ ;

ξ δ +
∫ 2δ

δ ξ ( 2δ−t
δ )

2
p−−1 dt, 2δ � d(x),

where ξ > 0 is a constant. Obviously, 0 � v1 ∈C1(Ω)(see [21]).
Now we consider the following problem

{−Δp(x)w(x) = μ , x ∈ Ω
w = 0, x ∈ ∂Ω (3.1)

and have the following results.

LEMMA 3.1. (see [11]) If the positive parameter μ is large enough and w is the
unique solution of (3.1), then for any ν ∈ (0,1) , there exist positive constants C1,C2

such that

C1μ
1

p+−1+ν � max
x∈Ω

w(x) � C2μ
1

p−−1 .

Proof. By computation, we have

−Δp(x)v1(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−ξ p(x)−1[(∇p∇d) lnξ + Δd], d(x) < δ ;{
2(p(x)−1)
δ (p−−1) − ( 2δ−d

δ )[(lnξ ( 2δ−d
δ )

2
p−−1 )∇p∇d + Δd]

}

×ξ p(x)−1( 2δ−d
δ )

2(p(x)−1)
p−−1

−1
, δ < d(x) < 2δ ;

0,2δ < d(x).

From Lemma 2.2 of [21], we know that for any ν ∈ (0,1) , there exists a positive
constant C = C(δ ,ν,Ω, p) which is independent on ξ such that

|−Δp(x)v1(x)| � Cξ p(x)−1+ν a.e. on Ω.

If we let Cξ p+−1+ν = 1
2 μ , then v1(x) is a sub-solution of (3.1). By the definition of

v1(x) and Lemma 2.1, there exists a positive constant C1 such that

ξ δ = C1μ
1

p+−1+ν � max
x∈Ω

v1(x) � max
x∈Ω

w(x).

The right inequality can be obtained from Lemma 2.1 of [11]. �

Now we have the following result.
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THEOREM 3.1. If (D1)-(D4) hold, then there exists (λ∗,θ∗) > (0,0) such that
problem (1.1) possesses a positive solution for any (λ ,θ ) � (λ∗,θ∗) .

Proof. According to the sub-super solution method for variable exponent prob-
lems(see [11]), we only need to construct a positive sub-solution (φ1,φ2) and a super-
solution (z1,z2) of (1.1) such that (φ1,φ2) � (z1,z2) , then there exists a positive solu-
tion (u,v) of (1.1) satisfying (φ1,φ2) � (u,v) � (z1,z2) . That’s complete the proof.

Let σ = ln2
k ,τ = ln2

l , then there exist k1 = l1 > 1 such that for any k > k1, l > l1 ,
we have 0 < σ ,τ < δ . Now we assume

φ1(x) =

⎧⎪⎨
⎪⎩

ekd(x) −1, d(x) < σ

ekσ −1+
∫ d(x)

σ kekσ ( 2σ−t
σ )

2
p−−1 dt, σ � d(x) < 2σ

ekσ −1+
∫ 2σ

σ kekσ ( 2σ−t
σ )

2
p−−1 dt, 2σ � d(x)

and

φ2(x) =

⎧⎪⎨
⎪⎩

eld(x) −1, d(x) < τ

elτ −1+
∫ d(x)

τ lelτ ( 2τ−t
τ )

2
q−−1 dt, τ � d(x) < 2τ

elτ −1+
∫ 2τ

τ lelτ( 2τ−t
τ )

2
q−−1 dt, 2τ � d(x).

It is easy to see φ1,φ2 ∈C1(Ω) . By computation, we have

−Δp(x)φ1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−k(kekd(x))p(x)−1
[
p(x)−1+(d(x)+ lnk

k )∇p(x)∇d(x)+ Δd(x)
k

]
,

d(x) < σ ;{
2(p(x)−1)
σ(p−−1) − ( 2σ−d

σ )[(lnkekσ ( 2σ−d
σ )

2
p−−1 )∇p(x)∇d(x)+ Δd(x)]

}

×(kekσ )p(x)−1( 2σ−d
σ )

2(p(x)−1)
p−−1

−1
, σ < d(x) < 2σ ;

0, 2σ < d(x).

When d(x) < σ , we can obtain a constant k2 > 0 such that for any k > k2 , we have

∣∣∣(d(x)+
lnk
k

)
∇p(x)∇d(x)+

Δd(x)
k

∣∣∣ �
( ln2

k
+

lnk
k

)(
sup
x∈Ωσ

|∇p(x)|+1
)

< p−−1.

Then when k > max{k1,k2} , we have

−Δp(x)φ1 � 0 � φα(x)
1 + λ p(x)φm(x)

2 , d(x) < σ . (3.2)

When σ < d(x) < 2σ , since d(x) ∈C2(Ω3δ ) , there exists C3 > 0 such that

−Δp(x)φ1 � C3(kekσ )p(x)−1 lnk.

Then there exists k3 > 0 such that when k > k3 , we have

C3(kekσ )p(x)−1 lnk � kp(x).
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Let k∗ = max{k1,k2,k3} . Similarly, we obtain l2, l3 and denote l∗ = max{l1, l2, l3} .
Now we let σ = ln2

k∗ ,τ = ln2
l∗ and denote

λ∗ =
k∗

(eσ −1)
m+
p−

, θ∗ =
l∗

(eτ −1)
n+
q−

.

Then for any λ > λ∗ , we have

−Δp(x)φ1 � kp(x)
∗ � φα(x)

1 + λ p(x)φm(x)
2 , σ < d(x) < 2σ . (3.3)

It is easy to see that

−Δp(x)φ1 = 0 � φα(x)
1 + λ p(x)φm(x)

2 , 2σ < d(x). (3.4)

Combining (3.2),(3.3) and (3.4), we can obtain that

−Δp(x)φ1 � φα(x)
1 + λ p(x)φm(x)

2 , a.e. on Ω. (3.5)

Similarly, for any θ > θ∗ , we have

−Δq(x)φ2 � φβ (x)
2 + θ q(x)φn(x)

1 , a.e. on Ω. (3.6)

From (3.5) and (3.6), we can see that (φ1,φ2) is a sub-solution of (1.1) .
Now we consider the following problem

⎧⎨
⎩

−Δp(x)z1 = λ p+μ1, x ∈ Ω
−Δq(x)z2 = θ q+μ2, x ∈ Ω
z1 = z2 = 0, x ∈ ∂Ω,

(3.7)

where μ1,μ2 are positive constants to be chosen. From Lemma 3.1, we have

max
x∈Ω

z1(x) � C2(λ p+
μ1)

1
p−−1

and

max
x∈Ω

z2(x) � C2(θ q+
μ2)

1
q−−1 .

For any (λ ,θ ) � (λ∗,θ∗) , if there exist positive constants μ1,μ2 satisfying

λ p+
μ1 = C2(λ p+

μ1)
α+

p−−1 + λC2(θ q+
μ2)

m+
q−−1 (3.8)

and

θ q+
μ2 � C2(θ q+

μ2)
β+

q−−1 + θC2(λ p+
μ1)

n+
p−−1 , (3.9)

then (z1,z2) will be a super-solution of (1.1) . Since 0 < α+ < p−−1 and 0 < β + <
q−−1, from (3.8), we can see that μ2 is large when μ1 is large. Also from (3.8), we
obtain

λ p+
=

C2(λ p+μ1)
α+

p−−1

μ1
+

λC2(θ q+ μ2)
m+

q−−1

μ1
.
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From 0 < α+ < p−−1 we have

lim
μ1→∞

C2(λ p+μ1)
α+

p−−1

μ1
= 0.

Thus, when μ1 is large, we have

λ p+
μ1 � 2λC2(θ q+

μ2)
m+

q−−1 .

Then by (D4) and when μ1 is large, we obtain

θ q+
μ2 � C2(θ q+

μ2)
β+

q−−1 +C
1+ n+

p−−1
2 θ (2λ )

n+
p−−1 (θ q+

μ2)
m+

q−−1
n+

p−−1

= C2(θ q+
μ2)

β+

q−−1 + θC2(2λC2(θ q+
μ2)

m+
q−−1 )

n+
p−−1

� C2(θ q+
μ2)

β+

q−−1 + θC2(λ p+
μ1)

n+
p−−1 .

Thus (3.8) and (3.9) can be satisfied for some μ1,μ2 large enough. We obtained a
super-solution of (1.1).

Now we will show that (φ1,φ2) � (z1,z2) in Ω .
In the definition of v1(x) , let ξ = 2

δ (maxx∈Ω φ1(x)+maxx∈Ω |∇φ1(x)|) . From the
proof of Lemma 3.1, we know that when μ1 is large enough, then

v1(x) � z1(x), x ∈ Ω.

So if we still have
φ1(x) � v1(x), x ∈ Ω,

the proof will be completed.
Obviously, we have

φ1(x) � 2max
x∈Ω

φ1(x) � v1(x), d(x) � δ .

Since φ1 − v1 ∈C1(Ωδ ) , there exists a point x0 ∈ Ωδ such that

φ1(x0)− v1(x0) = max
x∈Ωδ

[φ1(x)− v1(x)].

If φ1(x0)− v1(x0) > 0, then 0 < d(x0) < δ , so we have

∇φ1(x0)−∇v1(x0) = 0. (3.10)

By the definition of v1(x) and ξ , we have

|∇v1(x)| ≡ ξ > |∇φ1(x)|, 0 < d(x) < δ .

Contradicts to (3.10), then

max
x∈Ωδ

[φ1(x)− v1(x)] � 0,
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i.e.
φ1(x) � v1(x), 0 � d(x) < δ .

Then we obtain
φ1(x) � v1(x), x ∈ Ω.

By the proof of Lemma 3.1, there exists a positive constant C4 such that

−Δp(x)v1(x) � Cξ p(x)−1+ν � C4λ p+

∗ a.e. on Ω.

We choose μ = C4λ p+

∗ in problem (3.1) and according to Lemma 2.1, we have

v1(x) � w(x), ∀x ∈ Ω.

Again by Lemma 2.1, for any λ > λ∗ and μ1 is large enough, we have

φ1(x) � v1(x) � w(x) � z1(x), x ∈ Ω.

Similarly, for any θ > θ∗ and μ2 is large enough, we have

φ2(x) � z2(x), x ∈ Ω.

That completes the proof of Theorem 3.1.�

REMARK 3.1. Under the conditions (D1)-(D4), if we still have a,b,c,d ∈C(Ω) ,
a(x),b(x) are nonnegative functions and c(x),d(x) are positive functions, then the fol-
lowing problem ⎧⎨

⎩
−Δp(x)u = a(x)uα(x) + λ p(x)c(x)vm(x), x ∈ Ω
−Δq(x)v = b(x)vβ (x) + θ q(x)d(x)un(x), x ∈ Ω
u = v = 0, x ∈ ∂Ω

has a positive solution when (λ ,θ ) > (λ∗,θ∗) for some (0,0) < (λ∗,θ∗) .

If Ω = B(0,r) and p(x) = p(|x|),q(x) = q(|x|) are radial functions, where B(0,r)
denotes the open N−dimensional ball with center 0 and radius r > 0. It is a special
case of problem (1.1). Denote by ρ(x) = |x| , then we have the following result.

COROLLARY 3.1. If Ω = B(0,r) is a ball, p(x) = p(|x|),q(x) = q(|x|) are ra-
dial functions and (D2)-(D4) hold, then there exists (λ∗,θ∗) > (0,0) such that for any
(λ ,θ ) > (λ∗,θ∗) , problem (1.1) has at least one positive solution.

Proof. The proof of Corollary 3.1 is along that of Theorem 3.1, but since we need
not Lemma 3.1, the proof will be a little different. We give a sketch here.

Let σ = ln2
k ,τ = ln2

l , then there exists k1 = l1 > 1 such that for any k > k1, l > l1 ,
we have σ ,τ ∈ (0,r) , for any ε > 0 small enough, we denote

φ1(x) =

⎧⎪⎪⎨
⎪⎪⎩

ekd(x) −1, d(x) < σ

ekσ −1+
∫ d(x)

σ kekσ ( r−t
r−σ )

2
p−−1 dt, σ � d(x) < r− ε

ekσ −1+
∫ r−ε

σ kekσ ( r−t
r−σ )

2
p−−1 dt, r− ε � d(x) � r
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and

φ2(x) =

⎧⎪⎪⎨
⎪⎪⎩

eld(x) −1, d(x) < τ

elτ −1+
∫ d(x)

τ lelτ ( r−t
r−τ )

2
q−−1 dt, τ � d(x) < r− ε

elτ −1+
∫ r−ε

τ lelτ ( r−t
r−τ )

2
q−−1 dt, r− ε � d(x) � r.

It is easy to see that φ1,φ2 ∈C1(Ω) . By the same discussion in the proof of Theorem
3.1, we obtain (λ∗,θ∗) > (0,0) , and for any (λ ,θ )� (λ∗,θ∗) , (φ1,φ2) is a sub-solution
of (1.1) .

By directly computation, we can see

z1 =
∫ r

ρ

(λ p+μ1

N
t
) 1

p(t)−1
dt, z2 =

∫ r

ρ

(θ q+ μ2

N
t
) 1

q(t)−1
dt

is a positive solution of problem (3.7). Obviously, there exists a ζ ∈ [0,r] such that

max
x∈Ω

z1 =
∫ r

0

(λ p+μ1

N
t
) 1

p(t)−1
dt = (λ p+

μ1)
1

p(ζ )−1

∫ r

0

( t
N

) 1
p(t)−1 � C5(λ p+

μ1)
1

p−−1 ,

where C5 is a positive constant and μ1 is large. Similarly, we have

max
x∈Ω

z2 � C6(θ q+
μ2)

1
q−−1 .

Then for any (λ ,θ ) � (λ∗,θ∗) , we can see (3.8) and (3.9) can be satisfied for some
μ1,μ2 large enough. Thus we obtain that (z1,z2) is a super-solution of (1.1) .

Now, we show that (φ1,φ2) � (z1,z2) in Ω .
Since Ω = B(0,r) , we know d(x) = r−ρ(x) for any x ∈ Ω . For any ε < σ , when

μ1 is large enough, we have

φ1(x) � z1(x), d(x) � ε.

When ε < d(x) � r , we can see that φ1(x) is bounded and

z1(x) =
∫ r

ρ

(λ p+μ1

N
t
) 1

p(t)−1
dt �

∫ r

r−ε

(λ p+μ1

N
t
) 1

p(t)−1
dt → ∞, as μ1 → ∞.

Then

φ1(x) � z1(x), x ∈ Ω,

when μ1 is large enough. Similarly, when μ2 is large enough, we have

φ2(x) � z2(x), x ∈ Ω.

Thus (φ1,φ2) � (z1,z2) , we complete the proof of Corollary 3.1.�
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4. Asymptotic behavior of the positive solutions

In this section, we will discuss the asymptotic behavior of the positive solutions
near the boundary. We shall establish the following theorems.

THEOREM 4.1. Under the conditions of (D1)-(D4) and (u,v) is a solution of (1.1)
which has been obtained in Theorem 3.1, then for any ν ∈ (0,1) , there exist positive
constants C7,C8,C9,C10 such that

C7λd(x) � u(x) � C9(λ p+
μ1)

1
p−−1 (d(x))ν , as d(x) → 0,

C8θd(x) � v(x) � C10(θ q+
μ2)

1
q−−1 (d(x))ν , as d(x) → 0,

where μ1,μ2 are large constants and satisfying (3.8) and (3.9).

Proof. Obviously, when d(x) → 0, we have

u(x) � φ1(x) = ekd(x) −1 � C7λd(x) (4.1)

and
v(x) � φ2(x) = eld(x) −1 � C8θd(x). (4.2)

Define
v3(x) = κ(d(x))ν , x ∈ Ως ,

where 0 < ς < δ is small enough and ν ∈ (0,1) is a constant.
By computation, we have

−Δp(x)v3(x) = −(κν)p(x)−1(ν −1)(p(x)−1)(d(x))(ν−1)(p(x)−1)−1(1+ Π(x)), x ∈ Ως ,
(4.3)

where

Π(x) =
d(x)∇p∇d lnκν
(ν −1)(p(x)−1)

+
d(x)∇p∇d lnd

p(x)−1
+

d(x)Δd
(ν −1)(p(x)−1)

and it is easy to see that Π(x) → 0 as d(x) → 0. Let κ = C4(λ p+
μ1)

1
p−−1

ς , when ς is
small enough, from (4.3), we have

−Δp(x)v3(x) � (κν)p(x)−1 � λ p+
μ1.

Obviously v3(x) � z1(x) when d(x) = 0 or d(x) = ς for ς is small enough.
On the other hand, when

max{(1−ν)p+,(1−ν)q+} < 1,

we have v3 ∈W 1,p(x)(Ως )∩W 1,q(x)(Ως ) . According to Lemma 2.1, we have v3(x) �
z1(x) . Thus

u(x) � C9
(
λ p+

μ1
) 1

p−−1 (d(x))ν , as d(x) → 0.
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Similarly, we have

u(x) � C10(λ p+
μ1)

1
p−−1 (d(x))ν , as d(x) → 0.

Combining with (4.1) and (4.2), we complete the proof. �

If Ω = B(0,r) and p(x) = p(|x|),q(x) = q(|x|) are radial functions, we have the
following stronger result.

THEOREM 4.2. If Ω = B(0,r) is a ball, p(x) = p(|x|),q(x) = q(|x|) are radial
functions and (D2)-(D4) hold, (u,v) is a solution of (1.1) which has been obtained in
Corollary 3.1, then

u(x) = O(d(x)), as d(x) → 0,

v(x) = O(d(x)), as d(x) → 0.

Proof. When μ1 is large enough, it is easy to see

u(x) � z1(x) =
∫ r

ρ

(λ p+μ1

N
t
) 1

p(t)−1
dt

=
∫ r

r−d(x)

(λ p+μ1

N
t
) 1

p(t)−1
dt �

(λ p+μ1

N
r
) 1

p−−1 d(x).

Together with (4.1), we obtain

u(x) = O(d(x)), as d(x) → 0.

Similarly, we have
v(x) = O(d(x)), as d(x) → 0.

This completes the proof.�
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