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Abstract. The stability of the solution to the equation u̇ = A(t)u+G(t,u)+ f (t) , t � 0 , u(0) =
u0 is studied. Here A(t) is a linear operator in a Hilbert space H and G(t,u) is a nonlinear
operator in H for any fixed t � 0 . We assume that ‖G(t,u)‖ � α(t)‖u‖p , p > 1 , and the
spectrum of A(t) lies in the half-plane Reλ � γ(t) where γ(t) can take positive and negative
values. We proved that the equilibrium solution u(t) ≡ 0 to the equation is Lyapunov stable
under persistantly acting perturbations f (t) if supt�0

∫ t
0 γ(ξ )dξ < ∞ and

∫ ∞
0 α(ξ )dξ < ∞ . In

addition, if
∫ t
0 γ(ξ )dξ →−∞ as t → ∞ , then we proved that the equilibrium solution u(t) ≡ 0

is asymptotically stable under persistantly acting perturbations f (t) . Sufficient conditions for
the solution u(t) to be bounded and for limt→∞ u(t) = 0 are proposed and justified.

1. Introduction

Consider the equation

u̇ = A(t)u+G(t,u)+ f (t), t � 0, u(0) = u0, u̇ :=
du
dt

. (1.1)

Here, u(t) is a function of t � 0 with values in a Hilbert space H , A(t) : H → H is a
linear, closed, and densely defined operator in H ,

Re〈u,A(t)u〉 � γ(t)‖u‖2, t � 0, ∀u ∈ D(A(t)), (1.2)

G(t,u) is a nonlinear operator in H for any fixed t � 0,

‖G(t,u)‖ � α(t)‖u‖p, p > 1, t � 0, ∀u ∈ H, (1.3)

and f (t) is a function on R+ = [0,∞) with values in H ,

‖ f (t)‖ � β (t), t � 0. (1.4)

Note that inequality (1.3) implies that G(t,0) = 0. Thus, u(t) ≡ 0 is an equilibrium
solution to the equation

u̇ = A(t)u+G(t,u), t � 0.
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It is assumed that α(t) , β (t) , and γ(t) in inequalities (1.2)–(1.4) are in L1,loc([0,∞))
and that α(t) and β (t) are nonnegative on [0,∞) . Also, we assume that equation (1.1)
has a unique local solution. A stronger assumption on the local existence of equation
(1.1) is made in Assumption A below. By a solution to problem (1.1) we mean a
classical solution. Specifically, a global solution to (1.1) is a continuous differentiable
function u : [0,∞)→H which satisfies equation (1.1). A local solution to equation (1.1)
is a continuous differentiable function u : [0,T ) → H , for some T > 0, which solves
equation (1.1). Thus, the solution space for global existence is C1([0,∞);H) and for
local existence is C1([0,T );H) . Recall that a local solution to problem (1.1) exists and
is unique if A(t) is a generator of a C0 -semigroup.

Take inner product of both sides of equation (1.1) with u to get

〈u, u̇〉 = 〈u,A(t)u〉+ 〈u,G(t,u)〉+ 〈u, f (t)〉, t � 0.

Denote g(t) := ‖u(t)‖ , take the real part of the equation above, and use the triangle
inequality to get

ġ(t)g(t) � Re〈u,A(t)u〉+ |〈u,G(t,u)〉|+ β (t)g(t),

� γ(t)g2(t)+ α(t)gp+1(t)+ β (t)g(t), t � 0.

This implies

ġ � γ(t)g(t)+ α(t)gp(t)+ β (t), t � 0, g(0) = ‖u0‖. (1.5)

Note that in inequality (1.5) the functions α(t) and β (t) are non negative on R+ .
The stability of solutions to equation (1.1) has been studied in the literature (see,

e.g., [1], [2], [4], and [6]). Stability of solutions of abstract equations in Banach and
Hilbert spaces was studied in [3], [5], and [13]. In [7] stability of solutions of ab-
stract equations in Hilbert spaces was studied using nonlinear inequalities. In [8]–[11]
stability of the solution to equation (1.1) was studied using nonlinear inequalities un-
der the assumption that the spectrum of A(t) lie in the half-plane Reλ � γ(t) where
0 > γ(t) → 0 as t → ∞ (see [8] and [9]) or 0 < γ(t) → 0 as t → ∞ (see [10]). In [12]
stability of solutions to abstract evolution equations with delay was studied.

The classical stability result of equation (1.1) states that if A(t)≡ A a constant ma-
trix whose eigenvalues lie in the half-plane Reλ < σ0 < 0, and α(t) and f (t) are iden-
tically equal to zero, then the solution to problem (1.1) exists globally, is unique, and is
asymptotically stable. If the matrix A has an eigenvalue in the half-plane Re(λ ) > 0,
then, in general, limt→∞ u(t) = ∞ .

In this paper we study the stability of the solution to equation (1.1) under a more
relaxed condition on the spectrum of A(t) than those used in the literature. Namely, we
allow the spectrum of A(t) to lie in the half-plane Re(λ ) � γ(t) , where γ(t) can take
positive and negative values. In [8]–[10] it was assumed either γ(t) > 0 or γ(t) < 0 on
R+ . We give sufficient conditions on the functions α(t) , β (t) , and γ(t) which yield
stability properties of the solution to equation (1.1).

The novelty of the stability results in this paper compared to those in [8]–[11]
is: Our results do not require to find a function μ(t) > 0 which solves a nonlinear
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inequality as those in [8]–[10]. In particular, our results are applicable for the case
when γ(t) = sin t (or γ(t) = sin t

(t+1)a ,0 < a < 1) and α(t) and β (t) are measure, posi-
tive, and locally integrable functions on R+ . These cases are not easy to treat by the
methods in [8]–[10] as it is not easy to find the functions μ(t) which solve the nonlin-
ear inequalities in [8]–[10] for general γ(t) , α(t) , and β (t) . The conditions on α(t)
and γ(t) in Theorem 1 in this paper are also more relaxed than those in Theorem 2
in [10]. Specifically, in Theorem 1 we have proved that if supt�0

∫ t
0 γ(ξ )dξ < ∞ and∫ ∞

0 α(ξ )dξ < ∞ , then the equilibrium solution to problem (1.1) is Lyapunov stable un-
der persistently acting perturbations. In Theorem 2 in [10] it is required that γ(t) > 0
and that

∫ ∞
0 [γ(ξ )+ α(ξ )]dξ is not ‘large’ to get the same stability. Other results in

this paper are Theorem 2 and Theorem 4 in which we give sufficient conditions for the
solution to problem (1.1) to be asymptotically stable. The rate of decay of the solution
to problem (1.1) of exponential type is given in Theorem 2 and Corrollary 1.

Throughout the paper, we assume that the following assumption holds.

Assumption A. The equation

u̇ = A(t)u+G(t,u)+ f (t), t � t0, u(t0) = ũ0, u̇ :=
du
dt

where A(t) , G(t,u) , and f (t) are defined as earlier has a unique local solution for any
t0 � 0 and ũ0 ∈ H .

2. Main results

THEOREM 1. Assume that

M := sup
t�0

∫ t

0
γ(ξ )dξ < ∞,

∫ ∞

0
α(t)dt < ∞. (2.1)

Then the equilibrium solution u = 0 to problem (1.1) is Lyapunov stable under persis-
tently acting perturbations f (t) .

REMARK 1. The term f (t) in equation (1.1) is called persistently acting pertur-
bations. ‘Stable under persistently acting perturbations f (t)’ means that given any
ε > 0 arbitrarily small, if ‖ f (t)‖ is sufficiently small, then there exists δ > 0 such that
if ‖u(0)‖< δ then ‖u(t)‖ < ε for all t � 0.

The first condition in (2.1) is necessary for the solution to equation (1.1) to be
bounded, in general. Indeed, if the first condition in (2.1) does not hold, then the
function v(t) := u0e

∫ t
0 γ(ξ )dξ , u0 	= 0, is unbounded. This unbounded v(t) solves the

equation u̇ = γ(t)u , t � 0, u(0) = u0 which is a special case of equation (1.1) when
A(t)u = γ(t)u , G(t,u) ≡ 0, and f (t) ≡ 0.

Proof. [Proof of Theorem 1] Let ε > 0 be arbitrarily small. Define

μ(t) := e−
∫ t
0 [γ(ξ )+ε p−1α(ξ )]dξ , t � 0. (2.2)
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Then

μ(t) � e−M1 , t � 0, M1 := M + ε p−1
∫ ∞

0
α(ξ )dξ . (2.3)

Choose δ ∈ (0,ε) sufficiently small such that

δeM1 <
ε
3
. (2.4)

Let us prove that if 0 � g(0) = ‖u0‖ < δ and β (t) = ‖ f (t)‖ is sufficiently small,
then ‖u(t)‖ < ε for all t � 0 .

Since g(0) < δ < ε and g(t) is continuous, there exists θ > 0 such that g(t) < ε ,
∀t ∈ [0,θ ) . Let T > 0 be the largest real value such that

g(t) = ‖u(t)‖ < ε, ∀t ∈ [0,T ). (2.5)

We claim that T = ∞ . Assume the contrary. Thus, T is finite and, by the continuity of
g(t) ,

g(T ) = ‖u(T )‖ = ε. (2.6)

Choose f (t) such that the function β (t) = ‖ f (t)‖ satisfies the inequality

∫ t
0 β (ξ )μ(ξ )dξ

μ(t)
<

ε
3
, μ(t) = e−

∫ t
0(γ(ξ )+ε p−1α(ξ ))dξ . (2.7)

Inequality (2.7) holds true if ‖ f (t)‖ = β (t) is sufficiently small. It follows from in-
equalities (1.5) and (2.5) that

ġ � γ(t)g(t)+ α(t)ε p−1g(t)+ β (t), 0 � t < T.

This implies

d
dt

(
g(t)μ(t)

)
� β (t)μ(t), μ(t) = e−

∫ t
0(γ(ξ )+ε p−1α(ξ ))dξ , 0 � t < T. (2.8)

Integrate inequality (2.8) from 0 to t to get

g(t)μ(t)−g(0)μ(0) �
∫ t

0
β (ξ )μ(ξ )dξ , 0 � t < T.

This, inequality (2.3), and inequality (2.7) imply

g(t) � g(0)
μ(t)

+
∫ t
0 β (ξ )μ(ξ )dξ

μ(t)
� g(0)eM1 +

ε
3
, ∀t ∈ [0,T ). (2.9)

It follows from inequalities (2.4) and (2.9) and the inequality g(0) < δ that

g(t) � δeM1 +
ε
3

� 2ε
3

, ∀t ∈ [0,T ). (2.10)
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This and the continuity of g(t) imply g(T ) � 2ε
3 which contradicts to relation (2.6).

This contradiction implies that T = ∞ , i.e.,

‖u(t)‖ = g(t) � ε, ∀t � 0.

Thus, the equilibrium solution u = 0 is Lyapunov stable under persistently acting per-
turbations f (t) . Theorem 1 is proved. �

THEOREM 2. Assume that

M := sup
t�0

∫ t

0
γ(ξ )dξ < ∞, (2.11)

1
(g(0)+ ω)p−1 > (p−1)

∫ ∞

0

α(ξ )
ν p−1(ξ )

dξ , ω = const > 0, ν(t) = e−
∫ t
0 γ(ξ )dξ .

(2.12)
If β (t) = ‖ f (t)‖ satisfies the inequality

β (t)ν p(t)
α(t)

� ω p, t � 0, (2.13)

then the solution u(t) to problem (1.1) exists globally, is bounded, and satisfies

‖u(t)‖ � C2e
∫ t
0 γ(ξ )dξ , t � 0, C2 = const > 0. (2.14)

Moreover, if

lim
t→∞

∫ t

0
γ(ξ )dξ = −∞, (2.15)

then
lim
t→∞

u(t) = 0. (2.16)

REMARK 2. Inequality (2.12) is a natural assumption. If inequality (2.12) does
not hold for any ω � 0, then the solution g(t) to inequality (1.5) may blow up at a
finite time even for the case when β (t) = ‖ f (t)‖ ≡ 0. For example, one can verify that
the solution to the equation

ġ = γ(t)g(t)+ α(t)gp(t), t � 0, g(0) = g0,

is

g(t) = g̃(t) :=
1

ν(t)

(
1

g1−p
0 − (p−1)

∫ t
0

α(ξ )
ν p−1(ξ ) dξ

) 1
p−1

.

The function g̃(t) blows up at a finite time t = t0 if t0 is the solution to the equation

0 =
1

gp−1
0

− (p−1)
∫ t

0

α(ξ )
ν p−1(ξ )

dξ .
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This equation has a solution t0 > 0 if

1

gp−1
0

< (p−1)
∫ ∞

0

α(ξ )
ν p−1(ξ )

dξ .

If g(t) blows up at a finite time, then the solution u(t) to equation (1.1) blows up at a
finite time as well due to the relation g(t) = ‖u(t)‖ .

Inequality (2.13) holds if β (t) = ‖ f (t)‖ is sufficiently small. Relation (2.16) im-
plies, under assumptions (2.12) and (2.15), that the equilibrium solution u = 0 to prob-
lem (1.1) is asymptotically stable under persistantly acting perturbations f (t) .

Proof. [Proof of Theorem 2] Let us first show that the solution u(t) to problem
(1.1) exists globally. Assume the contrary. Thus, there exists a finite number T > 0 such
that the maximal interval of existence of u(t) is [0,T ) . Inequality (1.5) is equivalent to

d
dt

(
g(t)ν(t)

)
� α(t)gp(t)ν(t)+ β (t)ν(t), 0 � t < T, ν(t) := e−

∫ t
0 γ(ξ )dξ .

(2.17)
Inequalities (2.17) and (2.13) imply

d
dt

(
g(t)ν(t)

)
� α(t)

ν p−1(t)
(g(t)ν(t))p + β (t)ν(t)

=
α(t)

ν p−1(t)

[
(g(t)ν(t))p +

β (t)ν p(t)
α(t)

]

� α(t)
ν p−1(t)

[
(g(t)ν(t))p + ω p

]

� α(t)
ν p−1(t)

(
g(t)ν(t)+ ω

)p

, 0 � t < T, p > 1.

(2.18)

Here we have used the inequality ap +bp � (a+b)p , a,b � 0, p > 1. Inequality (2.18)
can be rewritten as

d
dt

([
g(t)ν(t)+ ω

]1−p

1− p

)
� α(t)

ν p−1(t)
, 0 � t < T.

Integrate this inequality from 0 to t to get

[
g(t)ν(t)+ ω

]1−p− [
g(0)+ ω

]1−p

1− p
�

∫ t

0

α(ξ )
ν p−1(ξ )

dξ , 0 � t < T. (2.19)

Therefore,

[
g(t)ν(t)+ ω

]p−1 � 1

(g(0)+ ω)1−p− (p−1)
∫ t
0

α(ξ )
ν p−1(ξ ) dξ

, 0 � t < T. (2.20)



Differ. Equ. Appl. 6 (2014), 417–428. 423

Inequality (2.12) implies that the right-hand side of (2.20) is well-defined for all t � 0.
Thus, from (2.20) one gets

[
g(t)ν(t)+ ω

]p−1 � 1

(g(0)+ ω)1−p− (p−1)
∫ ∞
0

α(ξ )
ν p−1(ξ ) dξ

:= M3, 0 � t < T.

(2.21)
It follows from relation (2.11) that

ν(t) = e−
∫ t
0 γ(ξ )dξ � e−M, 0 � t < T.

This and inequality (2.21) imply that

g(t) � M
1

p−1
3 −ω
ν(t)

� eM(M
1

p−1
3 −ω), 0 � t < T. (2.22)

This and the continuity of u(t) imply that ‖u(T )‖ is finite and u(t) exists on [0,T ] .
This and Assumption A imply that the existence of the solution u(t) to equation (1.1)
can be extended to a larger interval, namely, [0,T +δ ) for some δ > 0. This contradicts
the definition of T . The contradiction implies that T = ∞ , i.e., u(t) exists globally. The
boundedness of u(t) follows directly from inequality (2.22) with T = ∞ .

Let us prove (2.16) assuming that (2.15) holds. Let C2 := M
1

p−1
3 −ω . Then in-

equality (2.14) follows from the first inequality in (2.22) and the relations g(t) = ‖u(t)‖
and ν(t) = e−

∫ t
0 γ(ξ )dξ . If relation (2.15) holds, then

ν(t) = e−
∫ t
0 γ(ξ )dξ → ∞ as t → ∞ .

This and inequality (2.14) imply (2.16). This completes the proof of Theorem 2. �
Consider the following inequality:

β (t)ν p(t)
α(t)

� C <

(
1

(p−1)
∫ ∞
0

α(ξ )
ν p−1(ξ )dξ

) p
p−1

, t � 0, C > 0, p > 1. (2.23)

Let ω0 := C
1
p , i.e., ω p

0 = C . Then it follows from the first inequality in (2.23) that in-
equality (2.13) holds for ω = ω0 . From the second inequality in (2.23) and the relation
C = ω p

0 , one gets

ω p
0 <

(
1

(p−1)
∫ ∞
0

α(ξ )
ν p−1(ξ )dξ

) p
p−1

.

This implies

ω1−p
0 > (p−1)

∫ ∞

0

α(ξ )
ν p−1(ξ )

dξ .

Thus, if g(0) > 0 is sufficiently small, then we have

[
g(0)+ ω0

]1−p
> (p−1)

∫ ∞

0

α(ξ )
ν p−1(ξ )

dξ , p > 1.
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Therefore, the function

1

(g(0)+ ω)1−p− (p−1)
∫ t
0

α(ξ )
ν p−1(ξ ) dξ

which appears in the right-hand side of (2.20) is well-defined for all t � 0 when ω = ω0

and g(0) > 0 is sufficiently small. From the remarks above and the proof of Theorem
2 we have the following corollary:

COROLLARY 1. Assume that

sup
t→∞

∫ t

0
γ(ξ )dξ < ∞, (2.24)

β (t)ν p(t)
α(t)

� C < C1 :=
(

1

(p−1)
∫ ∞
0

α(ξ )
ν p−1(ξ )dξ

) p
p−1

, ν(t) = e−
∫ t
0 γ(ξ )dξ , (2.25)

for all t � 0 . If ‖u0‖ is sufficiently small so that

(
‖u0‖+C

1
p

)p

< C1,

then the solution u(t) to problem (1.1) exists globally, is bounded, and satisfies

‖u(t)‖ � C2e
∫ t
0 γ(ξ )dξ , t � 0, C2 = const > 0. (2.26)

In addition, if

lim
t→∞

∫ t

0
γ(ξ )dξ = −∞,

then
lim
t→∞

u(t) = 0. (2.27)

THEOREM 3. Assume that g(0) = ‖u(0)‖ 	= 0 and that α(t) � 0 satisfies the
inequality

α(t) � (q−1)β (t)
(qζ (t))p , t � 0, q > 1, (2.28)

where

ζ (t) :=
g(0)
ν(t)

+
∫ t
0 β (ξ )ν(ξ )dξ

ν(t)
, ν(t) = e−

∫ t
0 γ(ξ )dξ . (2.29)

Then the solution u(t) to problem (1.1) exists globally and

‖u(t)‖ < qζ (t), ∀t � 0. (2.30)

In addition;
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(a) If the function ζ (t) is bounded on [0,∞) , then the solution u(t) to problem (1.1)
is bounded.

(b) If limt→∞ ζ (t) = 0 , then
lim
t→∞

u(t) = 0. (2.31)

Proof. Recall from our earlier assumptions that the functions α(t),β (t) , and γ(t)
are in L1,loc([0,∞)) and α(t) � 0, β (t) � 0, ∀t � 0. Thus, the integrals

∫ t

0
γ(ξ )dξ and

∫ t

0
β (ξ )ν(ξ )dξ

are well-defined for all t � 0 and ν(t) > 0, ∀t � 0. Therefore, the function ζ (t) in
(2.29) is well-defined on [0,∞) .

Let us prove that the solution u(t) to problem (1.1) exists globally. Assume the
contrary that the maximal interval of existence of u(t) is [0,T ) where 0 < T < ∞ . Let
us first prove that

g(t) = ‖u(t)‖ < qζ (t), 0 � t < T. (2.32)

Since ν(0) = 1, it follows from (2.29) with t = 0 that g(0) = ζ (0) < qζ (0) . This
and the continuity of g(t) and ζ (t) imply that there exists θ > 0 so that g(t) < qζ (t) ,
∀t ∈ [0,θ ) . Let T1 ∈ (0,T ] be the largest real number such that

g(t) < qζ (t), ∀t ∈ [0,T1). (2.33)

Let us prove that T1 = T . Assume the contrary. Then 0 < T1 < T . From the continuity
of g(t) and the definition of T1 , one has

g(T1) = qζ (T1), g(t) < qζ (t), 0 � t < T1. (2.34)

Inequalities (1.5), (2.28), and (2.33) imply

ġ � γ(t)g(t)+ α(t)(qζ (t))p + β (t)
� γ(t)g(t)+ (q−1)β (t)+ β (t)= γ(t)g(t)+qβ (t), ∀t ∈ [0,T1].

(2.35)

This implies

d
dt

(g(t)ν(t)) � qβ (t)ν(t), t ∈ [0,T1], ν(t) = e−
∫ t
0 γ(ξ )dξ . (2.36)

Integrate this inequality from 0 to t to get

g(t)ν(t)−g(0)ν(0) � q
∫ t

0
β (ξ )ν(ξ )dξ , t ∈ (0,T1]. (2.37)

Thus,

g(t) � g(0)
ν(t)

+
q

∫ t
0 β (ξ )ν(ξ )dξ

ν(t)
< q

(
g(0)
ν(t)

+
∫ t
0 β (ξ )ν(ξ )dξ

ν(t)

)
= qζ (t), (2.38)
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for all t ∈ (0,T1] . Inequality (2.38) for t = T1 is g(T1) < qζ (T1) which contradicts to
the first equality in (2.34). This contradiction implies that T1 = T , i.e., inequality (2.32)
holds.

Inequality (2.32) and the continuity of ‖u(t)‖ imply that ‖u(t)‖ is finite on the
interval [0,T ] . Thus, by using Assumption A with t0 = T one can extend the solution
u(t) to a large interval. In other words, there exists δ > 0 so that the solution u(t) to
equation (1.1) exists on [0,T +δ ] . This contradicts the definition of T . The contradic-
tion implies that T = ∞ , i.e., the solution u(t) to equation (1.1) exists globally.

Inequality (2.30) follows from inequality (2.32) when T = ∞ . It follows directly
from inequality (2.30) that if ζ (t) is bounded on [0,∞) , then the solution u(t) to equa-
tion (1.1) is bounded and that if limt→∞ ζ (t) = 0, then limt→∞ u(t) = 0. Theorem 3 is
proved. �

A consequence of Theorem 3 is the following result.

THEOREM 4. Assume that g(0) = ‖u(0)‖ 	= 0 and that α(t) � 0 satisfies the
inequality

α(t) � (q−1)β (t)
(qζ (t))p , t � 0, q > 1, (2.39)

where

ζ (t) =
g(0)
ν(t)

+
∫ t
0 β (ξ )ν(ξ )dξ

ν(t)
, ν(t) = e−

∫ t
0 γ(ξ )dξ . (2.40)

Then the solution u(t) to problem (1.1) exists globally.
In addition;

(a) If

L := sup
t�0

∣∣∣∣
∫ t

0
γ(ξ )dξ

∣∣∣∣ < ∞,
∫ ∞

0
β (t)dt < ∞, (2.41)

then the solution u(t) to problem (1.1) is bounded.

(b) If

lim
t→∞

∫ t

0
γ(ξ )dξ = −∞, lim

t→∞

β (t)
γ(t)

= 0, (2.42)

then
lim
t→∞

u(t) = 0. (2.43)

Proof. The global existence of u(t) follows from Theorem 3.
Let us proved that u(t) is bounded given that inequality (2.41) holds. From (2.30)

it suffices to show that the function ζ (t) is bounded. From the first inequality in (2.41),
one gets

e−L � ν(t) = e−
∫ t
0 γ(ξ )dξ � eL, ∀t � 0. (2.44)

Thus,

0 �
∫ ∞

0
β (ξ )ν(ξ )dξ � eL

∫ ∞

0
β (ξ )dξ < ∞. (2.45)
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It follows from (2.44) and (2.45) that

g(0)
ν(t)

+
∫ t
0 β (ξ )ν(ξ )dξ

ν(t)
� g(0)eL + e2L

∫ ∞

0
β (ξ )dξ < ∞, ∀t � 0.

Therefore, the function ζ (t) defined in (2.29) is bounded. Thus, u(t) is bounded as a
consequence of inequality (2.30).

Let us prove (2.43) given that the relations in (2.42) hold. It follows from the first
relation in (2.42) that

lim
t→∞

ν(t) = lim
t→∞

e−
∫ t
0 γ(ξ )dξ = ∞.

We claim that

lim
t→∞

∫ t
0 β (ξ )ν(ξ )dξ

ν(t)
= 0. (2.46)

Indeed, if
∫ ∞
0 β (ξ )ν(ξ )dξ < ∞ , then

∫ t
0 β (ξ )ν(ξ )dξ is bounded on R+ and relation

(2.46) follows from the relation limt→∞ ν(t) = ∞ . If
∫ ∞
0 β (ξ )ν(ξ )dξ = ∞ , then rela-

tion (2.46) follows from L’Hospital’s rule and the relation limt→∞
β (t)
γ(t) = 0 (cf. (2.42)).

From (2.38) one gets

0 � g(t) � g(0)
ν(t)

+
q

∫ t
0 β (ξ )ν(ξ )dξ

ν(t)
, ∀t � 0. (2.47)

It follows from relation (2.46), the relation limt→∞ ν(t) = ∞ , and inequality (2.47) that
limt→∞ g(t) = 0. Thus, relation (2.43) holds. Theorem 4 is proved. �
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