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RESULTS OF LOCAL AND GLOBAL MILD SOLUTION

FOR IMPULSIVE FRACTIONAL DIFFERENTIAL

EQUATION WITH STATE DEPENDENT DELAY
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(Communicated by Michal Fečkan)

Abstract. In this paper, we establish the existence of local and global mild solution for an impul-
sive fractional integro-differential equation with state dependent delay subject to nonlocal initial
condition. The existence results for local mild solution are proved by applying the Schauder,
nonlinear Larey Schauder alternative and Banach fixed point theorems. Then, we prove global
existence result. An example is presented to demonstrate the application of the established re-
sults.

1. Introduction

It is observed that the convolution integral is known as the Riemann–Liouville
fractional integral. The differential equations with non integer order have been proved
the valuable tools in the modeling phenomena of several areas of science and tech-
nology. Actually, fractional differential equations are more accurate than to integer
differential equations in modeling of several real world problems such as nonlinear os-
cillation of earthquakes, seepage flow in porous media, fluid dynamics, viscoelasticity,
electrochemistry, electromagnetic, control and food science, etc.

Let X be a complex Banach space and PCt := PC([−d,t];X),d > 0,0 � t � T <
∞, be a Banach space of all such functions φ : [−d,t]→ X , which are continuous every
where except for a finite number of points ti, i = 1,2, . . . ,m, at which φ(t+i ) and φ(t−i )
exists and φ(ti) = φ(t−i ) , endowed with the norm

‖φ‖t = sup
−d�s�t

‖φ(s)‖X , φ ∈ PCt ,

where ‖ · ‖X is the norm in X .
Consider the following nonlocal impulsive fractional functional integro-differential

equation with state dependent delay in a Banach space X :

y′(t) =
∫ t

0

(t− s)α−2

Γ(α −1)
Ay(s)ds+ f (t,yρ(t,yt ),By(t)),t ∈ J, t �= tk, (1.1)
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y(t)+g(y)(t) = φ(t), t ∈ [−d,0], (1.2)

�y(tk) = Ik(y(t−k )), k = 1,2, . . . ,m, (1.3)

where J = [0,T ],α ∈ (1,2),T < ∞, A : D(A) ⊂ X → X is a closed linear operator of
sectorial type on X , and f : J×PC0×X → X , ρ : J×PC0 → (−∞,T ], g : X → X , Ik :
X →X ,(k = 1,2, . . . ,m) and φ ∈PC0 are given functions. Here 0 = t0 < t1 < .. . < tm <
tm+1 = T, �y(tk) = y(t+k )− y(t−k ), y(t+k ) = limh→0 y(tk + h),y(t−k ) = limh→0 y(tk − h),
represents the right and left hand limits of y(t) at t = tk respectively and also we assume
y(t−k ) = y(tk) . The history function yt : [−d,0] → X is an element of PC0 and defined
by yt(θ ) = y(t + θ ), θ ∈ [−d,0].

The term By(t) is stand for By(t) =
∫ t
0 K(t,s)y(s)ds, where K ∈ C(D,R+), the

set of all positive functions which are continuous on D = {(t,s) ∈ R2 : 0 � s � t < T}
and B∗ = supt∈[0,t]

∫ t
0 K(t,s)ds < ∞.

Several evolution processes are defined by the certain moments of the time with
changes of the state abruptly such changes are in the form of impulses. The impul-
sive effects can be shown in many biological phenomena involving thresholds, bursting
rhythm models in medicine and biology, optimal control model in economics, phar-
macokinetics and frequency modulated systems, etc. For details, we cite the papers
[10, 11, 12, 16, 17, 26, 27].

The hypothesis of functional differential equations with non integer order has
emerged as an important branch of nonlinear analysis. The problem with state de-
pendent delay has many applications in modeling of the problems as dynamics system,
adaptive control, etc due to this fact such equations play an important role in mathemat-
ics. For more details, we refers the papers [1, 2, 4, 6, 7, 8, 9, 18, 19, 23].

Many of the physical systems can better be described by the nonlocal conditions
such conditions are encountered in various applications such as chemical engineering,
heat conduction, population dynamics and blood flow models. The nonlocal initial
condition in diffusion phenomenon of a small amount of gas in a transparent tube can
give a better results than using the Cauchy Problem x(0) = x0, for more details, we
refer the papers [5, 10, 24].

The different version of differential equation (1.1) has been studied by several
authors. Cuevas et al. [15] have considered the following abstract integro-differential
equation with infinite delay

v′ =
∫ t

0

(t− s)α−2

Γ(α −1)
Av(s)ds+ f (t,vt), t � 0, v0 = φ0 ∈ B, (1.4)

where B is a phase space, α ∈ (1,2), A : D(A) ⊂ X → X is a linear densely defined
operator of sectorial type on a Banach space X. The author’s of [20] have established
the existence and uniqueness of S -asymptotically ω -periodic mild solution of (1.4). In
[14], Cueva et al. have established the above said results for the problem (1.4) without
delay.

Agarwal et al. [2] study the following class of fractional integro-differential equa-
tions with state dependant delay

u′(t) =
∫ t

0

(t− s)α−2

Γ(α −1)
Au(s)ds+ f (t,uρ(t,ut)), t ∈ [0,b],u(0) = φ ∈ B, (1.5)
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and established the sufficient conditions for the existence of the mild solution. Ben-
chohra et al. [7] have investigated the existence of solution on a compact interval for
the following fractional integro-differential inclusion with state dependent delay in a
Banach space when the delay is infinite

y′(t)−
∫ t

0

(t − s)α−2

Γ(α −1)
Ay(s)ds ∈ F(t,yρ(t,yt )),a.e. t ∈ [0,b],y(0) = φ ∈ B. (1.6)

Our present work motivated by the papers [2, 3, 7, 12, 13, 14, 15, 16, 26]. In this
paper, we concerned with the local and global existence of mild solutions for impulsive
fractional integro-differential equations with state dependent delay and nonlocal condi-
tions. To the best of the author’s knowledge the concept of local and global existence
of mild solutions of the considered problem in this paper is an untreated topic in the
literature.

We define the mild solution of the system (1.1)-(1.3) using the concept introduced
in [16, 21]. The mild solution is associated with Mittag–Leffler function, solution and
resolvent operators. The results are obtained by using the fixed point techniques and
solution operator on a complex Banach space.

We organize the rest of this paper as follows: in Section 2, we present some nec-
essary definitions, preliminary results that will be used to prove our main results. The
proof of local and global existence of mild solution is given in Section 3, and Section 4
contains an illustrative example.

2. Preliminaries

This section is equipped with preliminaries and some definitions, which are re-
quired in this paper. Let L(X) represents the Banach space of all bounded linear oper-
ator from X into X , and the corresponding norm is denoted by ‖ · ‖L(X). The function
spaces defined in the introduction section are same in rest of the paper and the notations
for the function spaces have their usual meaning if it is not specified.

DEFINITION 1. A two parameter function of the Mittag-Lefller type is defined by
the series expansion

Eα ,β (z) =
∞

∑
k=0

zk

Γ(αk+ β )
=

1
2π i

∫
C

μα−β eμ

μα − z
dμ , α,β > 0,z ∈ C,

where C is a contour which starts and ends at −∞ and encircles the disc |μ | � |z|1/α

counter clockwise.

The most interesting properties of the Mittag-Lefller functions are associated with
their Laplace transform∫ ∞

0
e−λ ttβ−1Eα ,β (ωtα)dt =

λ α−β

λ α −ω
, Reλ > ω

1
α , ω > 0,

see [25] for more details.
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To avoid the repetitions of some definitions used in this paper we refer the readers:
such as sectorial operator one can see the paper [22], and for solution operator (see
definition 2.1 in [2]). Now, we present the definition of mild solution for the system
(1.1)-(1.3) based on the paper [16].

DEFINITION 2. A piecewise continuous function y ∈ PCT is called the mild so-
lution of the system (1.1)-(1.3) if it satisfies the following equivalent integral equation

y(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(t)−g(y)(t), t ∈ [−d,0],
Sα(t)[φ(0)−g(y)(0)]+

∫ t
0 Sα(t− s) f (s,yρ(s,ys),By(s))ds, t ∈ (0,t1],

Sα(t)[φ(0)−g(y)(0)]+Sα(t− t1)I1(y(t−1 ))
+

∫ t
0 Sα(t − s) f (s,yρ(s,ys),By(s))ds, t ∈ (t1, t2],

. . .
Sα(t)[φ(0)−g(y)(0)]+ ∑m

i=1 Sα(t− ti)Ii(y(t−i ))
+

∫ t
0 Sα(t − s) f (s,yρ(s,ys),By(s))ds, t ∈ (tm,T ],

(2.1)

where

Sα(t) =
1

2π i

∫
Γ
eλ tλ α−1R(λ α ,A)dλ ,

is called solutions operator and Γ is a suitable path lying on ∑θ ,ω .

For more detail of Sα(t) one can see the paper [2] and steps of proof of the definition
of mild solution, we refer the reader to see [2, 12, 16].

3. Main Results

In this section, we give the main results on the existence of mild solution of
the system (1.1)-(1.3). Also we use the following results from the paper [28]. If
A ∈ A α(θ0,ω0), then ‖Sα(t)‖ � Meωt . Let M̃S := sup0�t�T ‖Sα(t)‖L(X), so we have

‖Sα(t)‖L(X) � M̃S.

THEOREM 1. (Mild Solution) Let f and Ik be the bounded continuous functions
then for every φ ∈ PC0 there exist a τ = τ(φ),0 < τ < T such that the system (1.1)-
(1.3) has a local mild solution y ∈ PC([−d,τ],X).

Proof. Let us take y0 ∈ PCT such that y0 +g(y0) = φ(t) on [−d,0] and t ′,r > 0
be such that

Br(y0) = {y ∈ PCT : ‖y(t)− y0(t)‖t′ � r}
and ‖ f (t,ψ ,y)‖X � N, ‖Ik(y)‖X � σ̃ , k = 1,2, · · · ,m, for 0 � t � t ′ and let y∈ Br(y0).
Choose t ′′ > 0 such that ‖Sα(t)y0(0)− y0(0)‖X � r

3 for 0 � t � t ′′
and ‖y0(t)− y0(0)‖X � r

3 for 0 � t � t ′′. Now let

τ = min

{
t ′,t ′′,T,

r−3mM̃Sσ̃
3M̃SN

}
.
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Set Y = PCτ = PC([−d,τ],X) and

Y0 = {y : y ∈Y on [−d,0] and y(t) ∈ Br(y0) for 0 � t � τ}.
It is obvious that Y0 is a bounded closed convex subset of Y. We define the mapping
P : Y0 → Y by

P(y) = Sα(t)y0(0)+ ∑
0<ti<t

Sα(t− ti)Ii(y(t−i ))

+
∫ t

0
Sα(t − s) f (s,yρ(s,ys),By(s))ds. (3.1)

We need to show that P : Y0 → Y0. For this, let y(t) ∈ Y0,t ∈ [0,τ], we have

‖P(y(t))− y0(t)‖X � ‖Sα(t)y0(0)− y0(0)‖X +‖y0(t)− y0(0)‖X

+ ∑
0<ti<t

‖Sα(t− ti)‖X‖Ii(y(t−i ))‖X

+
∫ t

0
‖Sα(t− s)‖X‖ f (s,yρ(s,ys),By(s))‖Xds

� r
3

+
r
3

+mM̃Sσ̃ + M̃SNτ � r.

Thus P : Y0 → Y0. Now, we show that P is continuous, for this propose, we consider a
sequence yn → y ∈ Y0, then

‖Pyn−Py‖X � ∑
0<ti<t

‖Sα(t− ti)‖L(X)‖Ii(yn(t−i ))− Ii(y(t−i ))‖X

+
∫ t

0
‖Sα(t− s)‖X‖ f (s,yn

ρ(s,yn
s ),Byn(s))− f (s,yρ(s,ys),By(s))‖Xds

� mM̃S‖Ii(yn(t−i ))− Ii(y(t−i ))‖X

+ M̃S

∫ t

0
‖ f (s,yn

ρ(s,yn
s )

,Byn(s))− f (s,yρ(s,ys),By(s))‖Xds.

Since the functions f and Ii are continuous so ‖Pyn−Py‖X → 0 as n → ∞, implies P
is continuous. To prove that P maps bounded set into bounded set in Y0. To do this, we
have

‖Py‖X � M̃S(‖y0(0)‖+mσ̃ + τN).

Next, we shall show that P is a family of equi-continuous functions. Let l1, l2 ∈
[0,τ] such that 0 � l1 < l2 � τ. Then

‖P(y)(l2)−P(y)(l1)‖X � ‖Sα(l2)−Sα(l1)‖L(X)‖y0(0)‖X

+ ∑
0<ti<t

‖Sα(l2 − ti)−Sα(l2 − ti)‖L(X)‖Ii(y)‖X

+
∫ l1

0
‖Sα(l2 − s)−Sα(l1 − s)‖L(X)‖ f (s,yρ(s,ys),By(s))‖Xds
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+
∫ l2

l1
‖Sα(l2 − s)‖L(X)‖ f (s,yρ(s,ys),By(s))‖Xds

� ‖Sα(l2)−Sα(l1)‖L(X)‖y0(0)‖X

+ ∑
0<ti<t

‖Sα(l2 − ti)−Sα(l2 − ti)‖L(X)‖Ii(y)‖X

+N
∫ l1

0
‖Sα(l2 − s)−Sα(l1 − s)‖L(X)ds+ M̃SN(l2 − l1).

Since Sα(t) is strongly continuous and the continuity of the function t 
→ ‖S(t)‖L(X)
allows us to conclude that liml2→l1 ‖Sα(l2 − ti)− Sα(l1 − ti)‖L(X) = 0, which implies
that ‖P(y)(l2)−P(y)(l1)‖X → 0 as l2 → l1. This proves that P is a family of equi-
continuous functions. So, we conclude by Arzela-Ascoli’s theorem that P is a com-
pletely continuous map. Finally, it follows from the Schauder’s fixed point theorem that
the map P has a fixed point in Y0 which is a local mild solution of (1.1)-(1.3) on [0,τ],
satisfying y(t) ∈ PCT for 0 � t � τ. This completes the proof of the theorem. �

To prove our second result, we use nonlinear alternative of Leray-Schauder theo-
rem and we assume:

(H1) Function f : J×PC0×X →X is continuous and there exist m∈PCT ([0,τ], [0,∞))
and a continuous non-decreasing function W : [0,∞) → (0,∞), such that

‖ f (t,ψ ,y)‖X � m(t)W (‖ψ‖PC0 +‖y‖X), ∀ (t,ψ ,y) ∈ J×PC0×X .

THEOREM 2. Let the assumption (H1) hold and

M̃S(1+B∗)
∫ τ

0
m(s)ds <

∫ ∞

C

1
W (s)

ds, (3.2)

where C = (1+B∗)M̃S‖y0(0)‖+mM̃S(1+B∗)σ̃ , then for every φ ∈ PC0 there exist a
τ = τ(φ),0 < τ < T such that the system (1.1)-(1.3) has at least one local mild solution
y ∈ PC([−d,τ],X).

Proof. Let P :Y0 →Y0 be the operator defined in Eq. (3.1). If y = λPy, λ ∈ (0,1)
then we have

‖y‖X � M̃S‖y0(0)‖+mM̃Sσ̃ + M̃S

∫ t

0
m(s)W (‖y‖+B∗‖y‖)ds,

since ρ(s,ys) � s for every s ∈ [0,τ] . If γ(t) = (1+B∗)‖y‖ , we obtain

γ(t) � (1+B∗)M̃S‖y0(0)‖+mM̃S(1+B∗)σ̃

+M̃S(1+B∗)
∫ t

0
m(s)W (γ(s))ds. (3.3)

Denoting by β (t) the right-hand side of the inequality (3.3), we find

β ′(t) � M̃S(1+B∗)m(t)W (β (t))ds,
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and hence we obtain ∫ β (t)

C

1
W (s)

ds � M̃S(1+B∗)
∫ τ

0
m(s)ds. (3.4)

The inequality (3.2) and (3.4) permit us to conclude that the set of functions {β : λ ∈
(0,1)} is bounded, which in turn shows that {y : λ ∈ (0,1)} is bounded. The rest of
the proof is similar to that of Theorem 1. This completes the proof of the theorem. �

Further, we assume the following assumptions to prove our next result.

(H2) The function f : J×PC0×X → X is continuous and there exists constants N1,N2

such that

‖ f (t,ψ ,y)− f (t,χ ,z)‖X � N1‖ψ − χ‖PC0 +N2‖y− z‖X , ∀ ψ ,χ ∈ PC0, ∀ y,z ∈ X .

(H3) The functions Ik : X → X are continuous and there exists a constant σ > 0 such

that ‖Ik(y)− Ik(z)‖X � σ‖y− z‖X , ∀ y,z ∈ X ;k = 1,2, . . . ,m.

THEOREM 3. Let the assumptions (H2),(H3) hold and

mM̃Sσ + M̃Sτ(N1 +N2B
∗) < 1,

then for every φ ∈ PC0 there exist a τ = τ(φ),0 < τ < T such that the system (1.1)-
(1.3) has a unique local mild solution y ∈ PC([−d,τ],X).

Proof. Consider the mapping P : Y0 → Y0 defined as in Eq. (3.1). Let y,y∗ ∈ Y0,
then we have

‖P(y)−P(y∗)‖X � ∑
0<ti<t

‖Sα(t− ti)‖L(X)‖Ii(y(t−i ))− Ii(y∗(t−i ))‖X

+
∫ t

0
‖Sα(t − s)‖L(X)‖ f (s,yρ(s,ys),By(s))− f (s,y∗ρ(s,y∗s ),By∗(s))‖Xds

� [mM̃Sσ + M̃Sτ(N1 +N2B
∗)]‖y− y∗‖X .

Since mM̃Sσ + M̃Sτ(N1 +N2B∗) < 1, it follows that there exists a unique y ∈ Y0 such
that y is a unique local mild solution of the system (1.1)-(1.3) on [−d,τ]. This com-
pletes the proof of the theorem. �

THEOREM 4. Let f : J×PC0×X → X be the bounded continuous function then
for every φ ∈ PC0, the system (1.1)-(1.3) has a global mild solution y on a maximal
interval of existence [0,tmax). If tmax < ∞, then limt↑tmax ‖y(t)‖ = ∞.
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Proof. We have a mild solution y of the system (1.1)-(1.3) defined on [0,τ] can be
extended to a larger interval [0,τ + τ0],τ0 > 0, by defining y(t + τ) = w(t) , then the
system (1.1)-(1.3) transform into the following form⎧⎪⎨⎪⎩

w′(t) =
∫ t
0

(t−s)α−2

Γ(α−1) Aw(s)ds+ f̃ (t,wρ(t,wt ), B̃w(t)), t ∈ [0,T − τ], t �= tk,

w(t)− g̃(w(t)) = φ̃(t), t ∈ [−d− τ,0],
�w(t̃k) = Ik(w(̃t−k )), k = 1,2, ...m,

(3.5)

where

f̃ (t,wρ(t,wt ), B̃w(t)) = f (t + τ,wρ(t+τ,wt),Bw(t + τ)),

�w(t̃k) = Ik(w(̃t−k )), k = 1,2, ...m,

g̃(w(t)) = g(w(t + τ)),

φ̃(t) = φ(t + τ),

and t̃k = tk − τ. Since the functions f ,g are bounded and continuous. So by Theorem
1, let us choose w0(t) such that w0(t) = φ̃(t)− g̃(w(t)), for t ∈ [−d− τ,0], and there
exists a function w ∈ PC([−d− τ,T − τ]), such that w(t) is a mild solution of (3.5) on
[−d− τ,τ1] for some 0 < τ1 � T − τ and define as

w(t) =

⎧⎨⎩
w0(t), t ∈ [−d− τ,0],
Sα(t)w0(0)+ ∑0<t̃i<t Sα(t− t̃i)Ii(w(̃t−i ))
+

∫ t
0 Sα(t− s) f̃ (s,wρ(s,ws), B̃w(s))ds, t ∈ [0,τ1].

Then

ỹ(t) =
{

y(t), t ∈ [−d,τ],
w(t − τ), t ∈ [τ,τ + τ1],

(3.6)

is a mild solution of the system (1.1)-(1.3) on [−d,τ + τ1]. Since y(t + τ) = w(t), for
t ∈ [τ,τ + τ1] , we have

w(t− τ) = y(t) =
{

Sα(t− τ)y0(τ)+ ∑τ<ti<t Sα(t− ti)Ii(y(t−i ))
+

∫ t
τ Sα(t− s) f (s,yρ(s,ys),By(s))ds.

Continuing in this way, we get maximal interval [−d,tmax) in which the solution of
the system (1.1)-(1.3) can be extended. We shall now show that if tmax < ∞ , then
‖y(t)‖X → ∞ as t → tmax. To do that, we shall prove that t → tmax implies

limt→tmax‖y(t)‖X = ∞.

Indeed, if t → tmax and limt→tmax‖y(t)‖X < ∞, we can assume that Sα(t) � M̃S and
‖y(t)‖� K1 for 0 � t < tmax where M̃S and K1 are constants. Now, if 0 < r < t < t ′ <
tmax, then

‖y(t ′)− y(t)‖X � ‖Sα(t ′)−Sα(t)‖L(X)‖y0(0)‖PC0
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+ ∑
0<ti<t

‖Sα(t ′ − ti)−Sα(t− ti)‖L(X)‖Ii(y(t−i ))‖X

+
∫ t

0
‖Sα(t ′ − s)−Sα(t− s)‖L(X)‖ f (s,yρ(s,ys),By(s))‖Xds

+
∫ t′

t
‖Sα(t ′ − s)‖L(X)‖ f (s,yρ(s,ys),By(s))‖Xds

� ‖Sα(t ′)−Sα(t)‖L(X)‖y0(0)‖PC0

+σ̃ ∑
0<ti<t

‖Sα(t ′ − ti)−Sα(t− ti)‖L(X)

+N
∫ t

0
‖Sα(t ′ − s)−Sα(t − s)‖L(X)ds+ M̃SN(t ′ − t). (3.7)

Since t > r > 0 is arbitrary and Sα(t) are continuous in the uniform operator topology
for t > r > 0, the right hand side of (3.7) tends to zero as t ′,t tend to tmax. Therefore
limt→tmax y(t) = y(tmax) exists and by the first part of the proof the solution y can be
extended beyond tmax, contradicting the maximality of tmax. Therefore the assumption
that tmax < ∞ implies that limt→tmax‖y(t)‖X = ∞. To conclude the proof of the theorem,
now we will show that limt→tmax ‖y(t)‖X = ∞. If this is false then there is a sequence
τn → tmax and a constant K1 such that ‖y(τn)‖ � K1 for all n. Let

β = sup{‖ f (t,yρ(t,yt),By(t))‖ : 0 � t � tmax,‖y‖ � M̃S(K1 +1)},

and choose 0 < σ̃ < 1. Since t → ‖y(t)‖ is continuous and limt→tmax‖y(t)‖ = ∞, we
can find a sequence {λn} with the following properties:

λn → 0 as n → ∞, ‖y‖ � M̃S(K1 +1), for τn � t � τn + λn

and ‖y(τn + λn)‖ = M̃S(K1 +1). But then, we have

M̃S(K1 +1) = ‖y(τn + λn)‖X � ‖Sα(λn)y(τn)‖X

+ ∑
τ<ti<t

‖Sα(τn + λn− ti)Ii(y(t−i ))‖X

+
∫ τn+λn

τn

‖Sα(τn + λn− s) f (s,yρ(s,ys),By(s))‖ds

� M̃SK1 +mM̃Sσ̃ + β M̃Sλn.

Which is absurd as λn → 0. Therefore, we have limt→tmax ‖y(t)‖X = ∞. This completes
the proof of the theorem. �
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4. An example

In this section, we apply our results to study the mild solution for following frac-
tional integro-differential system.⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

u′(t,x) =
∫ t
0

(t−s)α−2

Γ(α−1) uxx(s,x)ds+ e−t u(t−σ1(t)σ2(‖u‖))
(9+et)(1+u(t−σ1(t)σ2(‖u‖))

+
∫ t
0 cos(t − s) esu(t−σ1(t)σ2(‖u‖))

25 ds, t ∈ [0,1], t �= 1−
2 ,

u(t,0) = u(t,π) = 0, t � 0,
u(t,x)+

∫ t
0 c(x,γ)cos(1+‖u(t,γ)‖)dγ = φ(t,x), t ∈ [−d,0], 0 � x � π ,

Δu|t= 1
2 ) = u(t, 1−

2 )

49+u(t, 1−
2 )

,

(4.1)

where t ∈ [0,1]. To represent this system in the abstract form (1.1)-(1.3). We choose
X = L2([0,π ]) and consider the operator A : D(A) ⊂ X → X defined by Aw = w′′ with
the domain D(A) := {w ∈ X : w,w′ are absolutely continuous, w′′ ∈ X ,w(0) = 0 =
w(π)}. Then

Aw =
∞

∑
n=1

n2(w,wn)wn, w ∈ D(A),

where wn(x) =
√

2
π sin(nx), n ∈ N is the orthogonal set of eigenvectors of A . It is well

known that the subordination principle of solution operator implies that A is the in-
finitesimal generator of a solution operator {Sα(t)}t�0 and hence A is a sectorial opera-
tor. Since Sα(t) is strongly continuous on [0,∞), by uniformly bounded theorem, there
exists a constant M > 0 such that ‖Sα(t)‖L(X) � M for t ∈ [0,1]. Finally, we consider
the following functions by setting u(t)(x) = u(t,x), and ρ = t−σ1(t)σ2(‖u(0)‖)).

f (t,φ ,By) =
e−tφ

(9+ et)(1+ φ)
+

∫ t

0
cos(t − s)

esφ
25

ds,

Ik(u) =
u(t, 1−

2 )

49+u(t, 1−
2 )

.

Then, we have

‖ f (t,φ ,By)− f (t,ψ ,Bz)‖

� ‖ e−tφ
(9+ et)(1+ φ)

− e−tψ
(9+ et)(1+ ψ)

‖

+‖
∫ t

0
cos(t− s)

esφ
25

ds−
∫ t

0
cos(t − s)

esψ
25

ds‖

� e−t

9+ et ‖
φ

1+ φ
− ψ

1+ ψ
‖+

∫ t

0
cos(t − s)es 1

25
‖φ −ψ‖ds

� e−t‖φ −ψ‖
(9+ et)(1+ φ)(1+ ψ)

+
1
25

‖φ −ψ‖

� e−t

9+ et ‖φ −ψ‖+
1
25

‖φ −ψ‖ � 1
10

‖φ −ψ‖+
1
25

‖φ −ψ‖,



Differ. Equ. Appl. 6 (2014), 429–440. 439

‖Ik(u)− Ik(v)‖ � 49‖u− v‖
(49+u)(49+ v)

� 1
49

‖u− v‖.

Thus the assumptions (H1) and (H2) hold. Furthermore, we have
B∗ = supt∈[0,1]

∫ t
0 cos(t−s)ds = 1, m = 1, N1 = 1

10 , N2 = 1
25 , σ = 1

49 and M̃S = 1.
Then

mM̃Sσ + M̃Sτ(N1 +N2B
∗) ≈ 0.160 < 1.

Hence by the Theorem 3, we conclude that the problem (4.1) has a unique mild solution
on [0,1].
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