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OSCILLATION CRITERIA FOR EVEN ORDER

NONLINEAR NEUTRAL DIFFERENCE EQUATIONS

D. SEGHAR, S. SELVARANGAM AND E. THANDAPANI

(Communicated by Marcia Federson)

Abstract. Some new oscillation results are obtained for the even order nonlinear neutral differ-
ence equation of the form

Δ(anΔm−1zn)+qn f (xn−σ ) = 0

where zn = xn + pnxτ(n). Our results generalize and improve some of the existing results. Two
examples are provided to illustrate the main results.

1. Introduction

In this paper, we are concerned with the oscillation of all solutions of even order
nonlinear neutral difference equation of the form

Δ(anΔm−1zn)+qn f (xn−σ ) = 0, n � n0 (1.1)

where m � 2 is an even integer and zn = xn + pnxτ(n) subject to the following condi-
tions:

(c1 ) {an} is a positive increasing sequence of real numbers for alln � n0 ;

(c2 ) {qn} and {pn} with 0 � pn � p < ∞,qn > 0 are sequences of real numbers for
all n � n0 ;

(c3 ) {τ(n)} is sequence of integers such that lim
n→∞

τ(n) = ∞ and σ is a positive inte-
ger;

(c1 ) f is a continuous real valued function such that
f (y)
y

> L > 0 for y �= 0 and L

is a constant.

Let θ = max{σ , min
n�n0

τ(n)}. By a solution of equation (1.1) we mean a sequence {xn}
which is defined for all n � n0 − θ and satisfies equation (1.1) for sufficiently large
value of n. As a customary, a nontrivial solution {xn} of equation (1.1) is said to be
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nonoscillatory if all the terms of {xn} are eventually of one sign; otherwise the solution
{xn} is called oscillatory.

In recent years, there is an increasing interest in studying the oscillatory and
asymptotic behavior of solutions of higher order neutral difference equations, since
such type of equations naturally arise in the applications including problems in popu-
lation dynamics or in cobweb models in economics. The problem of finding sufficient
conditions which ensure that all solutions or all bounded solutions of difference equa-
tions of neutral type are oscillatory has been studied by many authors, see for example
[1, 2, 3, 4, 5, 7, 8, 10, 11, 12, 13, 14], and the references contained there in. Most of the
authors consider the case when sequence {pn} in the neutral part satisfying

0 � pn � p < 1 and
∞

∑
n=n0

1
an

= ∞.

But the results on the oscillation of equation (1.1) when the sequence {pn} satisfying

0 � pn � p < ∞ or
∞

∑
n=n0

1
an

< ∞

are relatively scarce, see [1, 2].In particular in [9], the authors considered a continu-
ous analog of equation(1.1) and obtained two results with a restriction on the neutral
term.Further in one theorem they obtained a criteria which implies that every solution
is either oscillatory or tends to zero and will not say when all solutions are oscillatory.
Motivated by these observations in this paper, we establish some sufficient conditions
for the oscillation of all solutions of equation (1.1) when

0 � pn � p < ∞ and either
∞

∑
n=n0

1
an

= ∞ or
∞

∑
n=n0

1
an

< ∞

satisfied. Therefore our results extend and improve the results in [9] and some of the
the results in [1-5,7,8,10-14].

In Section 2, we present some preliminary lemmas which are needed for our sub-
sequent discussion. Section 3 deals with oscillation results for the equation (1.1) and in
Section 4, we provide some examples to illustrate the main results.

2. Some Preliminary Lemmas

In this section, we present lemmas which will be useful in proving our main results.
Throughout this paper we use the following notation without further mention:

Pn = min{qn,qτ(n)}, Qn = LPn,

and

δn =
∞

∑
s=n

1
as

.
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LEMMA 1. Let {un} be a sequence of real numbers and un > 0 with {Δmun} be
of constant sign eventually and not identically zero eventually. Then there exist integers
l ∈ {0,1,2, . . . ,m} with (m+ l) odd for Δmun � 0, and (m+ l) even for Δmun � 0 and
N > 0 such that

Δ jun > 0 for j = 1,2,3 . . . , l, (2.1)

and
(−1) j+lΔ jun > 0 for j = l +1, l +2, . . . ,m (2.2)

for all n � N.

LEMMA 2. Let {un} be a sequence of real numbers and un > 0 and Δmun � 0
and not identically equal to zero. Then there exists a large integer N > 0 such that

un � (n−N)(m−1)

(m−1)!
Δm−1u2m−l−1n for n � N, l ∈ {0,1,2, . . . ,m}, (2.3)

where u( j) = u(u−1)(u−2) . . .(u− j +1). Note if further {un} is increasing, then

un � 1
(m−1)!

( n
2m−1

)(m−1)
Δm−1un for all n � 2m−1n.

The proofs of last two lemmas can be found in [1].

LEMMA 3. Assume that
∞

∑
s=n0

1
as

= ∞

and let {xn} be a positive solution of equation (1.1). Then there exists n1 � n0 such
that

zn > 0,Δzn > 0,Δm−1zn > 0 and Δmzn � 0 for all n � n1

Proof. Since {xn} is a positive solution of equation (1.1) there exists n1 � n0

such that xn > 0 and xτ(n) > 0 for all n � n1. Then by the definition of zn, we have
zn > 0 for all n � n1. Also from the equation (1.1), we have

Δ(anΔm−1zn) = −qn f (xn−σ ) < 0 for all n � n0. (2.4)

Therefore anΔm−1zn is decreasing and of one sign for all n � n1. Since {an} is positive,
we have either Δm−1zn < 0 or Δm−1zn > 0 eventually. We shall prove that Δm−1zn > 0.
If not, then there exists a constant c < 0 such that

anΔm−1zn � c < 0 for all n � n1.

Dividing the last inequality by an and summing from n1 to n we get

Δm−2zn −Δm−2zn1 � c
n

∑
s=n1

1
as

.
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Letting n → ∞ in the last inequality, we see that Δm−2zn → −∞. That is Δm−2zn < 0
eventually. Now Δm−2zn < 0 eventually implies Δm−3zn < 0 eventually. Continuing
this process we get zn < 0 eventually which is a contradiction. Hence Δm−1zn > 0
eventually. Moreover {an} is positive and increasing and Δ(anΔm−1zn) < 0 for all
n � n1, we have Δmzn � 0 for all n � n1. �
The proof of the following lemma can be found in [6].

LEMMA 4. The first order difference inequality

Δyn + pnyn−τ � 0

has no eventually positive solution if

liminf
n→∞

n−1

∑
s=n−τ

ps >

(
τ

τ +1

)τ+1

(2.5)

or

limsup
n→∞

n

∑
s=n−τ

ps > 1. (2.6)

3. Oscillation Results

In this section, we present some sufficient conditions for the oscillation of all so-
lutions of equation (1.1).

THEOREM 1. Assume that
∞
∑

n=n0

1
an

= ∞. If

∞

∑
n=n0

Pn = ∞, (3.1)

then every solution of equation (1.1) is oscillatory.

Proof. Let {xn} be a nonoscillatory solution of equation (1.1). Without loss of
generality we may assume that {xn} is a positive solution of equation (1.1). Then there
exists a n1 � n0 such that xn > 0, xτ(n) > 0 and xn−σ > 0 for all n � n1. Then from
Lemma 3, we have zn > 0,Δzn > 0,Δm−1zn > 0 and Δmzn � 0 for all n � n1.

Now , using the condition (c4) in equation (1.1), we see that

Δ(anΔm−1zn) = −qn f (xn−σ ) � −Lqnxn−σ < 0 for all n � n1. (3.2)

Therefore anΔm−1zn is decreasing. Also from the last inequality, we have

Δ(anΔm−1zn)+Lqnxn−σ + pΔ(aτ(n)Δm−1zτ(n))+Lqτ(n)pxτ(n−σ) � 0 for all n � n1.
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That is

Δ(anΔm−1zn)+LPnzn−σ + pΔ(aτ(n)Δm−1zτ(n)) � 0 for all n � n1. (3.3)

Now summing the last inequality from n1 to n−1, we obtain

anΔm−1zn −an1Δm−1zn1 +L
n−1

∑
s=n1

Pszs−σ + paτ(n)Δm−1zτ(n)

− paτ(n1)Δ
m−1zτ(n1) � 0 for all n � n1.

That is

L
n−1

∑
s=n1

Pszs−σ � an1Δm−1zn1 −anΔm−1zn + paτ(n1)Δ
m−1zτ(n1)

− paτ(n)Δm−1zτ(n) � 0 for all n � n1.

(3.4)

Since Δzn > 0 and zn > 0 eventually there exists a positive constant c such that zn−σ �
c for all n � n1. Using this and the monotonicity of anΔm−1zn in the last inequality and
letting n → ∞ , we get

n−1

∑
s=n1

Ps < ∞, (3.5)

which is a contradiction to (3.1). Now the proof is complete. �

REMARK 1. In the last theorem we did not impose any condition on the sequence
{τ(n)}. That is ,τ(n) may be delay or advanced argument. Hence our result is more
general than some of the existing results in the literature.

THEOREM 2. Assume that
∞
∑

s=n0

1
an

= ∞ and let τ(n) = n+ τ. If either

liminf
n→∞

n−1

∑
s=n−σ

(s−σ)(m−1)Qs

as−σ
� (1+ p)(m−1)!

λ

(
σ

σ +1

)σ+1

(3.6)

or

limsup
n→∞

n

∑
s=n−σ

(s−σ)(m−1)Qs

as−σ
� (1+ p)(m−1)!

λ
, (3.7)

where λ ∈ (0,1) , then every solution of equation (1.1) is oscillatory.

Proof. If possible let us assume that {xn} is a nonoscillatory solution of equation
(1.1). Without loss of generality we may assume that there exists n1 � n0 such that
xn > 0, xτ(n) > 0 and xn−σ > 0 for all n � n1. Now proceeding as in the previous
theorem, we obtain (3.3). That is,

Δ(anΔm−1zn)+LPnzn−σ + pΔ(aτ(n)Δm−1zτ(n−σ)) � 0 for all n � n1. (3.8)
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Now, since Δm−1zn > 0,Δmzn � 0, using Lemma 2 there exists n2 � n1 such that

Δ(anΔm−1zn)+Qn
1

(m−1)!

(
n−σ
2m−1

)(m−1)

Δm−1zn−σ

+ pΔ(aτ(n)Δm−1zτ(n−σ)) � 0 for all n � n2 � 2m−1.

(3.9)

Put un = anΔm−1zn. Then un > 0 and Δun � 0 and the last inequality becomes

Δ(un + puτ(n))+
λQn

(m−1)!
(n−σ)(m−1)

an−σ
un−σ � 0 for all n � n2, for every λ , (3.10)

where

0 < λ =
(

1
2m−1

)(m−1)

< 1.

Now put wn = un + puτ(n). Then wn > 0. Since un is decreasing and τ(n) =
n+ τ � n, we have

wn � (1+ p)un. (3.11)

Using (3.11) in (3.10), we see that wn is a positive solution of

Δwn +
λQn

(m−1)!
(n−σ)(m−1)

(1+ p)an−σ
wn−σ � 0 for all n � n2. (3.12)

Now we consider two cases when (3.6) or (3.7) holds.
Case (i). If the condition (3.6) holds, then Lemma 4 implies that the inequality (3.12)
has no positive solution, which is a contradiction.
Case (ii). If condition (3.7) holds, again by Lemma 4 we conclude that the inequality
(3.12) has no positive solution, which is a contradiction. This completes the proof. �

THEOREM 3. Assume that
∞
∑

n=n0

1
an

= ∞ and n−σ � τ(n) � n. If either

liminf
n→∞

n−1

∑
s=n−σ

(s−σ)(m−1)Qs

as−σ
> (1+ p)(m−1)!

(
σ

σ +1

)σ+1

(3.13)

or when τ−1(n−σ) is nondecreasing,and

limsup
n→∞

n

∑
s=n−σ

(s−σ)(m−1)Qs

as−σ
> (1+ p)(m−1)!, (3.14)

then every solution of equation (1.1) is oscillatory.

Proof. Assume that {xn} is a nonoscillatory solution of equation (1.1). Without
loss of generality of we may assume that xn is a positive solution of equation (1.1).
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Then there exists an integer n1 � n0 such that xn > 0, xτ(n) > 0 and xn−σ > 0 for all
n � n1. Now proceeding as in the previous theorem, we obtain

Δ(un + puτ(n))+
λQn

(m−1)!
(n−σ)(m−1)

an−σ
un−σ � 0 for all n � n1. (3.15)

Put wn = un + puτ(n). Then wn > 0. Since un is decreasing, we have

wn = un + puτ(n) � (1+ p)uτ(n) for τ(n) � n. (3.16)

Using (3.16) in (3.15), we get

Δwn +
λQn

(m−1)!
(n−σ)(m−1)

an−σ
wτ−1(n−σ) � 0 for all n � n1. (3.17)

Thus {wn} is a positive solution of the inequality (3.17).
Case (i). Suppose (3.13) holds, then Lemma 4 implies that the inequality (3.17) has no
positive solution, which is a contradiction.
Case (ii). Suppose (3.14) holds. then again Lemma 4 implies that the inequality (3.17)
has no positive solution, which is a contradiction. Now the proof is complete. �

THEOREM 4. Assume that
∞

∑
n=n0

1
an

< ∞

and n−σ � τ(n) � n. If either (3.13) or when τ−1(n−σ) is nondecreasing with (3.14)
holds and for sufficiently large n1 � n0

limsup
n→∞

n−1

∑
s=n0

[
λ

(n−2)!
δsQs(s−σ)(m−2)− (1+ p)

4as+1δs+1

]
= ∞ (3.18)

where 0 < λ < 1, then every solution of equation (1.1) is oscillatory.

Proof. If possible let {xn} be a nonoscillatory solution of equation (1.1). Without
loss of generality we may assume that xn is a positive solution of equation (1.1). Then
there exists a n1 � n0 such that xn > 0, xτ(n) > 0 and xn−σ > 0 for all n � n1. From
equation (1.1) we see that Δ(anΔm−1zn) � 0 for all n � n1. Since {an} is positive,
Δm−1zn is of one sign for all n � n1.
Case (i). Suppose Δm−1zn > 0 eventually. The proof for this case is similar to that of
Case (i) of Theorem 3 and hence the details are omitted.
Case (ii). Suppose Δm−1zn < 0 eventually. Then by Lemma 1, we have Δm−2zn > 0
and Δzn > 0. Now define wn by

wn =
anΔm−1zn

Δm−2zn
for all n � n2 � n1. (3.19)
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Then wn < 0 and

Δwn =
Δ(anΔm−1zn)

Δm−2zn
− an+1Δm−1zn+1

Δm−2zn+1Δm−2zn
Δm−1zn for all n � n2.

Since anΔm−1zn is decreasing and Δm−2zn is increasing, we have

Δwn � Δ(anΔm−1zn)
Δm−2zn

− w2
n+1

an+1
. (3.20)

Using the decreasing nature of anΔm−1zn we have

alΔm−1zl � anΔm−1zn for all l � n � n2.

Dividing the last inequality by al and summing the resulting inequality from n to l−1,
we get

Δm−2zl −Δm−2zn � anΔm−1zn

l−1

∑
s=n

1
as

.

Letting l → ∞, we obtain

0 � Δm−2zn +anΔm−1znδn

or −1 � anΔm−1znδn

Δm−2zn
= wnδn � 0 for all n � n2. (3.21)

Define vn by

vn =
aτ(n)Δm−1zτ(n)

Δm−2zn
for all n � n2. (3.22)

We obtain vn � 0 and
−1 � vnδn � 0 for all n � n2. (3.23)

Also from (3.22), we get

Δvn =
Δ(aτ(n)Δm−1zτ(n))

Δm−2zn
− aτ(n+1)Δm−1zτ(n+1)

Δm−2zn+1Δm−2zn
Δm−1zn

�
Δ(aτ(n)Δm−1zτ(n))

Δm−2zn
− v2

n+1

aτ(n+1)
. (3.24)

Combining (3.20) and (3.24), we obtain

Δwn + pΔvn � Δ(anΔm−1zn)
Δm−2zn

− w2
n+1

an+1
+ p

Δ(aτ(n)Δm−1zτ(n))
Δm−2zn

− p
v2
n+1

aτ(n+1)
.

Using the inequality (3.3) in the last inequality, we have

Δwn + pΔvn � −LPnzn−σ
Δm−2zn

− w2
n+1

an+1
− p

v2
n+1

aτ(n+1)
. (3.25)
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Now from Lemma 2,

zn−σ � λ
(m−2)!

(n−σ)(m−2)Δm−2zn−σ . (3.26)

Since Δm−1zn < 0 and n−σ � n, we have

Δm−2zn < Δm−2zn−σ . (3.27)

Combining the inequalities (3.25), (3.26) and (3.27), we have

Δwn + pΔvn � − λQn

(m−2)!
(n−σ)(m−2)− w2

n+1

an+1
− p

v2
n+1

an+1
. (3.28)

Now multiplying (3.28) by δn and taking summation on the resulting inequality from
n2 to n−1, we obtain

δnwn− δn2wn2 +
n−1

∑
s=n2

ws+1

as
+ pδnvn− pδn2vn2 + p

n−1

∑
s=n2

vs+1

as

+
n−1

∑
s=n2

w2
s+1

as+1
δs + p

n−1

∑
s=n2

v2
s+1

as+1
δs

+
λ

(m−2)!

n−1

∑
s=n2

Qs(s−σ)m−2δs � 0. (3.29)

Using the increasing nature of {an}, decreasing nature of {δn} and then completion of
square, we have

δnwn− δn2wn2 + pδnvn− pδn2vn2 +
λ

(m−2)!

n−1

∑
s=n2

Qs(s−σ)(m−2)δs

− 1
4

n−1

∑
s=n2

1
as+1δs+1

− p
4

n−1

∑
s=n2

1
as+1δs+1

� 0

or

δnwn + pδnvn +
n−1

∑
s=n2

[
λ

(m−2)!
Qs(s−σ)(m−2)δs− (1+ p)

4as+1δs+1

]

� δn2wn2 + δn2vn2 .

By taking limit supremum as n → ∞ in the last inequality we obtain a contradiction to
(3.18). This completes the proof. �

THEOREM 5. Assume that
∞

∑
n=n0

1
an

< ∞
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and let τ(n) � n. If either (3.6) holds or when τ−1(n−σ) is nondecreasing with (3.7)
holds and for sufficiently large n1 � n0

limsup
n→∞

n−1

∑
s=n1

[
λ

(m−2)!
Qs(s−σ)(m−2)δτ(s) −

(1+ p)
4as+1δτ(s+1)

]
= ∞ (3.30)

where 0 < λ < 1 is a constant, then every solution of equation (1.1) is oscillatory.

Proof. On the contrary let us assume that {xn} is a nonoscillatory solution of
equation (1.1). Without loss of generality we may assume that {xn} is a positive so-
lution of equation (1.1). Then there exists n1 � n0 such that xn > 0, xτ(n) > 0 and
xn−σ > 0 for all n � n1. From equation (1.1), we see that {anΔm−1zn} is decreas-
ing for all n � n1. Then there are two cases for Δm−1zn, namely, either Δm−1zn > 0
eventually or Δm−1zn < 0 eventually.
Case (i). Δm−1xzn > 0 for all n � n1. Then the proof is similar to that of case (i) in
Theorem 2 and the details are omitted.
Case (ii). Δm−1zn < 0 for all n � n1. Then by Lemma 1, we have Δm−2zn > 0 and
Δzn > 0. Define γn by

γn =
aτ(n)Δm−1zτ(n)

Δm−2zn
for all n � n2 � n1. (3.31)

Then γn < 0 for all n � n2. Since anΔm−1zn is decreasing we have

aτ(s)Δm−1zτ(s) � aτ(n)Δm−1zτ(n) for all s � n � n2.

Dividing the last inequality by aτ(s) and then summing the resulting inequality from n
to l−1, we get

Δm−2zτ(l) −Δm−2zn � aτ(n)Δm−1zτ(n)

l−1

∑
s=n

1
aτ(s)

. (3.32)

Letting, l → ∞ we see that

0 � Δm−2zτ(n) � aτ(n)Δm−1zτ(n)δτ(n). (3.33)

Since Δm−1zn < 0, Δm−2zn is decreasing and therefore for τ(n) � n, we have

Δm−2zτ(n) � Δm−2zn for all n � n2. (3.34)

Combining (3.33) and (3.34), we obtain

−1 � vnδτ(n) � 0 for all n � n2. (3.35)

Similarly defining wn by

wn =
anΔm−1zn

Δm−2zn
for all n � n2
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we get
−1 � wnδτ(n) � 0. (3.36)

Now proceeding as in the proof of Theorem 4 we get (3.28). Multiplying (3.28) by
δτ(n) and then summing it from n2 to n−1, we get

δτ(n)wn − δτ(n2)wn2 +
n−1

∑
s=n2

ws+1

aτ(s)
+ pδτ(n)vn− pδτ(n2)vn2

+ p
n−1

∑
s=n2

vs+1

aτ(s)
+ p

n−1

∑
s=n2

v2
s+1

aτ(s)
+

n−1

∑
s=n2

w2
s+1

aτ(s)

+
λ

(m−2)!

n−1

∑
s=n2

Qs(s−σ)(m−2)δτ(s) � 0 (3.37)

Now using the increasing nature of {an}, decreasing nature of {δn} and then complet-
ing the square, we have

δτ(n)wn − δτ(n2)wn2 + pδτ(n)vn− pδτ(n2)vn2

+
λ

(m−2)!

n−1

∑
s=n2

Qs(s−σ)(m−2)δτ(s)

− 1
4

n−1

∑
s=n2

1
aτ(s+1)δτ(s+1)

− p
4

n−1

∑
s=n2

1
aτ(s+1)δτ(s+1)

� 0

or

δτ(n)wn + pδτ(n)vn

+
n−1

∑
s=n2

[
λ

(m−2)!
Qsx(s−σ)(m−2)δτ(s)−

(1+ p)
4aτ(s+1)δτ(s+1)

]

� δτ(n2)wn2 + pδτ(n2)vn2 .

By taking limit supremum as n → ∞ in the last inequality we get a contradiction to
(3.30). This completes the proof. �

4. Examples

In this section we present two examples to illustrate the main results

EXAMPLE 1. Consider the difference equation

Δ(nΔm−1(xn +4xn+2))+5(2m−1)(2n+1)xn−2 = 0, n � 2 (4.1)

where m � 4 is an even integer. Here pn = 4 > 0, an = n, qn = 5(2m−1)(2n + 1),
τ(n) = n+2 and σ = 2. It is easy to see that all conditions of Theorem 2 are satisfied
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and hence every solution of equation (4.1) is oscillatory. In fact {xn}= {(−1)n} is one
such oscillatory solution of equation (4.1).

EXAMPLE 2. Consider the difference equation

Δ((n+1)nΔm−1(xn +2xn−1))+2m(n+1)2xn−2(1+ x2
n−2) = 0, n � 1 (4.2)

where m � 4 is an even integer. Here an = n(n+1), pn = 2, qn = 2m(n+1)2, σ = 2
and τ(n) = n− 1. It is easy to see that all conditions of Theorem 4 are satisfied and
hence every solution of equation (4.2) is oscillatory.In fact {xn}= {(−1)n} is one such
oscillatory solution of equation (4.2).

We conclude this paper with the following remark.

REMARK 2. The results obtained in this paper extend and improve some of the
existing results. First we extend the range of the neutral function pn from the interval

0 � pn � p < 1 to 0 � pn � p < ∞ . Second ,in the case of
∞
∑

n=n0

1
an

< ∞ most of

the results obtained so far give the solutions of the equation are either oscillatory or
tend to zero.But we improved this and obtained criteria under which all solutions are
oscillatory.
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