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Abstract. In this work we provide conditions for the existence of solutions to nonlinear Sturm-
Liouville problems of the form,

(p(t)x′(t))′+q(t)x(t)+λx(t) = f (ε ,x(t))

subject to
ax(0)+bx′(0) = 0 and cx(1)+dx′(1) = 0.

Our approach will be topological, utilizing both degree theory and the Lyapunov-Schmidt pro-
cedure.

1. Introduction

In this paper we provide criteria for the solvability of nonlinear Sturm-Liouville
problems of the form,

(p(t)x′(t))′+q(t)x(t)+ λx(t) = f (ε,x(t)) (1)

subject to
ax(0)+bx′(0) = 0 and cx(1)+dx′(1) = 0. (2)

Throughout, we assume that f : R
2 → R, p : [0,1]→ R and q : [0,1]→ R are

continuous, p(t) > 0 for all t ∈ [0,1] , a2 +b2,c2 +d2 > 0, and λ is an eigenvalue of
the associated linear Sturm-Liouville problem.

Section 2 contains preliminary material. We give a brief introduction to Sturm-
Liouville theory and the Lyapunov-Schmidt procedure. In section 3 we consider the
nonlinear boundary value problem (1)-(2) when λ is an arbitrary eigenvalue of the cor-
responding linear Sturm-Liouville problem. We prove that if f (0, ·) exibits sublinear
growth and is bounded away from 0 in an appropriate way, then (1)-(2) has a solution.

The case where λ is the first eigenvalue of the linear Sturm-Liouville problem
is discussed in section 4. In this case, the solvability of (1)-(2) is obtained under less
restrictive conditions on the nonlinearty.
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The literature devoted to nonlinear Sturm-Liouville boundary value problem is
extensive. Pertinent references from the point of view of this paper are [6, 7, 8, 10, 11,
13].

The approach we have used in this paper, that is, the Lyapunov-Schmidt procedure
in combination with topological degree theory, has also been successfully applied to
the study of periodic behavior in both discrete and continuous systems. For readers
interested in this topic we suggest [1, 2, 3, 4, 12, 14].

2. Preliminaries

The nonlinear boundary value problem (1)-(2) will be viewed as an operator equa-
tion. We let X =C[0,1] represent the continuous real-valued functions defined on [0,1]
and the norm on X will be the supremum norm. The subspace of X consisting of the
continuously differentiable functions will be denoted by C1[0,1] .

Operators B and D will be defined as follows:
B : X →R is given by

Bφ = aφ(0)+bφ ′(0)

and D : X →R is given by
Dφ = cφ(1)+dφ ′(1).

We define a linear operator L : dom(L )⊂ X → X by

L x(t) = (p(t)x′(t))′+q(t)x(t),

where
dom(L ) = {φ ∈C1[0,1] | pφ ′ ∈C1[0,1] and Bφ = Dφ = 0}.

For each ε in R , we let
Fε (x)(t) = f (ε,x(t)).

Solving the nonlinear boundary value problem (1)-(2) is now equivalent to solving

Lλ x = Fε(x), (3)

where Lλ = L + λ I .
We begin our study of the nonlinear boundary value problem by recalling some

well known facts regarding the linear Sturm-Liouville problem,

(p(t)x′(t))′+q(t)x(t)+ λx(t) = 0 (4)

subject to the boundary conditions (2).
For those readers interested in a more detailed introduction to linear Sturm-Liouville

problems, we suggest [5].

REMARK 2.1. Using our notation from above, the linear Sturm-Liouville problem
is equivalent to Lλ = 0.
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It is well known that Lλ is self-adjoint, that λ is a simple eigenvalue, and that

X = Ker(Lλ )⊕ Im(Lλ).

We may therefore choose a vector, ψ , as a basis for Ker(Lλ ) . Without loss of gener-
ality we assume ∫ 1

0
ψ2(t)dt = 1.

With this in mind, we make the following definition which will play a crucial role in
our ability to analyze the nonlinear Sturm-Liouville problem, (1)-(2), using a projection
scheme.

DEFINITION 2.2. Define P : X ← X by

Px(t) = ψ(t)
∫ 1

0
ψ(s)x(s)ds.

It is clear that P is a projection with Im(P) = Ker(Lλ ) . Since Lλ is self-adjoint,
we have that I−P is a projection onto the Im(Lλ ) .

In our analysis of the nonlinear Sturm-Liouville problem we will use a projec-
tion scheme ofter referred to as the Lyapunov-Schmidt procedure. The result of the
Lyapunov-Schmidt reduction will allow us to write the operator equation (3) as an
equivalent system in which a degree theoretic argument may be applied to prove the
existence of solutions. The following is the standard formulation of the Lyapunov-
Schmidt procedure. Interested readers may consult [1, 9]. We include the proof for the
benefit of the reader.

PROPOSITION 2.3. Solving Lλ x = Fε (x) is equivalent to solving the system

{ x = Px+Mp(I−P)Fε(x)
and

PFε(x) = 0

where Mp is (Lλ |Ker(P)∩dom(L ))
−1 .

Proof.

Lλ x = Fε (x)⇐⇒
{ (I−P)(Lλx−Fε(x)) = 0

and
P(Lλ x−Fε(x)) = 0

⇐⇒
{Lλ x− (I−P)Fε(x) = 0

and
PFε (x) = 0
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⇐⇒
{MpLλ x−Mp(I−P)Fε(x) = 0

and
PFε(x) = 0

⇐⇒
{ (I−P)x−MpEFε(x) = 0

and
PFε(x) = 0

g⇐⇒
{ (I−P)x−MpEFε(x) = 0

and

ψ(·)
∫ 1

0
ψ(s) f (ε,x(s))ds = 0

⇐⇒
{ (I−P)x−MpEFε(x) = 0

and∫ 1

0
ψ(s) f (ε,x(t))ds = 0.

The following proposition will play a significant role in the proof of our main
results.

PROPOSITION 2.4. Let Aη denote {t ∈ [0,1] | |ψ(t)| � η} . Suppose f (0, ·) is
sublinear, i.e. | f (0,x)|� M1|x|β +M2 where 0 � β < 1 . We then have that there exists
positive constants, C1 and C2 , such that for each pair (α,x) ∈R× Im(Lλ ) satisfying

x = Mp(I−P)F0(αψ + x) and |α|� C1

η
,

|x(t)|� C2|αψ(t)|β

provided t ∈ Aη .

Proof.

|x(t)|� ∥∥Mp(I−P)
∥∥(M1(|αψ(t)|+ |x(t)|)β +M2

)
=
∥∥Mp(I−P)

∥∥M1|αψ(t)|β(1+
|x(t)|
|αψ(t)|

)β +
∥∥Mp(I−P)

∥∥M2

�
∥∥Mp(I−P)

∥∥M1|αψ(t)|β(1+
β |x(t)|
|αψ(t)|

)
+
∥∥Mp(I−P)

∥∥M2.

Thus,

|x(t)|
|αψ(t)|β −

∥∥Mp(I−P)
∥∥M1

β |x(t)|
|αψ(t)| �

∥∥Mp(I−P)
∥∥M1 +

∥∥Mp(I−P)
∥∥M2

|αψ(t)|β
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or

|x(t)|
|αψ(t)|β

(
1−

∥∥Mp(I−P)
∥∥M1β

|αψ(t)|1−β

)
�
∥∥Mp(I−P)

∥∥M1 +

∥∥Mp(I−P)
∥∥M2

|αψ(t)|β .

Now fix γ , with 0 < γ < 1. If

|α|� 1
η

(∥∥Mp(I−P)
∥∥M1β

γ

) 1
1−β

,

then
|x(t)|
|αψ(t)|β �

∥∥Mp(I−P)
∥∥M1

1− γ
+

∥∥Mp(I−P)
∥∥M2

(1− γ)
∣∣∣∣
∥∥Mp(I−P)

∥∥M1β
γ

∣∣∣∣
β

1−β

.

The result now follows by taking

C1 =

(∥∥Mp(I−P)
∥∥M1β

γ

) 1
1−β

and

C2 =

∥∥Mp(I−P)
∥∥M1

1− γ
+

∥∥Mp(I−P)
∥∥M2

(1− γ)
∣∣∣∣
∥∥Mp(I−P)

∥∥M1β
γ

∣∣∣∣
β

1−β

.

3. Existence at an arbitrary Eigenvalue

We first consider the solvabilty of (1)-(2) for a general eigenvalue. For simplicity,
we denote f (0,x) by f (x) and F0 by F .

THEOREM 3.1. Suppose the following conditions hold:

C1. The function f is “sublinear”; that is, there exist real numbers M1,M2 and β ,
with 0 � β < 1 , such that | f (x)|� M1|x|β +M2 .

C2. There exists J > 0 and ẑ > 0 such that for all z � ẑ , f (−z) �−J < 0 < J � f (z) .

Then, for sufficiently small ε , there exists a solution to (1)-(2).

Proof. In order to apply a degree theoretic argument, we make Im(Lλ )×R a
Banach space using the following norm∥∥(x,α)

∥∥ = max
{∥∥x∥∥, |α|}.
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We then define an operator H : Im(Lλ )×R← Im(Lλ )×R by

H(x,α) =

[ Mp(I−P)F (αψ(·)+ x)

α−
∫ 1

0
ψ(t) f (αψ(t)+ x(t))dt

]
.

We know, from Proposition 2.3, that the fixed points of H are precisely the solu-
tions of the nonlinear boundary value problem (1)-(2). Now, Mp is an integral operator
and thus a compact linear map. Combining this with the fact that F is sublinear, we
have that H is a nonlinear compact map. We will show that H has a fixed point by
showing that for an appropriately chosen set, the Leray-Schauder degree of I−H is
nonzero.

Let C1 and C2 be as in Proposition 2.4. The following is trivial, but will be useful
in what follows: there exists r∗ such that for all r � r∗ , we have

r−C2r
β � ẑ

and
r−∥∥Mp(I−P)

∥∥(M1(2
∥∥ψ
∥∥)β rβ +M2

)
> 0.

Without loss of generality we will assume that C1 > r∗ > 1. For η < 1, we define

Ωη = B
(
0,

C1

η
)

in Im(Lλ )×R.

We now analyze H on ∂ (Ωη ) . It is clear that if (x,α) ∈ ∂ (Ωη ) , then one of two
following condtitions is true:

(i)
∥∥x∥∥=

C1

η
and |α|� C1

η
.

(ii)
∥∥x∥∥� C1

η
and |α|= C1

η
.

With this in mind, we assume (x,α) ∈ ∂ (Ωη) and that i. holds.

Since
C1

η
> r∗ , we have

C1

η
−∥∥Mp(I−P)

∥∥(M1(2
∥∥ψ
∥∥)β (C1

η
)β +M2

)
> 0.

However, ∥∥αψ + x
∥∥�

∥∥ψ
∥∥C1

η
+

C1

η
� 2
∥∥ψ
∥∥C1

η
,

so that for s ∈ (0,1) ,

∥∥sMp(I−P)F (αψ + x)
∥∥�

∥∥Mp(I−P)
∥∥(M1

(
2
∥∥ψ
∥∥C1

η
)β +M2

)
<

C1

η
=
∥∥x∥∥.
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It follows that
x �= sMp(I−P)F (αψ(·)+ x). (5)

We now assume (x,α) ∈ ∂ (Ωη ) and that ii. holds. We may assume without loss
of generality that x = sMp(I−P)F (αψ + x) for some s ∈ (0,1) . For the moment
we assume α = C1/η . We introduce the following sets which will be useful in what
follows:

O+ = {t ∈ [0,1] | ψ(t) > 0} and O− = {t ∈ [0,1] | ψ(t) < 0}.

Fix t ∈ O+ ∩ Aη , where Aη is as in Proposition 2.4. Since |α| = C1/η , we
conclude that

|x(t)|� C2|αψ(t)|β ,

from which is follows that

αψ(t)+ x(t) � αψ(t)−|x(t)|
� αψ(t)−C2(αψ(t))β

� ẑ. (since αψ(t) � C1

η
η = C1 > r∗.)

We then have that
ψ(t) f (αψ(t)+ x(t)) > ψ(t)J = |ψ(t)|J,

whenever t ∈ O+∩Aη .
The same argument shows that for t ∈ O−∩Aη ,

αψ(t)+ x(t) <−ẑ

and
ψ(t) f (αψ(t)+ x(t)) > ψ(t)(−J) = |ψ(t)|J.

Now,

∫ 1

0
ψ(t) f (αψ(t)+ x(t))dt =

∫
O+∩Aη

ψ(t) f (αψ(t)+ x(t))dt

+
∫
O−∩Aη

ψ(t) f (αψ(t)+ x(t))dt

+
∫
Ac

η
ψ(t) f (αψ(t)+ x(t))dt

�
∫

Aη
|ψ(t)|J dt +

∫
Ac

η
ψ(t) f (αψ(t)+ x(t))dt

�
∫

Aη
|ψ(t)|J dt−m(Ac

η)η
(
M1(2|α|

∥∥ψ
∥∥)β +M2

)
=
∫

Aη
|ψ(t)|J dt−m(Ac

η)η
(
M1
(
2
C1

η
∥∥ψ
∥∥)β +M2

)
,
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where m denotes Lebesgue measure on [0,1] .
Since the Lebesgue measure of {t ∈ [0,1] |ψ(t) = 0} is 0 and β < 1, we have that

lim
η→0

m(Ac
η )η

(
M1
(
2
C1

η
∥∥ψ
∥∥)β +M2

)
= 0.

Thus, there exists η∗ such that for all (x,α) ∈ ∂ (Ωη∗) satisfying α =
C1

η∗
, we have

∫ 1

0
ψ(t) f (αψ(t)+ x(t)) > 0.

Now,

∣∣(1− s)α + s
∫ 1

0
ψ(t) f (αψ(t)+ x(t))dt

∣∣2
=
(
1− s

)2α2 + s2(∫ 1

0
ψ(t) f (αψ(t)+ x(t))dt

)2
+2(1− s)sα

∫ 1

0
ψ(t) f (αψ(t)+ x(t))dt.

Since
∫ 1

0
ψ(t) f (αψ(t)+ x(t))dt �= 0, and α and

∫ 1

0
ψ(t) f (αψ(t)+ x(t))dt have the

same sign, we conclude

∣∣(1− s)α + s
∫ 1

0
ψ(t) f (αψ(t)+ x(t))dt

∣∣2 > 0. (6)

The same argument shows that if (x,α) ∈ ∂ (Ωη∗) and α =−C1

η∗
, then

∫ 1

0
ψ(t) f (αψ(t)+ x(t)) < 0.

Thus, (6) holds for all (x,α) ∈ ∂ (Ωη∗) satisfying ii..
If we define Q : [0,1]×Ωη∗ ← Im(I−P)×R by

Q(s,(x,α)) =

[ x− sMp(I−P)F(αψ(·)+ x)

(1− s)α + s
∫ 1

0
ψ(t) f (αψ(t)+ x(t))dt

]
,

then it is clear that Q is a homotopy between I and I−H . Further, (5) and (6) show
that Q(s,(x,α)) �= 0 for all (x,α) ∈ ∂ (Ωη∗) . This establishes the result for ε = 0, by
the invariance of the Leray-Schauder degree under homotopy.

To finish the proof we define
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Hε : Im(Lλ )×R← Im(Lλ )×R by

Hε (x,α) =

[ Mp(I−P)Fε(αψ(·)+ x)

α−
∫ 1

0
ψ(t) f (ε,αψ(t)+ x(t))dt

]
.

Our previous work shows that the Leray-Schauder degree, deg(H0,Ωη∗ ,0) , is nonzero.
It then follows that deg(Hε ,Ωη∗ ,0) is nonzero for sufficiently small ε by the continuity
of the Leray-Schauder degree.

4. Existence at the First Eigenvalue

In the case where λ is the first eigenvalue of the linear Sturm-Liouville problem,
the following result establishes the existence of solutions under weaker assumptions
than that of Theorem 3.1. We remind the reader of our notation when ε = 0, where we
denote f (0,x) by f (x) and F0 by F .

THEOREM 4.1. Suppose the following conditions hold:

C1. λ is the first eigenvalue of the linear Sturm-Liouville problem (1)-(2).

C2. The function f is “sublinear”; that is, there exists real numbers M1,M2 and β ,
with 0 � β < 1 , such that | f (x)|� M1|x|β +M2 .

C3. There exists a ẑ > 0 such that for all z > ẑ , f (−z) < 0 < f (z) .

Then, for sufficiently small ε , there exists a solution to (1)-(2).

Proof.
It is well known that the eigenfunction corresponding to the first eigenvalue has no

zeros in the interval [0,1] . We assume, without loss of generality, that ψ > 0 and let

η = inf
t∈[0,1]

{ψ(t)}> 0.

We let C1 , C2 and Aη be as in Proposition 2.4. We note that by the definition of η , we
have Aη = [0,1] . We now follow the line of reasoning used in Theorem 3.1.

Let H : Im(Lλ )×R← Im(Lλ )×R be defined by

H(x,α) =

[ Mp(I−P)F (αψ(·)+ x)

α−
∫ 1

0
ψ(t) f (αψ(t)+ x(t))dt

]
.
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We choose r∗ such that for all r � r∗ , we have

r−C2r
β � ẑ

and
r−∥∥Mp(I−P)

∥∥(M1(2
∥∥ψ
∥∥)β rβ +M2

)
> 0.

Again, we assume that C1 > r∗ > 1 and define

Ωη = B
(
0,

C1

η
)

in Im(Lλ )×R.

We now analyze H on ∂ (Ωη) . Recall that if (x,α)∈ ∂ (Ωη ) , then one of two following
condtitions is true:

(i)
∥∥x∥∥=

C1

η
and |α|� C1

η
.

(ii)
∥∥x∥∥� C1

η
and |α|= C1

η
.

We assume first that (x,α) ∈ ∂ (Ωη ) and that i. holds. For this case, the proof is
as in Theorem 3.1.

Since
C1

η
> r∗ , we have

C1

η
−∥∥Mp(I−P)

∥∥(M1(2
∥∥ψ
∥∥)β (C1

η
)β +M2

)
> 0.

However, ∥∥αψ + x
∥∥�

∥∥ψ
∥∥C1

η
+

C1

η
� 2
∥∥ψ
∥∥C1

η
,

so that for s ∈ (0,1)

∥∥sMp(I−P)F (αψ + x)
∥∥�

∥∥Mp(I−P)
∥∥(M1

(
2
∥∥ψ
∥∥C1

η
)β +M2

)
<

C1

η
=
∥∥x∥∥.

It follows that
x �= sMp(I−P)F (αψ + x). (7)

We now assume (x,α) ∈ ∂ (Ωη) and that ii. holds. We will again assume that
x = sMp(I−P)F (αψ + x) for some s ∈ (0,1) and restrict our attention to the case

where α =
C1

η
.

Since |α|= C1

η
, we conclude that

|x(t)|� C2|αψ(t)|β ,
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It follows that

αψ(t)+ x(t) � αψ(t)−|x(t)|
� αψ(t)−C2(αψ(t))β

� ẑ.
(
since αψ(t) � C1

η
η = C1 > r∗.

)
We then have that for all t ∈ Aη = [0,1] ,

ψ(t) f (αψ(t)+ x(t)) > 0.

Thus, ∫ 1

0
ψ(t) f (αψ(t)+ x(t))dt > 0.

Now,∣∣∣∣(1− s)α + s
∫ 1

0
ψ(t) f (αψ(t)+ x(t))dt

∣∣∣∣
2

=
(
1− s

)2α2 + s2
(∫ 1

0
ψ(t) f (αψ(t)+ x(t))dt

)2

+2(1− s)sα
∫ 1

0
ψ(t) f (αψ(t)+ x(t))dt.

Since
∫ 1

0
ψ(t) f (αψ(t)+ x(t))dt �= 0, and α and

∫ 1

0
ψ(t) f (αψ(t)+ x(t))dt have the

same sign, we conclude∣∣(1− s)α + s
∫ 1

0
ψ(t) f (αψ(t)+ x(t))dt

∣∣2 > 0. (8)

The same argument shows that if (x,α) ∈ ∂ (Ωη ) and α =−C1

η
, then

∫ 1

0
ψ(t) f (αψ(t)+ x(t)) < 0.

Thus, (6) holds for all (x,α) ∈ ∂ (Ωη ) satisfying ii..
If we again define Q : [0,1]×Ωη ← Im(I−P)×R by

Q(s,(x,α)) =

[ x− sMp(I−P)F(αψ(·)+ x)

(1− s)α + s
∫ 1

0
ψ(t) f (αψ(t)+ x(t))dt

]
,

and Hε : Im(Lλ )×R← Im(Lλ )×R by

Hε (x,α) =

[ Mp(I−P)Fε(αψ(·)+ x)

α−
∫ 1

0
ψ(t) f (ε,αψ(t)+ x(t))dt

]
.

then the result follows just as in Theorem 3.1.
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[10] J. RODRÍGUEZ, Nonlinear discrete Sturm-Liouville problems, J. Math. Anal. Appl., 308, Issue 1

(2005), 380–391.
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