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Abstract. In this paper, we present a delay virus model with Beddington-DeAngelis functional
response. We first introduce the basic reproduction number R0 and the immune response repro-
duction number R1 , and then show that the system has three possible equilibria depended on R0
and R1 . We further show that the global stability of the disease-free equilibrium E0 , immune-
free equilibrium E1 and endemic equilibrium E2 are fully determined by R0 and R1 , that is,
E0 , E1 and E2 are globally asymptotically stable when R0 � 1 , R1 � 1 < R0 , and R1 > 1 ,
respectively.

1. Introduction

The mathematical model, based on biological interactions, presents a framework
which can be used to obtain new insights and to interpret the mechanisms of virus infec-
tions. In the last decades, much has been studied on viral infection model. Considering
universal nonlinear infection rate in the process of virus infecting target cells, Huang et
al.[3] proposed the following virus dynamics model with Beddington-DeAngelis func-
tional response:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dx(t)
dt

= λ −dx(t)− f (x(t),v(t)),

dy(t)
dt

= f (x(t),v(t))−ay(t),

dv(t)
dt

= ky(t)− μv(t),

(1.1)

with

f (x,v) =
βxv

1+mx+nv
, m � 0, n � 0, (x,v) ∈ R

2.

Here, x(t) , y(t) , and v(t) represent the populations of uninfected cells, infected target
cells, and free virus at time t , respectively. The positive constant λ is the rate at which
new healthy cells are generated. The positive constants d and β are respectively the
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death rate of uninfected cells and the rate constant characterizing infection of the cells.
The function f (x,v) is the Beddington-DeAngelis functional response developed by
Beddington [1] and DeAngelis et al. [2]. The positive constant a is the death rate of the
infected cells due either to virus or the immune system. Free virus is produced from the
infected cells at the rate ky . The positive constant μ is the rate at which virus particles
are removed from the system.

Note that the immune response after viral infection is universal and necessary to
eliminate or control the disease. During the process of viral infection, the host response
is induced which is initially rapid and nonspecific (natural killer cells, macrophage
cells, etc) and specific (cytotoxic T lymphocyte cells, antibody cell). But, in most virus
infections, cytotoxic T lymphocyte (CTL) cells which attack infected cells and antibody
cells which attack viruses play a critical part in antiviral defense. In order to investigate
the role of the population dynamics of viral infection with CTL response. Letting z(t)
be the concentration of CTLs, Wang et al.[24] modified (1.1) to the following system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t)
dt

= λ −dx(t)− f (x(t),v(t)),

dy(t)
dt

= f (x(t),v(t))−ay(t)− py(t)z(t),

dv(t)
dt

= ky(t)− μv(t),

dz(t)
dt

= cy(t)z(t)−bz(t),

(1.2)

where infected cells y(t) are removed at a rate pz(t) by the CTL immune response and
the virus-specific CTL cells proliferate at a rate cy(t) by contact with infected cells,
and die at a rate bz(t) .

System (1.2) always has a disease-free equilibrium E0(1.2) =
(λ

d ,0,0,0
)
, which

represents the state that the viruses are absent. The basic reproductive number of system
(1.2) is

R0(1.2) =
λ βk

aμ(d +mλ )
.

If R0(1.2) > 1, there exists an immune-free equilibrium E1(1.2) = (x1,y1,v1,0) , where

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x1 =
λkn+ μa

βk+dkn− μam
,

y1 =
λ βk

a(βk+dkn− μam)

(
1− 1

R0(1.2)

)
,

v1 =
λ βk2

μa(βk+dkn− μam)

(
1− 1

R0(1.2)

)
,

which denotes the state that the viruses are present while the CTL cells are absent.
We introduce an immune response reproduction number [24]:

R0
(1.2) =

λ βck
ab(βk+dkn− μam)

(
1− 1

R0(1.2)

)
.
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If R0
(1.2) > 1, there exists an endemic equilibrium (called the interior equilibrium)

E2(1.2) = (x2,y2,v2,z2) , where x2 is a positive root of the quadric equation:

μcdmx2 +(μcd +bdkn+ βbk− μλcm)x−λ(μc+bkn)= 0,

and

y2 =
b
c
, v2 =

k
μ

y2, z2 =
λ −dx2−ay2

py2
.

The endemic equilibrium denotes the state in which both the viruses and CTL cells are
present.

Very recently, by constructing Lyapunov functions, Wang et al.[24] have studied
the global stability of system (1.2). More specifically, they obtained the global stabil-
ities of the disease-free equilibrium E0(1.2) , immune-free equilibrium E1(1.2) and en-
demic equilibrium E2(1.2) when R0(1.2) � 1, R0(1.2) > 1, and R0

(1.2) > 1, respectively;
see [24, Theorems 2.1–2.3].

However, system (1.2) ignores the intracellular delay and assume that cells become
productive instantaneously once a virus contracted a cell susceptible to infection. In
fact, there always exists an intracellular phase of the viral life-cycle, defined as the
time between infection of a cell and production of new virus particles [7, 22, 17, 18].
Therefore, in virus dynamics, it has been assumed that new virus particles are produced
after the initial infection with a time interval and this leads mathematical models by
delay differential equations; see, for example [4, 5, 9, 10, 11, 12, 13, 14, 15, 16, 23, 25,
26].

In this paper, to account for the effect of a latent period for the cell infection in
system (1.2), we assume that virus production occurs after virus entry with a constant
time lag τ > 0. The recruitment of infected cells at time t is given by e−ατ f (x(t −
τ),v(t − τ)) , where e−ατ is the probability of surviving from t − τ to τ and α is a
constant death rate for infected cells (but not yet virus producing cells). Then, we obtain
the following viral infection system with a latent period τ and Beddington-DeAngelis
functional response:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t)
dt

= λ −dx(t)− f (x(t),v(t)),

dy(t)
dt

= e−ατ f (x(t − τ),v(t − τ))−ay(t)− py(t)z(t),

dv(t)
dt

= ky(t)− μv(t),

dz(t)
dt

= cy(t)z(t)−bz(t),

(1.3)

with

f (x,v) =
βxv

1+mx+nv
, m � 0, n � 0, (x,v) ∈ R

2. (1.4)

Obviously, (1.1) and (1.2) are the special cases of (1.3)-(1.4), respectively.
Here we investigate the global dynamics of system (1.3)-(1.4). We first intro-

duce the basic reproduction number R0 and the immune response reproduction number
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R1 , and we then show that system (1.3)-(1.4) has three possible equilibria: disease-
free equilibrium, immune-free equilibrium and endemic equilibrium; see, Theorem 2.1.
Furthermore, by constructing suitable Lyapunov functionals and using the LaSalle in-
variance principle, we show that the global stability of the equilibria of system (1.3)-
(1.4) are fully determined by the threshold parameters R0 and R1 defined in section 2,
respectively, see, Theorems 3.1.

The paper is organized as follows. In next section, the reproductive numbers are
derived and existence of each equilibria is discussed. The global stability of all the
equilibria are given in section 3. Finally, we offer a brief discussion in section 4.

2. Basic properties

To study the stability of equilibria and investigate the dynamic of system (1.3)-
(1.4) when τ � 0, we need to consider a suitable phase space and a bounded feasi-
ble region. For τ > 0, denote by C = C ([−τ,0];R) the Banach space of continues
functions mapping the interval [−τ,0] into R with norm ‖ϕ‖ = sup−τ�θ�0 |ϕ(θ )| for
ϕ ∈ C . The nonnegative cone of C is defined as C + = C ([−τ,0],R+) . The initial
conditions for system (1.3)-(1.4) are chosen at t = 0 as ϕ ∈ C +×R+×C +×R+ and
ϕ(0) > 0. The following lemma establishes the feasible region of system (1.3)-(1.4)
and shows that the system is well-posed.

LEMMA 2.1. Under the above initial conditions, system (1.3)-(1.4) has a unique
nonnegative solution, and all solutions are ultimately bounded in C ×R×C ×R .
Furthermore, all solutions eventually enter and remain in the following bounded and
positively invariant region:

Γ =
{

(x,y,v,z) ∈ C + ×R+×C +×R+ : ‖x‖ � λ
d

, ‖x+ eατy‖ � λ
d1

,

‖x+ eατy+
a
k
v‖ � λ

d2
, ‖x+ eατy+

a
k
v+

p
c
eατz‖ � λ

d3

}
,

where d1 = min{a,d} , d2 = min{d,aατe−ατ ,μ} , d3 = min{d,aατe−ατ ,μ ,b} .

Proof. For all ϕ ∈ C + ×R+×C + ×R+ , define

F(ϕ) =

⎛
⎜⎜⎝

λ −dϕ1(0)+ f (ϕ1(0),ϕ3(0))
e−ατ f (ϕ1(−τ),ϕ3(−τ))−aϕ2(0)− pϕ2(0)ϕ4(0)
kϕ2(0)− μϕ3(0)
cϕ2(0)ϕ4(0)−bϕ4(0)

⎞
⎟⎟⎠ .

Thus, for all ϕ ∈ C +×R+ ×C +×R+ , F(ϕ) is continuous, and Lipschitzian in ϕ in
each compact set in C +×R+×C +×R+ . Hence, there is a unique solution of system
(1.3)-(1.4) through (0,ϕ) [6, Theorom 2.3.2]. Note that Fi(ϕ) � 0 whenever ϕ � 0
and ϕi(0) = 0. It then follows from [20, Remark 5.2.1] that C + ×R+×C + ×R+ is
positive invariant.
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Next we show that positive solutions of (1.3)-(1.4) are ultimately bounded for t �
0. From the first equation of (1.3), we obtain dx(t)

dt � λ −dx(t) , and thus limsup
t→∞

x(t) �
λ
d . Adding the first two equations of (1.3), we get

d
dt

(
x(t)+ eατy(t + τ)

)
=λ −dx(t)−aeατy(t + τ)− peατy(t + τ)z(t + τ)

�λ −d1(x(t)+ eατy(t + τ)).

Thus,

limsup
t→∞

(
x(t)+ eατy(t)

)
� λ

d1
.

Adding the first three equations of (1.3) gives

d
dt

(
x(t)+ eατy(t + τ)+

a
k
v(t + τ)

)

= λ −dx(t)−a(eατ −1)y(t + τ)− μ
a
k
v(t + τ)

� λ −dx(t)−aατy(t + τ)− μ
a
k
v(t + τ)

� λ −d2

(
x(t)+ eατy(t + τ)+

a
k
v(t + τ)

)
.

Thus,

limsup
t→∞

(
x(t)+ eατy(t + τ)+

a
k
v(t + τ)

)
� λ

d2
.

Adding all the equations of (1.3), we have

d
dt

(
x(t)+ eατy(t + τ)+

a
k
v(t + τ)+

p
c
eατz(t + τ)

)

= λ −dx(t)−a(eατ −1)y(t + τ)− μ
a
k
v(t + τ)−b

p
c
eατz(t + τ)

� λ −dx(t)−aατy(t + τ)− μ
a
k
v(t + τ)−b

p
c
eατz(t + τ)

� λ −d3

(
x(t)+ eατy(t + τ)+

a
k
v(t + τ)+

p
c
eατz(t + τ)

)
.

Thus,

limsup
t→∞

(
x(t)+ eατy(t + τ)+

a
k
v(t + τ)+

p
c
eατz(t + τ)

)
� λ

d3
.

Therefore, x(t) , y(t) , v(t) and z(t) are ultimately bounded in C + ×R+ ×C + ×R+ .
�

First of all, we show that system (1.3)-(1.4) has three possible equilibria. For this,
we define two threshold parameters, see [24],

R0 =
λ βke−ατ

μa(d + λm)
, (2.1)
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and

R1 =
λ βcke−ατ

ab(βk+dkn− μameατ)

(
1− 1

R0

)
, (2.2)

R0 and R1 are respectively called the basic reproduction number and the immune re-
sponse reproductive number for system (1.3)-(1.4).

THEOREM 2.1. For system (1.3)-(1.4), there exist a disease-free equilibrium

E0 = (x0,0,0,0), x0 =
λ
d

,

an immune-free equilibrium E1 = (x1,y1,v1,0) , where
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x1 =
λkn+ μaeατ

βk+dkn− μameατ ,

y1 =
λ βke−ατ

a(βk+dkn− μameατ)

(
1− 1

R0

)
,

v1 =
λ βk2e−ατ

μa(βk+dkn− μameατ)

(
1− 1

R0

)
,

(2.3)

if R0 > 1 , and an endemic equilibrium E2 = (x2,y2,v2,z2) , where x2 is the positive
root of the following quadric equation:

μcdmx2 +(μcd +bdkn+ βbk− μλcm)x−λ(μc+bkn)= 0, (2.4)

and

y2 =
b
c
, v2 =

bk
μc

, z2 =
λ −dx2−ay2eατ

py2eατ , (2.5)

if R1 > 1 .

Proof. Obviously, the disease-free equilibrium E0 always exists. To find other
equilibria, we consider the following equations:

⎧⎪⎪⎨
⎪⎪⎩

λ −dx− f (x,v) = 0,
e−ατ f (x,v)−ay− pyz = 0,
ky− μv = 0,
cyz−bz = 0.

(2.6)

Assume that there exists an equilibrium E1 = (x1,y1,v1,0) with x1 > 0,y1 > 0,v1 > 0.
From the third equation of (2.6), we get

y1 =
μ
k

v1. (2.7)

Substituting (2.7) into the second equation of (2.6) gives

e−ατβx1

1+mx1 +nv1
=

μa
k

, (2.8)
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which follows from the first equation of (2.6) that

λ −dx1 =
μa
k

eατv1. (2.9)

Combining (2.8) and (2.9), we get

x1 =
λkn+ μaeατ

βk+dkn− μameατ ,

here note that R0 > 1 implies that βk + dkn− μameατ > 0, thus, x1 > 0. Putting x1

into (2.9), we have

v1 =
λ βk2e−ατ

aμ(βk+dkn− μameατ)

(
1− 1

R0

)
,

which follows from (2.7) that

y1 =
λ βke−ατ

a(βk+ndk−amμeατ)

(
1− 1

R0

)
.

It is easy to see that y1 and v1 are positive for R0 > 1. Consequently, system (1.3)-(1.4)
has an immune-free equilibrium E1 = (x1,y1,v1,0) if R0 > 1.

Next, we assume that there exists an equilibrium E2 = (x2,y2,v2,z2) with x2 > 0,
y2 > 0, v2 > 0, z2 > 0 if R1 > 1. Obviously, from the third and fourth equations of
(2.6), respectively, we get

y2 =
b
c
, v2 =

k
μ

y2 =
bk
μc

.

Substituting v2 = kb
cμ into the first equation of (2.6), we get x2 > 0 satisfies (2.4). Com-

bining the first two equations of (2.6), we have

λ −dx2 = eατy2(a+ pz2).

Thus,

z2 =
λ −dx2−ay2eατ

py2eατ .

Here, we note that the inequality λ −dx2−ay2eατ > 0 is equal to

λ βcke−ατ +a2bμmeατ −a(μλmc+ μcd+bdnk+ βkb) > 0.

On the other hand, the fact R1 > 1 implies that

λ βcke−ατ +a2bμmeατ

a(μλmc+ μcd+bdnk+ βkb)
> 1,

which follows z2 > 0. �
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3. Global stability of the equilibria

In this section, we consider the global asymptotic stabilities of three equilibria.
For convenience, define

g(x) = x−1− lnx for x ∈ (0,+∞),

it is easy to see that g(x) � 0 for all x ∈ (0,+∞) and min
0<x<+∞

g(x) = g(1) = 0.

THEOREM 3.1. For system (1.3)-(1.4),

(i) If R0 � 1 , then the disease-free equilibrium E0 is globally asymptotically stable
in Γ;

(ii) If R1 � 1 < R0 , then the immune-free equilibrium E1 is globally asymptotically
stable in Γ;

(iii) If R1 > 1 , then the endemic equilibrium E2 is globally asymptotically stable in
Γ .

Proof. (i) Define a Lyapunov functional as follows:

V1(t) =
x0

1+mx0
g
(x(t)

x0

)
+ eατy(t)+

aeατ

k
v(t)+

peατ

c
z(t)+V11(t),

where

V11(t) =
∫ t

t−τ
f (x(θ ),v(θ ))dθ .

Since g
( x(t)

x0

)
is non-negative, Lyapunov functional V1 is non-negative definite in Γ

with respect to E0 . Note that

dV11(t)
dt

= f (x(t),v(t))− f (x(t − τ),v(t− τ)).

Calculating dV1(t)
dt along the solution of (1.3)-(1.4), we have

dV1(t)
dt

=
1

1+mx0

(
1− x0

x(t)

)(
dx0−dx(t)− f (x(t),v(t))

)

− μaeατ

k
v(t)− bpeατ

c
z(t)+ f (x(t),v(t))

=− d(x(t)− x0)2

x(t)(1+mx0)
+

1+mx(t)
1+mx0

βx0v(t)
1+mx(t)+nv(t)

− μaeατ

k
v(t)− bpeατ

c
z(t)

=− d(x(t)− x0)2

x(t)(1+mx0)
+

μaeατv(t)(1+mx(t))
k(1+mx(t)+nv(t))

(R0 −1)
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− μbpeατ

k(1+mx(t)+nv(t))
v2(t)− bpeατ

c
z(t).

Since x(t) , y(t) , v(t) , z(t) are positive, it follows from R0 � 1 that dV1(t)
dt � 0. Hence,

every solutions of system (1.3)-(1.4) tends to M0 , the largest invariant subset of { dV1(t)
dt =

0}with respect to system (1.3)-(1.4). We show that M0 consists of only the equilibrium
E0 . Let (x(t),y(t),v(t),z(t)) be the solution with initial function in M0 . Then, from
the invariance of M0 , x(t) = x0 , v(t) = 0, and z(t) = 0 for any t . Now we have
dV (t)

dt = 0 and hence, it follows y(t) = 0 for any t , from the third equation of (1.3).
From the LaSalle invariance principle [6, Corollary 5.3.1], the disease-free equilibrium
E0 is globally asymptotically stable.

(ii) Define a Lyapunov functional as follows:

V2(t) = V21(t)+ay1V22(t),

where

V21(t) =e−ατ
(
x(t)− x1−

∫ x(t)

x1

f (x1,v1)
f (θ ,v1)

dθ
)

+ y1g
(y(t)

y1

)
+

av1

k
g
(v(t)

v1

)
+

p
c
z(t),

and

V22(t) =
∫ t

t−τ
g
(e−ατ

ay1
f (x(θ ),v(θ ))

)
dθ .

Let

V0(x) = x− x1−
∫ x

x1

f (x1,v1)
f (θ ,v1)

dθ for x ∈ (0,+∞).

Since
dV0(x)

dx
= 1− f (x1,v1)

f (x,v1)
,

we have dV0(x)
dx < 0 for x ∈ (0,x1) ,

dV0(x)
dx > 0 for x ∈ (x1,+∞) and dV0(x1)

dx = 0. We
also have V0(x1) = 0. Then V0(x) > 0 for all x > 0. Hence, V2(t) � 0 for all t � 0.
Note that

dV22(t)
dt

=
e−ατ

ay1

(
f (x(t),v(t))− f (x(t − τ),v(t− τ))

)

+ ln
f (x(t − τ),v(t− τ))

f (x(t),v(t))
.

Hence,

dV2(t)
dt

=e−ατ
(
1− f (x1,v1)

f (x(t),v1)

)dx(t)
dt

+
(
1− y1

y(t)

)dy(t)
dt

+
a
k

(
1− v1

v(t)

)dv(t)
dt

+
p
c

dz(t)
dt

+ay1
dV22(t)

dt
. (3.1)
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Note that
λ = dx1 +ay1e

ατ , ay1 = e−ατ f (x1,v1),
y1

v1
=

μ
k

.

It follows from (3.1) that

dV2(t)
dt

=−de−ατ (1+nv1)(x(t)− x1)2

x(t)(1+mx1 +nv1)
+ay1

[
ln

f (x(t − τ),v(t− τ))
f (x(t),v(t))

+
(
3− f (x1,v1)

f (x(t),v1)
− y(t)v1

y1v(t)
− y1

y(t)
f (x(t − τ),v(t− τ))

f (x(t),v(t))

)

+
(
− v(t)

v1
+

f (x(t),v(t))
f (x(t),v1)

)]
+ p

(
y1− b

c

)
z(t).

Using the equality

ln
f (x(t − τ),v(t− τ))

f (x(t),v(t))
= ln

f (x1,v1)
f (x(t),v1)

+ ln
y(t)v1

y1v(t)
+ ln

1+mx(t)+nv(t)
1+mx(t)+nv1

+ ln
y1

y(t)
f (x(t − τ),v(t− τ))

f (x1,v1)
,

we obtain

dV2(t)
dt

=−de−ατ (1+nv1)(x(t)− x1)2

x(t)(1+mx1 +nv1)
−ay1

[
g
( f (x1,v1)

f (x(t),v1)

)
+g

(y(t)v1

y1v(t)

)

+g
(1+mx(t)+nv(t)

1+mx(t)+nv1

)
+g

( y1

y(t)
f (x(t − τ),v(t− τ))

f (x1,v1)

)

+
(
1+

v(t)
v1

− f (x(t),v(t))
f (x(t),v1)

− 1+mx(t)+nv(t)
1+mx(t)+nv1

)]
− p

(b
c
− y1

)
z(t).

Note that

1+
v(t)
v1

− f (x(t),v(t))
f (x(t),v1)

− 1+mx(t)+nv(t)
1+mx(t)+nv1

=
n(v(t)− v1)2

v1(1+mx(t)+nv(t))
> 0,

and it follows from R1 � 1 that cy1 −b � 0, i.e., b
c − y1 � 0. Then, by the above cal-

culations, we get dV2(t)
dt � 0 holds for x(t),y(t),v(t),z(t) > 0. It is clear that V2(t) � 0,

and V2(t) = 0 iff x(t) = x1 , y(t) = y1 , v(t) = v1 and z(t) = 0. Hence, every solutions

of system (1.3)-(1.4) tends to M1 , the largest invariant subset of { dV2(t)
dt = 0}with re-

spect to system (1.3)-(1.4). We show that M1 consists of only the equilibrium E1 . Let
(x(t),y(t),v(t),z(t)) be the solution with initial function in M1 . Then, from the invari-

ance of M1 , x(t) = x1 , v(t) = v1 , and z(t) = 0 for any t . Now we have dV (t)
dt = 0 and

hence, it follows y(t) = 0 for any t , from the third equation of (1.3). From the LaSalle
invariance principle [6, Corollary 5.3.1], the immuune-free equilibrium E1 is globally
asymptotically stable when R1 � 1 < R0 .

(iii) Define a Lyapunov functional as follows:

V3(t) = V31(t)+ y2(a+ pz2)V32(t),
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where

V31(t) =e−ατ
(
x(t)− x2−

∫ x(t)

x2

f (x2,v2)
f (θ ,v2)

dθ
)

+ y2g
(y(t)

y2

)

+
a+ pz2

k
v2g

(v(t)
v2

)
+

pz2

c
g
(z(t)

z2

)
,

and

V32(t) =
∫ t

t−τ
g
( e−ατ

y2(a+ pz2)
f (x(θ ),v(θ ))

)
dθ .

Note that

dV32(t)
dt

=
e−ατ

y2(a+ pz2)

(
f (x(t),v(t))− f (x(t − τ),v(t− τ))

)

+ ln
f (x(t − τ),v(t− τ))

f (x(t),v(t))
.

Hence

dV3(t)
dt

=e−ατ
(
1− f (x2,v2)

f (x(t),v2)

)dx(t)
dt

+
(
1− y2

y(t)

)dy(t)
dt

+
a+ pz2

k

(
1− v2

v(t)

)dv(t)
dt

+
p
c

(
1− z2

z(t)

)dz(t)
dt

+ y2(a+ pz2)
dV32(t)

dt
. (3.2)

Since

λ = dx2 + y2(a+ pz2)eατ ,
y2

v2
=

μ
k

, y2 =
b
c
,

βx2v2 = eατy2(a+ pz2)(1+mx2 +nv2),

it follows from (3.2) that

dV3(t)
dt

=−de−ατ (1+nv2)(x(t)− x2)2

x(t)(1+mx2 +nv2)
+ y2(a+ pz2)

[
ln

f (x(t − τ),v(t− τ))
f (x(t),v(t))

+
(
3− x2(1+mx(t)+nv2)

x(t)(1+mx2 +nv2)
− y(t)v2

y2v(t)
− y2

y(t)
f (x(t − τ),v(t− τ))

f (x2,v2)

)

+
(
− v(t)

v2
+

f (x(t),v(t))
f (x(t),v2)

)]
.

Similarly, using the equality

ln
f (x(t − τ),v(t− τ))

f (x(t),v(t))
= ln

f (x2,v2)
f (x(t),v2)

+ ln
y(t)v2

y2v(t)
+ ln

1+mx(t)+nv(t)
1+mx(t)+nv2

+ ln
y2

y(t)
f (x(t − τ),v(t− τ))

f (x2,v2)
,
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we get

dV3(t)
dt

=−de−ατ (1+nv2)(x(t)− x2)2

x(t)(1+mx2 +nv2)
− y2(a+ pz2)

[
g
(1+mx(t)+nv(t)

1+mx(t)+nv2

)

+g
(y(t)v2

y2v(t)

)
+g

( f (x2,v2)
f (x(t),v2)

)
+g

( f (x(t − τ),v(t− τ))
f (x2,v2)

)

+
(
1+

v(t)
v2

− f (x(t),v(t))
f (x(t),v2)

− 1+mx(t)+nv(t)
1+mx(t)+nv2

)]
.

It is easy to see that dV3(t)
dt � 0 holds for x(t),y(t),v(t),z(t) > 0. Obviously, V3(t) �

0, and V3(t) = 0 iff x(t) = x2,y(t) = y2,v(t) = v2,z(t) = z2 . Hence, every solutions

of system (1.3)-(1.4) tends to M2 , the largest invariant subset of { dV2(t)
dt = 0} with

respect to system (1.3)-(1.4). We show that M2 consists of only the equilibrium E2 .
Let (x(t),y(t),v(t),z(t)) be the solution with initial function in M2 . Then, from the

invariance of M2 , x(t) = x2 , andv(t)= v2 for any t . Now we have dv(t)
dt = 0 and hence,

it follows y(t) = μv2
k = y2 for any t , from the third equation of (1.3). Similarly, we have

dy(t)
dt = 0 and hence, it follows z(t) = z2 for any t , from the second equation of (1.3).

From the LaSalle invariance principle [6, Corollary 5.3.1], the endemic equilibrium E2

is globally asymptotically stable when R1 > 1. �

4. Discussion

In this paper, following the ideas of Huang et al. [3, 4], Nakata [15], and Wang et
al. [24], we also assume that the incidence rate of the virus infection is described by a
Beddington-DeAngelis functional response. By introducing a discrete time delay into
the functional response f (x,v) , we then obtain a delay model (1.3)-(1.4). For system
(1.3)-(1.4), by Lyapunov functionals and LaSalle invariance principle, we study global
dynamics system (1.3)-(1.4). Here, construction of these Lyapunov functionals are all
motivated by the works of Huang [3, 4, 5], Korobeinikov [8, 9], Li and Shu [11, 12],
McCluskey [13, 14], Nakata [15, 16], Wang et al.[24], and so on.

To analyze the global stability of system (1.3)-(1.4), we define two thresholds
parameters, the basic reproduction number R0 and the immune response reproduction
number R1 , which determine the existence of these equilibria and also fully determine
the global stability of system (1.3)-(1.4). The disease-free equilibrium E0 is globally
asymptotically stable if R0 � 1 and the virus are cleared. The infected equilibrium
without immune response E1 is globally asymptotically stable if R1 � 1 < R0 and
the infection becomes chronic but with no persistent immune response. The infected
equilibrium with immune response E2 is globally asymptotically stable if R1 > 1 and
the infection becomes chronic but with immune response.

Note that the Beddington-DeAngelis functional function f (x,v) = β xv
1+mx+nv intro-

duced here includes bilinear rate f (x,v) = βxv from (1.4) with m = n = 0, and non-
linear rate f (x,v) = β xv

1+nv from (1.4) with m = 0 and n > 0. Therefore, Theorems 3.1
generalize the global stability results in [3, 4, 15, 19]. Moreover, our results improve
stability results in [10, 23, 24, 26] and include the main results in [21].
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