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Abstract. In this paper we study a result of existence of positive solution the following class of
singular system:

(P)

⎧⎪⎪⎨
⎪⎪⎩

−div(a1(|∇u|p1 )|∇u|p1−2∇u) = h1(x)v−γ1 + k1(x)vα1 in Ω,
−div(a2(|∇v|p2 )|∇v|p2−2∇v) = h2(x)u−γ2 + k2(x)uα2 in Ω,
u,v > 0 in Ω,
u = v = 0 on ∂Ω,

where Ω is a bounded smooth domain in R
N with N � 3 , 2 � p1, p2 < N . For i = 1,2 ,

αi,γi ∈ (0, pi − 1) and hi and ki are continuous functions. The hypotheses on the functions
ai : R

+ → R
+ allow to show that (P) includes a large class of systems. We use topological

arguments to show the main result.

1. Introduction

This paper concerns with the existence of solution of singular elliptic systems of
the type

(P)

⎧⎪⎪⎨
⎪⎪⎩

−div(a1(|∇u|p1)|∇u|p1−2∇u) = h1(x)v−γ1 + k1(x)vα1 in Ω,
−div(a2(|∇v|p2)|∇v|p2−2∇v) = h2(x)u−γ2 + k2(x)uα2 in Ω,
u,v > 0 in Ω,
u = v = 0 on ∂Ω,

where Ω is a bounded smooth domain in R
N with N � 3, 2 � p1, p2 < N . For i = 1,2,

αi,γi ∈ (0, pi − 1) , ai : R
+ → R

+ is a C1 - function and hi and ki are continuous
functions. More precisely, we will suppose that the functions hi, ki and ai satisfy the
following assumptions:
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(A1 ) There are real constants ξ0 > 0, ξ1,ξ2,ξ3 � 0 and pi < qi < N for (i = 1,2)
such that

ξ0 +H(ξ3)ξ1t
qi−pi

pi � ai(t) � ξ2 + ξ3t
qi−pi

pi , ∀ t � 0

where H : [0,+∞) → {0,1} is the function given by

H(t) =
{

1 if t > 0
0 if t = 0.

(A2 ) The mapping gi : R
+ → R

+ , given by gi(t) = ai(t pi)t pi−2 , is increasing, for
i = 1,2.

(A3 ) The mappings hi,ki : Ω → (0,+∞) are continuous functions, for i = 1,2.

Our main result is the following:

THEOREM 1. Assume that conditions (A1) , (A2) , (A3) , 2 � p1, p2 < N and
αi,γi ∈ (0, pi −1) hold true. Then problem (P) has a solution.

A considerable effort has been devoted during the last years in studying singu-
lar elliptic problems, as it can be seen, for instance, in [1], [2] [3], [5], [6], [10],
[12], [16], [17], [19], [20] and references therein. This is due to their significance
in applications (fluid mechanics pseudoplastics flow, chemical heterogeneous catalysts,
non-Newtonian fluids, biological pattern formation) as well as to their mathematical
relevance. Some of these applications can be seen in [1] and the references therein.

Theorem 1 is related to results of [1] and [20]. In [1] the authors studies the system⎧⎪⎪⎨
⎪⎪⎩

−Δpu = v−γ1 + vα1 in Ω,
−Δqv = u−γ2 +uα2 in Ω,
u,v > 0 in Ω,
u = v = 0 on ∂Ω,

and shows the existence of solution by using theorem a due to Rabinowitz [13] (see
Proposition 3.1) and a Hardy-Sobolev inequality (see Proposition 2.1).

In [20] the author studies the system⎧⎪⎪⎨
⎪⎪⎩

−Δu = u−pv−q in Ω,
−Δv = u−rv−s in Ω,
u,v > 0 in Ω,
u = v = 0 on ∂Ω,

and shows some existence, nonexistence and uniqueness results for different values of
p,q,r,s and using sub-supersolution methods.

We have completed the studies found in [1] and [20] because, in this work, we
have more general operators than those considered in these articles.

Just to illustrate the degree of generality of the problem (P) let us consider some
special cases, depending on the functions ai , that are covered in this article, i.e., ai

satisfies assumptions (A1)− (A2) .
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EXAMPLE 1. If ai ≡ 1 with i = 1,2, then

−div(ai(|∇wi|pi)|∇wi|pi−2∇wi) = −Δpiwi,

where ξ0 = ξ1 = 1 and ξ3 = 0 and ξ2 > 0.

EXAMPLE 2. If ai(t) = 1+ t
qi−pi

pi with i = 1,2, we obtain

−div(ai(|∇wi|pi)|∇wi|pi−2∇wi) = −Δpiwi −Δqiwi

with ξ0 = ξ1 = ξ2 = ξ3 = 1.

EXAMPLE 3. Taking

ai(t) = 1+
1

(1+ t)
pi−2
pi

with i = 1,2, we get

−div(ai(|∇wi|pi)|∇wi|pi−2∇wi) = −div

(
|∇wi|pi−2∇wi +

|∇wi|pi−2∇wi

(1+ |∇wi|pi)
pi−2
pi

)

with ξ0 = 1,ξ1 = 2,ξ3 = 0 and ξ2 > 0.

EXAMPLE 4. We now consider

ai(t) = 1+ t
qi−pi

pi +
1

(1+ t)
pi−2
pi

with i = 1,2 to obtain

−div(ai(|∇wi|pi)|∇wi|pi−2∇wi) = −Δpiwi −Δqiwi −div

( |∇wi|pi−2∇wi

(1+ |∇wi|pi)
pi−2
pi

)
,

where ξ0 = 1,ξ1 = 2 and ξ3 = ξ2 = 1.

Other combinations can be made with the functions presented in the examples
above, generating very interesting elliptic systems from the mathematical point of view
and applications.

Due to the presence of the general operator some more estimates refined are need,
such as in Lemmas 1, 2 and 3.

This class of operators was studied in [8], [9] and some reference given there.
The plan of this paper is as follows. In the section 2 we show some preliminary

results on the general operator and a comparison principle. In the section 3 we show an
existence result for an auxiliary problem. We prove the main result in section 4.
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2. Preliminary results

We define X = W 1,β1
0 (Ω)×W1,β2

0 (Ω) equipped with the norm

‖(u,v)‖ = ‖u‖1,β1
+‖v‖1,β2

,

where
‖u‖1,βi

= ‖u‖1,pi +H(ξ3)‖u‖1,qi.

In this text |.|∞ denotes the norm in L∞(Ω) . Moreover, we say that the pair (u,v)∈
X is a solution of the problem (P) if

∫
Ω

a1(|∇u|p1)|∇u|p1−2∇u∇φdx =
∫

Ω

[
h1(x)
vγ1

+ k1(x)vα1

]
φdx,

and ∫
Ω

a2(|∇v|p2)|∇v|p2−2∇v∇ϕdx =
∫

Ω

[
h2(x)
uγ2

+ k2(x)uα2

]
ϕdx,

for all (φ ,ϕ) ∈ X .

In this article we work with the operator Ti : W 1,βi
0 (Ω) → W 1,βi

0 (Ω)′ such that
i = 1,2, 〈Tiwi,φi〉 is given by

〈Tiwi,φi〉 =
∫

Ω
ai(|∇wi|pi)|∇wi|pi−2∇wi∇φi dx.

A straightforward calculation shows that Ti is continuous. In what follows we
prove that Ti is monotone and coercive.

LEMMA 1. The operator Ti satisfies the following conditions:

〈Tiui −Tivi,ui − vi〉 > 0 for all ui,vi ∈W 1,βi
0 (Ω) with ui 
= vi

and

lim
‖ui‖1,βi

→∞

〈Tiui,ui〉
‖ui‖1,βi

= +∞.

Proof. To prove the first part, it is enough to show the inequality below:

C|x− y|pi �
〈
ai(|x|pi)|x|pi−2x−ai(|y|pi)|y|pi−2y,x− y

〉
,

for all x,y ∈ R
N and i = 1,2. Indeed, firstly note that

〈
ai(|x|pi)|x|pi−2x−ai(|y|pi)|y|pi−2y,x− y

〉
=

N

∑
j=1

(ai(|x|pi)|x|pi−2x j −ai(|y|pi)|y|pi−2y j)(x j − y j)

and for all z,ξ ∈ R
N we get
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N

∑
k, j=1

∂
∂ zk

(ai(|z|pi)|z|pi−2z j)ξkξ j = (pi −2)|z|pi−4
N

∑
k, j=1

ai(|z|pi)zkz jξkξ j

+
N

∑
k, j=1

ai(|z|pi)|z|pi−2δk, jξkξ j + pi

N

∑
k, j=1

a′i(|z|pi)|z|2pi−4zkz jξkξ j.

Hence

N

∑
k, j=1

∂
∂ zk

(ai(|z|pi)|z|pi−2z j)ξkξ j = (pi −2)|z|pi−4ai(|z|pi)
N

∑
k, j=1

zkz jξkξ j

+ai(|z|pi)|z|pi−2|ξ |2 + pa′i(|z|pi)|z|2pi−4
N

∑
k, j=1

zkz jξkξ j.

Since
N

∑
k, j=1

zkz jξkξ j = (
N

∑
j=1

z jξ j)2,

we have

N

∑
k, j=1

∂
∂ zk

(ai(|z|pi)|z|pi−2z j)ξkξ j

= (
N

∑
j=1

z jξ j)2|z|pi−4
[
(pi −2)ai(|z|pi)+ pia

′
i(|z|pi)|z|pi

]

+ai(|z|pi)|z|pi−2|ξ |2.
By (A2) , we derive

N

∑
k, j=1

∂
∂ zk

(ai(|z|pi)|z|pi−2z j)ξkξ j � ai(|z|pi)|z|pi−2|ξ |2. (2.1)

Moreover, if |y| � |x| , we have 1
2 |x− y|� |y| and for t ∈ [0, 1

4 ] we get

|y+ t(x− y)|� |y|− t|x− y|� 1
4
|x− y|.

Making z = x− y and ξ = x− y , from direct calculations we get

N

∑
j=1

(ai(|x|pi)|x|pi−2x j −ai(|y|pi)|y|pi−2y j)(x j − y j)

=
∫ 1

0

N

∑
k, j=1

∂
∂ zk

(ai(|z|pi)|z|pi−2z j)ξkξ j dt.

Using (2.1) we get
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〈
ai(|x|pi)|x|pi−2x−ai(|y|pi)|y|pi−2y,x− y

〉
� ai(|y+ t(x− y)|pi)|y+ t(x− y))|pi−2|x− y|2

By (A1) we conclude

〈
ai(|x|pi)|x|pi−2x−ai(|y|pi)|y|pi−2y,x− y

〉
� ξ0

4
|x− y|pi−2|x− y|2 =

ξ0

4
|x− y|pi.

The second part follows by using the growth of the operator Ti given by hypothesis
(A1) . �

Lemma 1 provides the monotonicity and coerciveness of the operator Ti . Thus,
by Minty-Browder’s Theorem [4, Teorema V. 15], given fi ∈W 1,βi

0 (Ω)′ with i = 1,2,

there exists a unique ui ∈W 1,βi
0 (Ω) enjoying{−div(ai(|∇ui|pi)|∇ui|pi−2∇ui) = fi in Ω,

ui = 0 on ∂Ω.

in the weak sense.
Now using the Lemma 1 and arguing as [14, Lemma A2] and [14, Hopf Lemma]

we get next two results.

LEMMA 2. If Ω is a bounded domain and if ui,vi ∈W 1,βi
0 (Ω) satisfy{−div(ai(|∇ui|pi)|∇ui|pi−2∇ui) � −div(ai(|∇vi|pi)|∇vi|pi−2∇vi) in Ω,

ui � vi on ∂Ω

then ui � vi a.e in Ω .

LEMMA 3. Let Ω be a bounded domain with smooth boundary and i = 1,2 . If
ui ∈C1(Ω)

⋂
W 1,βi

0 (Ω) and⎧⎨
⎩

−div(ai(|∇ui|pi)|∇ui|pi−2∇ui) � 0
ui > 0 in Ω,
ui = 0 on ∂Ω,

then
∂ui

∂η
< 0 on ∂Ω , where η is the outward normal to ∂Ω .

Next, we recall the Hardy-Sobolev inequality which will play a key role in the
proof of our main result:

PROPOSITION 2.1. (Hardy-Sobolev inequality) If u∈C1(Ω)
⋂

W 1,p
0 (Ω) with 1 <

p � N , u = 0 on ∂Ω and ∂u
∂η < 0 , then u

Cdτ
x
∈ Lr(Ω) , for 1

r = 1
p − 1−τ

N ,0 � τ � 1 , and

‖ u
Cdτ

x
‖Lr � ‖∇u‖Lp ,

where dx = dist{x,∂Ω} , C is a positive constant, which does not depend on x . See
[11].
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3. The Approximate Problem

In what follows, we are going to show an existence result for an approximate
problem.

Our first existence theorem rests heavily on the following result due to Rabinowitz
[13].

PROPOSITION 3.1. Let E be a Banach space and T : IR+×E → E a continuous
and compact mapping so that T (0,u) = 0 , for all u ∈ E . Then the equation

u = T (λ ,u)

possesses an unbounded continuum C ⊂ IR+×E of solutions with (0,0) ∈ C .

For each ε > 0, let us consider the problem

(Pε)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−div(a1(|∇u|p1)|∇u|p1−2∇u) = h1(x)
(ε+|v|)γ1 + k1(x)|v|α1 in Ω,

−div(a2(|∇v|p2)|∇v|p2−2∇v) = h2(x)
(ε+|u|)γ2 + k2(x)|u|α2 in Ω,

u,v > 0 in Ω,
u = v = 0 on ∂Ω,

For the approximate problem we have the following result

THEOREM 2. For each ε > 0 and αi,γi ∈ (0, pi −1) with i = 1,2 , problem (Pε)
possesses a solution.

Proof. Let us construct an operator. For each fixed ε > 0, let us construct the
operator T (λ ,u,v) satisfying the assumptions imposed in Proposition 3.1. For this, let
λ � 0 be and consider the problem

(P)

⎧⎪⎪⎨
⎪⎪⎩

−div(a1(|∇u|p1)|∇u|p1−2∇u) = λ
[

h1(x)
(ε+|v|)γ1 + k1(x)|v|α1

]
in Ω,

−div(a2(|∇v|p2)|∇v|p2−2∇v) = λ
[

h2(x)
(ε+|u|)γ2 + k2(x)|u|α2

]
in Ω,

u = v = 0 on ∂Ω.

By Lemma 1, the operator Ti : W 1,βi
0 → (W 1,βi

0 )
′
is monotone, continuous and coercive

for i = 1,2. Thus, by the Minty-Browder’s Theorem [4, Teorema V. 15] we have
uniqueness of solution to the problems

(∗)
{
−div(a1(|∇u|p1)|∇u|p1−2∇u) = λ

[
h1(x)

(ε+| f |)γ1 + k1(x)| f |α1

]
in Ω,

u = 0 on ∂Ω

and

(∗∗)
{
−div(a2(|∇v|p2)|∇v|p2−2∇v) = λ

[
h2(x)

(ε+|g|)γ2 + k2(x)|g|α2

]
in Ω,

v = 0 on ∂Ω
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where f ∈W 1,β1
0 (Ω) and g ∈W 1,β2

0 (Ω).
Then, we can define the operator

T : IR+×X → X
(λ , f ,g) 
→ T (λ , f ,g) = (u,v),

where u,v are the unique solutions of problems (∗) and (∗∗) respectively.
Let us show that T is a compact operator. For, let ((λn, fn,gn)) ⊂ R

+ ×X be a
bounded sequence and set T (λn, fn,gn) = (un,vn) . It follows from the definition of the
operator T that (un,vn) satisfies⎧⎪⎪⎨

⎪⎪⎩
−div(a1(|∇un|p1)|∇un|p1−2∇un) = λn

[
h1(x)

(ε+| fn|)γ1 + k1(x)| fn|α1

]
in Ω,

−div(a2(|∇vn|p2)|∇vn|p2−2∇vn) = λn

[
h2(x)

(ε+|gn|)γ2 + k2(x)|gn|α2

]
in Ω,

un = vn = 0 on ∂Ω.

Thus,

∫
Ω

a1(|∇un|p1)|∇un|p1−2∇un∇φdx

= λn

∫
Ω

[
h1(x)

(ε + | fn|)γ1
+ k1(x)| fn|α1

]
φdx, ∀ φ ∈W 1,β1

0 (Ω)

and
∫

Ω
a2(|∇vn|p2)|∇vn|p2−2∇vn∇ϕdx

= λn

∫
Ω

[
h2(x)

(ε + |gn|)γ2
+ k2(x)|gn|α2

]
ϕdx, ∀ ϕ ∈W 1,β2

0 (Ω).

Considering, in particular, φ = un and ϕ = vn in the above equations we get

∫
Ω

a1(|∇un|p1)|∇un|p1 dx = λn

∫
Ω

[
h1(x)un

(ε + | fn|)γ1
+ k1(x)| fn|α1un

]
dx

and ∫
Ω

a2(|∇vn|p2)|∇vn|p2 dx = λn

∫
Ω

[
h2(x)vn

(ε + |gn|)γ2
+ k2(x)|gn|α2vn

]
dx.

Since αi,γi ∈ (0, pi − 1) with i = 1,2, we use Hölder’s inequality with p1
α1

and
p1

p1−α1
, assumption (A1) and Sobolev’s embedding to obtain

ξ0

∫
Ω
|∇un|p1 dx+H(ξ3)ξ2

∫
Ω
|∇un|q1 dx

� λn

(
Cε |h1|∞‖un‖1,β1

+ |k1|∞‖ fn‖α1
1,β1

‖un‖1,β1

)
. (3.1)
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Since (λn) and (‖ fn‖α1
1,β1

) are bounded in R
+ , we have (un) is bounded in W 1,β1

0 (Ω).

In the same way we may show that (vn) is bounded in W 1,β2
0 (Ω).

Thus, up to a subsequence, we have

un ⇀ u for some u ∈W 1,β1
0 (Ω),

un → u in Ls(Ω), for all 1 � s < β ∗
1 ,

vn ⇀ v for some v ∈W 1,β2
0 (Ω),

vn → v in Ls(Ω), for all 1 � s < β ∗
2 ,

and
λn → λ � 0.

Invoking the inequality

C|x− y|p1 �
〈
a1(|x|p1)|x|p1−2x−a1(|y|p1)|y|p1−2y,x− y

〉
,

for all x,y ∈ R
N , we obtain

C‖un−u‖p1
1,p1

�
∫

Ω
a1(|∇un|p1)|∇un|p1 dx

−
∫

Ω
a1(|∇un|p1)|∇un|p1−2∇un∇u dx+on(1)

= λn

∫
Ω

h1(x)un

(| fn|+ ε)γ1
dx+ λn

∫
Ω

k1(x)| fn|α1un dx

−λn

∫
Ω

h1(x)u
(| fn|+ ε)γ1

dx−λn

∫
Ω

k1(x)| fn|α1u dx = on(1),

where we conclude
‖un−u‖1,p1 = on(1).

Following the same arguments treated above we conclude that

‖un−u‖1,q1 = on(1).

Then, perhaps for a subsequence,

‖un−u‖1,β1
= on(1).

Analogously, vn → v in W 1,β2
0 (Ω).

This shows that T is a compact operator. Its continuity follows in a similar way.
Because T (0,u,v) = (0,0) , we may use Proposition 3.1 to get a continuum C ⊂ R

+×
X of solutions of T (λ ,u,v) = (u,v), i.e., T (λ ,u,v) satisfies the equation
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(Pλ )

⎧⎪⎪⎨
⎪⎪⎩

−div(a1(|∇u|p1)|∇u|p1−2∇u) = λ
[

h1(x)
(ε+|v|)γ1 + k1(x)|v|α1

]
in Ω,

−div(a2(|∇v|p2)|∇v|p2−2∇v) = λ
[

h2(x)
(ε+|u|)γ2 + k2(x)|u|α2

]
in Ω,

u = v = 0 on ∂Ω.

So, if (λ ,0,0) ∈ C then λ = 0, that is, C −{(0,0,0)} is constituted of nontrivial
solutions.

Let us prove that for each λ > 0 there is (λ ,u,v) ∈ C . Suppose, on the contrary,
that there is λ ∗ > 0 such that (λ ,u,v) ∈ C implies λ � λ ∗. Thus (λ ,u,v) satisfies
(Pλ ) and so

∫
Ω

a1(|∇u|p1)|∇u|p1 dx = λ
∫

Ω

[
h1(x)u

(ε + |v|)γ1
+ k1(x)|v|α1u

]
dx

and ∫
Ω

a2(|∇v|p2)|∇v|p2 dx = λ
∫

Ω

[
h2(x)v

(ε + |u|)γ2
+ k2(x)|u|α2v

]
dx.

From assumption (A1) we have

ξ0

∫
Ω
|∇un|p1 dx+H(ξ3)ξ2

∫
Ω
|∇un|q1 dx

� λ
∫

Ω

[ h1(x)u
(ε + |v|)γ1

+ k1(x)|v|α1u
]

dx. (3.2)

Moreover, using the Hölder inequality and Sobolev’s embedding

∫
Ω

h1(x)u
(ε + |v|)γ1

� Cε‖h‖Lβ1‖u‖1,β1

and ∫
Ω

k1(x)|v|α1u � ‖k1‖
L

β1
β1−α1−1

‖v‖α1
1,β2

‖u‖1,β1
.

So, from (3.2) we have

ξ0‖u‖p1
1,p1

+H(ξ3)ξ2‖u‖q1
1,q1

� C
′
ε

[
‖u‖1,β1

+‖v‖α1
1,β2

‖u‖1,β1

]
and

ξ0‖v‖p2
1,p2

+H(ξ3)ξ2‖v‖q2
1,q2

� C
′
ε

[
‖v‖1,β2

+‖v‖1,β2
‖u‖α2

1,β1

]
,

which yields
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ξ0‖u‖p1
1,p1

+H(ξ3)ξ2‖u‖q1
1,q1

+ ξ0‖v‖p2
1,p2

+H(ξ3)ξ2‖v‖q2
1,q2

� C
′
ε

[
‖u‖1,β1

+‖v‖α1
1,β2

‖u‖1,β1
+‖v‖1,β2

+‖v‖1,β2
‖u‖α2

1,β1

]
.

If ‖(u,v)‖→ +∞ , it is enough to consider the cases:

(i) ‖u‖1,p1 → +∞ and ‖u‖1,q1 → +∞ ;

(ii) ‖u‖1,p1 is bounded and ‖u‖1,q1 → +∞.

From the analysis of these two cases we conclude that ‖u‖1,β1
is bounded and

analogously ‖v‖1,β2
is bounded, and thus C is bounded, which is a contradiction.

Making λ = 1 we have a solution (uε ,vε ) to the problem (Pε) . By the maximum
principle, uε ,vε are positive in Ω. �

4. Proof of the Main Result

Proof the Theorem 1 For each ε = 1
n , let u 1

n
= un and v 1

n
= vn be the solution of

problem (Pn) obtained in the previous theorem, that is,⎧⎪⎪⎨
⎪⎪⎩

−div(a1(|∇un|p1)|∇un|p1−2∇un) = h1(x)
( 1

n +|vn|)γ1
+ k1(x)|vn|α1 in Ω,

−div(a2(|∇vn|p2)|∇vn|p2−2∇vn) = h2(x)
( 1

n +|un|)γ2
+ k2(x)|un|α2 in Ω,

un = vn = 0 on ∂Ω.

So, from the equation

−div(a1(|∇un|p1)|∇un|p1−2∇un) =
h1(x)

( 1
n + |vn|)γ1

+ k1(x)|vn|α1 in Ω

we have

−div(a1(|∇un|p1)|∇un|p1−2∇un) � h1(x)
(1+ |vn|)γ1

+ k1(x)|vn|α1 in Ω

� h0

(1+ |vn|)γ1
+ k0|vn|α1 ,

where
h0 = min

x∈Ω
h1(x) and k0 = min

x∈Ω
k1(x).

Since the function t 
→ h0
(1+t)γ1 + k0tα1 is continuous and bounded from below for t � 0

it attains a positive minimum m1. So,

−div(a1(|∇un|p1)|∇un|p1−2∇un) � m1.

Let z1 the only positive solution of{−div(a1(|∇z1|p1)|∇z1|p1−2∇z1) = m1 in Ω,
z1 = 0 on ∂Ω.
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Hence,{−div(a1(|∇un|p1)|∇un|p1−2∇un) � −div(a1(|∇z1|p1)|∇z1|p1−2∇z1) in Ω,
un = z1 on ∂Ω.

By Lemma 2, un � z1 > 0 in Ω, for all n∈N. Similarly we prove that vn � z2 > 0
in Ω, for all n ∈ N, where z2 satisfies{−div(a2(|∇z2|p2)|∇z2|p2−2∇z2) = m2 in Ω,

z2 = 0 on ∂Ω

and m2 is the positive minimum of the function t 
→ h0
(1+t)γ2 + k0tα2 .

Since ⎧⎨
⎩

−div(ai(|∇zi|p1)|∇zi|p1−2∇zi) = mi in Ω,
zi > 0 in Ω,
zi = 0 on ∂Ω.

Moreover, by (A1) we can use the results in the paper by Serrin [15] about the L∞

estimates and the results by Di Benedetto [7] and Tolksdorff [18], for the C1 regularity
in order to conclude zi ∈C1(Ω)

⋂
W 1,p

0 (Ω) . By Lemma 3, we have that

∂ zi

∂η
< 0 on ∂Ω .

Thus, for each x ∈ Ω we get,

un(x) � z1(x) > Cdx > 0 and vn(x) � z2(x) > Cdx > 0,

where dx = dist{x,∂Ω} and C is a positive constant that does not depend on x .
Hence,

∫
Ω

h1(x)un

( 1
n + vn)γ1

�
∫

Ω

h1(x)un

vγ1
n

�
∫

Ω

h1(x)un

Cdγ1
x

� h
∫

Ω

un

Cdx
γ1

,

where h = max
x∈Ω

h1(x) . We now use the Hardy-Sobolev inequality to get un

d
γ1
x

∈ Lr and

∫
Ω

h1(x)un

( 1
n + vn)γ1

dx � C2‖un‖1,β1
.

Since α1 ∈ (0, p1−1) and using Hölder’s inequality with p1
α1

and p1
p1−α1

and Sobolev
embedding we have ∫

Ω
vα1
n undx � C

′ ‖un‖1,β1
‖vn‖α1

1,β2
.

Consequently, by using (3.2) with λ = 1 and the previous two estimates we get
that ‖un‖1,β1

,‖vn‖1,β2
are bounded. Thus, up to a subsequence, we have

un ⇀ u for some u ∈W 1,β1
0 (Ω),
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un → u in Ls(Ω), for all 1 � s < β1
∗,

vn ⇀ v for some v ∈W 1,β2
0 (Ω),

vn → v in Ls(Ω), for all 1 � s < β2
∗,

un(x) → u(x) a.e. in Ω,

vn(x) → v(x) a.e. in Ω.

From the above a.e. convergence it can be proved that

un → u � z1 > 0 in W 1,β1
loc (Ω),

vn → v � z2 > 0 in W 1,β2
loc (Ω)

and the following equalities

∫
Ω

a1(|∇u|p1)|∇u|p1−2|∇u|∇φ =
∫

Ω

h1(x)φ
vγ1

+
∫

Ω
k1(x)vα1φ , ∀φ ∈C∞

0 (Ω),

∫
Ω

a2(|∇v|p2)|∇v|p2−2|∇v|∇ϕ =
∫

Ω

h2(x)ϕ
uγ2

+
∫

Ω
k2(x)uα2ϕ , ∀ϕ ∈C∞

0 (Ω).

Using a density argument we have that (u,v) is a solution for (P) which concludes
the proof of the theorem. �

Acknowledgements. Francisco Julio S.A. Corrêa is on leave of absence from the
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