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EXISTENCE OF POSITIVE SOLUTION FOR A SINGULAR
SYSTEM INVOLVING GENERAL QUASILINEAR OPERATORS
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(Communicated by Peter L. Simon)

Abstract. In this paper we study a result of existence of positive solution the following class of
singular system:

—div(ay (|VulP)|Vu|P1=2Vu) = hy (x)v™1 + ki (x)v™ in Q,
—div(az (|Vv[P2)|Vv]|P272Vv) = Iy (x)u™ " + ko (x)u® in Q,
u,v >0 in Q,

u=v=0on 9Q,

(P)

where Q is a bounded smooth domain in RY with N >3, 2 < p1,p2 <N. For i=1,2,
03,% € (0,p; — 1) and h; and k; are continuous functions. The hypotheses on the functions
a; : R™ — R™ allow to show that (P) includes a large class of systems. We use topological
arguments to show the main result.

1. Introduction

This paper concerns with the existence of solution of singular elliptic systems of
the type

—div(a; (|VulP))|Vu|Pr=2Vu) = by (x)v™" + ki (x)v* in Q,
—div(as (|Vv]P2)|Vv|P272Vy) = hy (x)u™ % + ko (x)u®2 in Q,
u,v>0 in Q,

u=v=0on JdQ,

(P)

where Q is a bounded smooth domain in RY with N >3, 2 < p1,p2 <N.Fori=1,2,
o;,% € (0,p; — 1), a; : R" — R*" is a C!- function and 4; and k; are continuous
functions. More precisely, we will suppose that the functions h;, k; and a; satisfy the
following assumptions:
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(A1) There are real constants & >0, &,&,6 >0 and p; < ¢ <N for (i =1,2)
such that

i,Vt>O

qi—P
Pi

4i-p;
Sot+H(G)e " <ait) < &+ Gt
where H : [0,4+e0) — {0,1} is the function given by

lift>0
H(I)_{Oift:O.

(Ay) The mapping g; : RY — RT, given by g;(¢) = a;(t? )72, is increasing, for
i=1,2.

(A3) The mappings h;,k; : Q — (0, +oo) are continuous functions, for i = 1,2.

Our main result is the following:

THEOREM 1. Assume that conditions (A1), (Az), (A3), 2 < p1,p2 <N and
o, % € (0, p; — 1) hold true. Then problem (P) has a solution.

A considerable effort has been devoted during the last years in studying singu-
lar elliptic problems, as it can be seen, for instance, in [1], [2] [3], [5], [6], [10],
[12], [16], [17], [19], [20] and references therein. This is due to their significance
in applications (fluid mechanics pseudoplastics flow, chemical heterogeneous catalysts,
non-Newtonian fluids, biological pattern formation) as well as to their mathematical
relevance. Some of these applications can be seen in [1] and the references therein.

Theorem 1 is related to results of [1] and [20]. In [1] the authors studies the system

—Apu=v""+v%in Q
—Agv=u""4+u"in Q,
u,v>0 in Q,
u=v=0on JdQ,

and shows the existence of solution by using theorem a due to Rabinowitz [13] (see
Proposition 3.1) and a Hardy-Sobolev inequality (see Proposition 2.1).
In [20] the author studies the system

—Au=u"Pyv?in Q,
—Av=u"v¥in Q,
u,v>0 in Q,
u=v=0on 0Q,

and shows some existence, nonexistence and uniqueness results for different values of
p,q,r,s and using sub-supersolution methods.

We have completed the studies found in [1] and [20] because, in this work, we
have more general operators than those considered in these articles.

Just to illustrate the degree of generality of the problem (P) let us consider some
special cases, depending on the functions a;, that are covered in this article, i.e., a;
satisfies assumptions (A;) — (A7).
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EXAMPLE 1. If a; =1 with i = 1,2, then

—div(ai(\Vw,-|p")\Vwi|p"_2Vwi) = —Apwi,

where &g =& =1 and & =0 and & >0.

qi—Pi

EXAMPLE 2. If @;(t) = 14t 7 with i= 1,2, we obtain

—div(a;(|Vwi|P))|Vwi P2V w;) = —Apwi — Ag,wi

with§ =8 =& =8 =1.

EXAMPLE 3. Taking
1

pi—2

(L+1) 7

a;i(t) =1+

with i = 1,2, we get

—diV(a,-(|Vw,-\1"')\Vw,-|pf*2Vw,-) = —diV<|VW,'pi2VWi +

with §=1,&, =2,E&5=0and & > 0.

EXAMPLE 4. We now consider

qi—Pi 1
ai(t):l+t o+ pi—2

(L+2) i

with i = 1,2 to obtain

—div(a;(|Vwi|P) | Vwi P2V w;) = —Apwi — Agwi — diV(

where §g =1, =2and & =& =1.

Vi |71~V

pi—2

(L+ [Vwifp)

|VWi‘pi_2VWi

pi—2

(L+|Vwilpi) o

)

)
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Other combinations can be made with the functions presented in the examples
above, generating very interesting elliptic systems from the mathematical point of view

and applications.

Due to the presence of the general operator some more estimates refined are need,

such as in Lemmas 1, 2 and 3.

This class of operators was studied in [8], [9] and some reference given there.

The plan of this paper is as follows. In the section 2 we show some preliminary
results on the general operator and a comparison principle. In the section 3 we show an
existence result for an auxiliary problem. We prove the main result in section 4.
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2. Preliminary results
We define X = WO1 b (Q) x WO1 P 2(Q) equipped with the norm

[1(u,v) +1vlig,

where

= llullvpi +H(E)lull1.g;-

In this text |.| denotes the normin L*(Q). Moreover, we say that the pair (u,v) €
X is a solution of the problem (P) if

/Qal(\Vu\l’l)|Vu|m*2VuV¢dx:/Q {h‘l)—)(f) +k1(x)va1] ¢dx,

and
/ @ (V|72 [V¥]P 2V gdx — / {hz—(’“) +k2(x)u°‘2} odx,
Q Q| u”

forall (¢,¢) € X.

In this article we work with the operator T; : Wl (e Q) — WO1 i (Q)" such that
i=1,2, (Tiwi, ¢;) is given by

(Towis6) = [ ai([Vwil)] Vi~ 2VwiVoy di.
Q

A straightforward calculation shows that 7; is continuous. In what follows we
prove that 7; is monotone and coercive.

LEMMA 1. The operator T; satisfies the following conditions:
(Tru; — Tyvi,ui —vi) >0 forall u;,v; € W()l’ﬁi(Q) with u; # v;

and
<Tu17 l>

Hululww il g

Proof. To prove the first part, it is enough to show the inequality below:

Clhe— |7 < ai(|x|™) [x72x = ai([y[") [y]" 2y.x = y),
forall x,y € RV and i = 1,2. Indeed, firstly note that
(ai(|xP) 3725 = ai([y1P) 1P 2y = y)

N

= (a(x[P) el P2 = [y |y P 2y5) (xj = ;)
j=1

and for all z,& € RV we get
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N 0 N
D 3—(ai(|Z|p')|Z|p’_2Zj)§k§j:(Pi—2)|Z|p'_4 Y aillz])zz&é;
kj=19%k k=1
-2 < 2pi—4
+ Z (217|272 8k i+ pi Y, ai(lzlP)]elPi iz &k
k.j=1 kj=1
Hence
N9 4 X
Z a— ai(|2P) |27 22)) & = (pi—2) 12" ai(|2”) Y, 2
Jj=1 k.j=1
21612 it
+ai([2P)|P 218 P + pai(|2|P) |27t Y ez
k=1
Since
N
2 wzji&j = ( Zz,§
k,j=1 J=1
we have

ai( (1) lel22))

|| MZ

N
= (X ;&) 2P | (pi — 2)ai(|2]P") + piaj(|2|P) |2|P
=1

+ai(|z) 22 E
By (Az), we derive

N o9
> 3—Zk<ai(|z|f’f>|z|f’f—2z,->ék§j > ai([2P) 2P E 2. o

kj=1

Moreover, if |y| > [x|, we have 1[x—y| < [y| and for ¢ € [0, 1] we get

1
[y +t(x—y)| = |y| —tlx—y| > le—yl-

Making z=x—y and £ = x—y, from direct calculations we get

2

2 (elP el P2 — (1P |y 1P 2y5) (x = )

j:
1 N
= |} 2l e a

Using (2.1) we get
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(ai(x[P) x[P =2 = ay([y [P [y 2y, 2~ )
> ai(ly+1(x=y)[")ly+1(x—y)) P2 — >
By (A;) we conclude

%

- - &o -
(ailxlP) el 2 = (P |2y = y) = 2oyl ey = =y

The second part follows by using the growth of the operator 7; given by hypothesis
(Ap). O

Lemma 1 provides the monotonicity and coerciveness of the operator 7;. Thus,
by Minty-Browder’s Theorem [4, Teorema V. 15], given f; € WO1 i (Q) with i =1,2,
there exists a unique u; € WOl i (Q) enjoying

—div(a;(|Vu;|P)|Vu;|Pi—2Vu;) = f; in Q,
ui=0o0n Q.

in the weak sense.
Now using the Lemma | and arguing as [14, Lemma A2] and [14, Hopf Lemma]
we get next two results.

LEMMA 2. If Q is a bounded domain and if u;,v; € W()l’ﬁi(Q) satisfy

—div(a;(|Vu;|P) | Vi |Pi=2Vu;) < —div(a;(|VvilP)|Vvi P2 V) in Q,
ui <vion 0Q

then u; < v; a.ein Q.

LEMMA 3. Let Q be a bounded domain with smooth boundary and i = 1,2. If
u € CHQ)NW, P (Q) and
—div(a;(|Vu;|P)) | Vi | P2 Vu;) > 0
ui >0in Q,
ui=0on 0Q,

du:
then 3—?; < 0 on dQ, where 1 is the outward normal to 9.

Next, we recall the Hardy-Sobolev inequality which will play a key role in the
proof of our main result:

PROPOSITION 2.1. (Hardy-Sobolev mequalzty)lfu cCcl(Q) NW, (Q) with 1 <
p<N,u=0o0ndQ and a” <0, then Cdr el"(Q ),for = %,0 t< 1, and

=1
P

where dy = dist{x,dQ}, C is a positive constant, which does not depend on x. See

[11].
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3. The Approximate Problem

In what follows, we are going to show an existence result for an approximate
problem.

Our first existence theorem rests heavily on the following result due to Rabinowitz
[13].

PROPOSITION 3.1. Let E be a Banach space and T : R* x E — E a continuous
and compact mapping so that T(0,u) = 0, for all u € E. Then the equation

=T(A,u)
possesses an unbounded continuum ¢ C R x E of solutions with (0,0) € €.

For each € > 0, let us consider the problem

—div(ay (|Valt) |Vl =2Var) = 2 4k ()] in Q,
P) —div(ax (|Vv[P2)|Vy|P22Vy) = (gg;l;h + ko (x)|u|® in Q,
u,v>0 in Q,

u=v=0on 0Q,
For the approximate problem we have the following result

THEOREM 2. For each € >0 and o,y € (0,p; — 1) with i = 1,2, problem (P)
possesses a solution.

Proof. Let us construct an operator. For each fixed € > 0, let us construct the
operator T (A,u,v) satisfying the assumptions imposed in Proposition 3.1. For this, let
A > 0 be and consider the problem

—div(ay (|VulP)|Vu|P12Vi) = A | 229 4 g (x)[v]*1 | in Q,

_ (EEna
(P) —div(ax(|Vv|2)|Vv[P272Vv) = A | s 4 ka(x)[ul | in Q,
u=v=0on JdQ.

By Lemma 1, the operator T; : Wol'p" — (WO1 B ")/ is monotone, continuous and coercive
for i = 1,2. Thus, by the Minty-Browder’s Theorem [4, Teorema V. 15] we have
uniqueness of solution to the problems

) —div(ar (|Vul)|Val?1=2Vi) = 2 [ 4 -k ()71 | in @,
u=0o0n dQ

oy [ (V) VP2V = 2 [ ka(lgl] in 2,
v=0o0n JQ
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wherefEWOl’ﬂl( Q) andgerﬁz( Q).
Then, we can define the operator

T:R*"xX —X
(xafag) = T(Aﬂfug) = (M7V),
where u,v are the unique solutions of problems (x) and () respectively.
Let us show that T is a compact operator. For, let ((A,, fn,g2)) C RT x X be a

bounded sequence and set T (A, f,8n) = (ttn,vy). It follows from the definition of the
operator T that (up,v,) satisfies

—div(ar (|Vitn[P1) |Vt |1 2Vi) = A | et + ki (0)] ] | i €,

—div(az(|Vva|P2)|Vv,|P272Vv,) = A, W +ka(x)|gn|®| in Q,
u, =v, =0o0n 0Q.

Thus,
‘/Qal(|vun‘pl)‘Vun‘pl_ZVunV(de
- hli(x) o 17ﬁl
), [<e+fn>ﬂ @il ]Wx’ voew Q)

and
/ 3 (|Vva|P2) V|72V, Vpdlx
Q
hy (x) ] 1.8
:xn/ 2 () gl | @dx, ¥ @ € WP
[ e gas v o e WP (@),

Considering, in particular, ¢ = u, and @ = v, in the above equations we get

/a1(|Vun\’”)W“ [Pt dx = Ay / [ﬁ +k1(x)|fn|a1un} dx

and

[Vl ax =1, | [mm( >|gn|0‘2vn} dx.

Since o,y € (0,p; — 1) with i = 1,2, we use Holder’s inequality with Z—i and

Pl “assumption (A1) and Sobolev’s embedding to obtain

pi—op’

S [ Vual" dr+ HE)E [ Vil dx
Q Q

A’}’Z <C£|h] =

7 ) 3.1)

T kel fall
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Since (4,) and (||f,,H‘f”ﬁl) are bounded in R™, we have (u,) is bounded in W1 ﬁ'( Q).

In the same way we may show that (v,) is bounded in W, LB 2(Q).
Thus, up to a subsequence, we have

u, — u forsome u € W, ﬁl( Q),
up, —u in L°(Q), forall 1 <s<pfy,

v, — v forsome ve W

Q)

)

vp — v in L*(Q), forall 1<s<f;,

and

A —A=0
Invoking the inequality
Cle—17" < (e ()bl 2x—ar (b7 1" Py =),
for all x,y € RV, we obtain
Clutn =, < [ (Va7 Vs 7 i

— | a (|[Vun|P") |Vt |P' =2V, Vi dx + 0,(1)

Q
B (x)un
:/1/741 x/k M, d
Tl Ty A o Rl d
—xn/ de—?tn/kl(x)\fn\aludxzon(l)7
o ([ful +E)n Q
where we conclude
llun —ul|1,p, = 0n(1).

Following the same arguments treated above we conclude that

llun —ul[1,4, = 0n(1).

Then, perhaps for a subsequence,

|24, — ’/‘Hl,ﬁl =o0,(1).
Analogously, v, — v in W1 132( Q).
This shows that 7 is a compact operator. Its continuity follows in a similar way.
Because T(0,u,v) = (0,0), we may use Proposition 3.1 to get a continuum ¢ C R x
X of solutions of T'(A,u,v) = (u,v), i.e., T(A,u,v) satisfies the equation
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~div(a ([Val?)[ Va7 2Va) = 2 <g+|i|3w Fhp®]in 2,
(P) —div(ay(|Vv[P2)|Vv|P22V) = A | 229 4 o (x)[ul | in Q,

(e+]ul)
u=v=0on Q.

So, if (1,0,0) € € then A =0, thatis, 4 — {(0,0,0)} is constituted of nontrivial
solutions.

Let us prove that for each A > 0 there is (A,u,v) € €. Suppose, on the contrary,
that there is A* > 0 such that (A,u,v) € ¢ implies L < A*. Thus (A,u,v) satisfies
(P;) and so

/al(\Vu\p')WuV’l dx—)L/ [Tv))ﬂ Y hi(x )|v|a'u] dx

and

/az(\vv|m)|vv\m dx-?t/ {ﬁ o )|u°‘2v} dx.

From assumption (A;) we have

S [ Vual" dr+ HE)E [ Vil dx
Q Q

A/Q{%Jrkl(x)v%} dr. (3.2)

Moreover, using the Holder inequality and Sobolev’s embedding

hy (x)u
Sz o < Celll e

e+ V)7

and

L@ il gy vl o

Llal

So, from (3.2) we have

Eollu

Ty HH(E)E|u

/
méCg[ u

SollvII7, +H (&) & VIE, < C [Iv

+ 1, Nl g,

and

vl el %,

which yields
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SollullT),, +H(E)&lull Ty, + SolVIIT%, + H(E)EVIT,
C; [ u

If ||(u,v)|| — oo, it is enough to consider the cases:

@ [lu

(i) |lul|1,p, is bounded and |[ul|; 4, — +oo.

+ (1015, el g, il | -

1,y — Foo and [[ul|1g, — oo;

From the analysis of these two cases we conclude that [[u[[, g, is bounded and
analogously |[v[|; g, is bounded, and thus ¢ is bounded, which is a contradiction.
Making A = 1 we have a solution (ug,ve) to the problem (P;). By the maximum
principle, ug,ve are positive in Q. O

4. Proof of the Main Result

Proof the Theorem 1 For each € = -, let u 1= =u, and v 1= = v, be the solution of
problem (P,) obtained in the previous theorem that i is,

—div(ay (|Vitn|?) | Vit |12 Vit) = ﬁjuk (x)|va| in Q,
—div(@n(|Vvn[P2) Vo |2 V) = 220 4 o ()] in 2,

(3+ua))?2
u, =v, =00n 0Q.

So, from the equation

h
—wMAW$wwmﬁWw:clwm+h@W“m9
n T Vn
we have
—div(a; (|Vu,[P1)|Viun|P' =2 Vu,) > ) + k1 (x)|ve|* in Q
(1 [va)7
ho
ki
(TR
where

hy = millhl(x) and ko = migkl (x)
xeQ xeQ

Since the function ¢ — i t)yl + kot™ is continuous and bounded from below for # > 0

it attains a positive minimum m;. So,
—div(a; (|Vip|[P)|Viun|Pr =2 Vu,) > my.
Let z; the only positive solution of

—div(a; (|Vz1|P1)|Vz1|P12Vz1) = my in Q,
z1=00n 0Q.
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Hence,

—div(a; (|Vun |PV) |[Vun|P =2 Vuy,) > —div(a; (|Vz1|P1)|Vz [P 72Vz1) in Q,
U, =z1 on 9Q.

By Lemma?2, u, >z; >0 in Q, for all n € N. Similarly we prove that v,, >z, >0
in Q, for all n € N, where 7z, satisfies

{ —div(ay(|Vz2|P2)|Vz2|P272Vzy) = my in Q,

2 =00n dQ
and my is the positive minimum of the function # — (lf% + kot ®2.
Since
—div(a;(|Vzi|P1)|Vz|P12Vz) = m; in Q,
7z >0in Q,
zi=0o0n 0Q.

Moreover, by (A1) we can use the results in the paper by Serrin [15] about the L~
estimates and the results by Di Benedetto [7] and Tolksdorff [ 18], for the C! regularity
in order to conclude z; € C'(Q) W, ”(Q). By Lemma 3, we have that

%<0 on 0Q.
an

Thus, for each x € Q we get,
un(x) = z1(x) > Cdy >0 and vy,(x) > z2(x) > Cdy > 0,

where d, = dist{x,dQ} and C is a positive constant that does not depend on x.

Hence,
/ hy (x)up g/ hy (x)up < hy (x)up SE/ Uy ,
a(Erv)n TJa Wl o Cdl o Cd,"

where /1 = maxh(x). We now use the Hardy-Sobolev inequality to get ;—ﬁ €L and
xeQ x

/ de<C2Hun
a(

1 LB
- -+ vn)yl

Since o4 € (0,p; — 1) and using Holder’s inequality with g—i and Iﬁ and Sobolev
embedding we have

/
[ v <€l 1,

Consequently, by using (3.2) with A = 1 and the previous two estimates we get
that [|us||1 g, [[vall1,p, are bounded. Thus, up to a subsequence, we have

u, — u for some u € Wy P1(Q),
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u, —u in L*(Q), forall 1 <s<p",

v, — v for some verﬁz( Q),
ve — v in L*(Q), forall 1 <s<f,",
uy(x) — u(x) ae. inQ,
vu(x) — v(x) a.e.in Q.

From the above a.e. convergence it can be proved that

up —u >z >0 in Wll’l_sl(Q)7

oc

Vg —v=2>0in Wllﬁz(Q)

oc

and the following equalities

[Vl 29ave = [ B2 [ e, vo @),

/az(|vv|m)|vvv’2 27|V — / +/k2 %0, Vo € C(Q).

Using a density argument we have that (u,v) is a solution for (P) which concludes
the proof of the theorem. O
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