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Abstract. In this paper, we study the n th-order half-linear dynamic equations

(x[n−1])Δ (t)+ p(t)φα[1,n−1] (x(g(t))) = 0

on an above-unbounded time scale T , where n � 2 ,

x[i](t) := ri(t)φαi

[(
x[i−1]

)Δ
(t)
]
, i = 1, . . . ,n−1, with x[0] = x,

φβ (u) := |u|β sgnu , and α [i, j] := αi · · ·α j . Criteria are obtained for the asymptotics and oscil-
lation of solutions for both even and odd order cases. This work extends several known results
in the literature on second-order, third-order, and higher-order linear and half-linear dynamic
equations.

1. Introduction

In this paper we consider the asymptotic behavior of solutions of the n th-order
half-linear dynamic equation

(x[n−1])Δ (t)+ p(t)φα [1,n−1] (x(g(t))) = 0 (1.1)

on an above-unbounded time scale T , where

(i) n� 2 is an integer, and x[i](t) := ri(t)φαi

[(
x[i−1]

)Δ
(t)
]
, i = 1,2, ...,n−1, t ∈T ,

with x[0] = x ;

(ii) φβ (u) := |u|β sgnu for β > 0; and

(iii) α[i, j] := αi · · ·α j for 1 � i � j � n−1.
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Without loss of generality we assume 0 ∈ T . For A ⊂ T and B ⊂ R , we denote by
Crd(A,B) the space of right-dense continuous functions from A to B ; and by C1

rd(A,B)
the set of functions in Crd(A,B) with right-dense continuous Δ-derivatives. Throughout
this paper we make the following assumptions:

(iv) αi > 0, i = 1,2, . . . ,n− 1, are constants and ri ∈ Crd ([0,∞)
T
,(0,∞)) for i =

1,2, ...,n−1, such that∫ ∞

0
r−1/αi
i (s)Δs = ∞, i = 1,2, ...,n−1; (1.2)

(v) p ∈Crd ([0,∞)
T
, [0,∞)) such that p �≡ 0;

(vi) g ∈Crd(T,T) is nondecreasing such that g(t) � t and limt→∞ g(t) = ∞ .

By a solution of Eq. (1.1) we mean a nontrivial real-valued function

x ∈C1
rd([Tx,∞)T,R) for some Tx � 0

such that x[i] ∈C1
rd([Tx,∞)T,R), i = 1,2, ...,n−1 and x(t) satisfies Eq. (1.1) on [Tx,∞)T .

Note that if x(t) is a solution of Eq. (1.1), then cx(t) is also a solution of Eq. (1.1)
for any c ∈ R . Hence Eq. (1.1) is a half-linear equation.

In the last few years, there has been an increasing interest in the oscillation and
nonoscillation of solutions of various dynamic equations. A large number of papers
were devoted to second order linear and nonlinear dynamic equations on time scales.
For example, Agarwal, Bohner, and Saker [1] discussed the linear delay dynamic equa-
tion

xΔΔ(t)+ p(t)x(g(t)) = 0;

Erbe, Peterson, and Saker [15], Saker [45], Agarwal, Regan, and Saker [2], and Hassan
[33] investigated the pair of half-linear dynamic equations

(r(t)(xΔ(t))α1)Δ + p(t)xα1(t) = 0

and
(r(t)(xΔ(t))α1)Δ + p(t)xα1(σ(t)) = 0;

Erbe, Hassan, Peterson, and Saker [13] and [14] studied the half-linear delay dynamic
equation

(r(t)(xΔ(t))α1)Δ + p(t)xα1(g(t)) = 0

with g(t) � t and

rΔ(t) � 0 and
∫ ∞

t0
gα1(t)p(t)Δt = ∞; (1.3)

and Hassan [34] extended their results to the half-linear advanced dynamic equation (1)
with g(t) � t .



Differ. Equ. Appl. 6, No. 4 (2014), 527–549. 529

Erbe, Peterson, and Saker [17, 18] and Yu and Wang [48] also derived oscillation
criteria for the third order dynamic equations

(
r2(t)

(
r1(t)xΔ(t)

)Δ
)Δ

+ p(t)x(t) = 0,

(
r2(t)

[
(r1(t)xΔ(t))Δ

]α2
)Δ

+ p(t)xγ (t) = 0,

and (
r2(t)

[
(r1(t)

(
xΔ(t)

)α1
)Δ
]α2

)Δ
+ p(t)x(t) = 0;

and their work were further extended by Hassan [32] and Erbe, Hassan, and Peterson
[19] to the equation with delay

(
r2(t)

[
(r1(t)xΔ(t))Δ

]γ)Δ
+ p(t)xγ (g(t)) = 0.

Also, Han, Li, Sun, and Zhang [31] discussed the third order delay dynamic equation

(
r2(t)

(
r1(t)xΔ(t)

)Δ
)Δ

+ p(t)x(g(t)) = 0,

where g(t) � t and

rΔ
1 (t) � 0 and

∫ ∞

t0
g(t)p(t)Δt = ∞. (1.4)

Higher order dynamic equations have been studied by many authors. For instance,
Grace, Agarwal, and Zafer [27] established oscillation and comparison criteria for the
even order nonlinear dynamic equation

xΔ2n
(t)+ p(t)(xσ (t))γ = 0,

and Grace [29] developed oscillation criteria for the even order dynamic equation

[
r(t)

(
xΔn−1

(t)
)α]Δ

+ p(t)(xσ (t))γ = 0.

For more results on higher order dynamic equations, we refer the reader to the papers
[10, 23, 44, 27, 46, 41, 29, 22, 28].

The purpose of this paper is to establish the asymptotic and oscillatory behavior
of solutions of the n th order half-linear dynamic equation (1.1) without assuming the
conditions (1.3) and (1.4). The results in this paper extend many results in the literature
on the oscillation for second order, third order, and higher order linear and half-linear
dynamic equations.
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2. Asymptotic behavior

In this section, we discuss the asymptotic behavior of the solutions of Eq. (1.1).

LEMMA 1. Assume Eq. (1.1) has an eventually positive solution x(t) . Then there
exists an integer m ∈ {0, . . . ,n−1} with m+n odd such that

x[k](t) > 0 for k = 0,1, . . . ,m (2.1)

and
(−1)m+k x[k](t) > 0 for k = m+1,m+2, ...,n (2.2)

eventually.

Proof. Since x(t) is an eventually positive solution of Eq. (1.1), there is a t0 � 0
such that x(g(t)) > 0 on [t0,∞)T . From (1.1), we have that for t ∈ [t0,∞)T,

(
x[n−1]

)Δ
(t) = −p(t)φα [1,n−1] (x(g(t))) < 0. (2.3)

This implies that x[i](t), i = 1,2, ...,n− 1, are eventually monotone and hence are of
one sign. There are two possibilities:

(a) x[k](t) and x[k−1](t) have opposite signs eventually for k = 1,2, . . . ,n ;

(b) there exists a largest m ∈ {1,2, . . . ,n−1} such that x[m](t)x[m−1](t) > 0 eventu-
ally.

If (a) holds, then (2.1) and (2.2) hold with m = 0.
Assume (b) holds with x[m](t)< 0 and x[m−1](t)< 0 for t � t1 , where t1 ∈ [t0,∞)T .

Then

x[m−2](t) = x[m−2](t1)+
∫ t

t1
φ−1

αm−1

[
x[m−1] (s)

]
r−1/αm−1
m−1 (s)Δs

< x[m−2](t1)+ φ−1
αm−1

[
x[m−1] (t1)

]∫ t

t1
r−1/αm−1
m−1 (s)Δs.

By (1.2) with i = m−1, limt→∞ x[m−2](t) = −∞ . Hence x[m−2](t) < 0 eventually. By
the same reasoning we see that x[k](t) < 0 eventually for k = m−2,m−3 . . . ,0. This
contradicts the assumption that x(t) is eventually positive.

Assume (b) holds with x[m](t) > 0 and x[m−1](t) > 0 eventually. By (2.3) we find
that m+n must be an odd number. With a similar argument to the above, we see that
x[k](t) > 0 eventually for k = m− 2,m− 3 . . . ,0. Therefore, (2.1) and (2.2) hold with
this m . �

For further discussion, we introduce the following notation: For any t,s ∈ T , de-
fine

Ri(t,s) :=
∫ t

s
r−1/αi
i (s)Δs, i = 1,2, ...,n−1; (2.4)
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and for a fixed m ∈ {0, . . . ,n− 1} , define the functions Rm,i(s,t), i = 1,2 . . . ,m , and
pi(t), i = 1, . . . ,n , by the following recurrence formulas:

Rm,i(t,s) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
1

ri(t)
∫ t
s Rm,i+1(τ,s)Δτ

]1/αi

, i = 1, . . . ,m−1,[
1

ri(t)

]1/αi

, i = m;

(2.5)

and

pi(t) :=

⎧⎨
⎩

[
1

ri(t)
∫ ∞
t pi+1(τ)Δτ

]1/αi

, i = 1, . . . ,n−1,

p(t) , i = n;
(2.6)

provided the improper integrals involved are convergent.
Note that for i = 1, . . . ,m , Rm,i(t,s) � 0 if s � t , and (−1)n−i−1Rm,i(t,s) � 0 if

s � t .

THEOREM 1. Assume Eq. (1.1) has an eventually positive solution x(t) and m ∈
{0, . . . ,n−1} is given in Lemma 1 such that (2.1) and (2.2) hold for t > t1 ∈ [0,∞)T .
Then the following hold for t ∈ (t1,∞)T :

(a) if m � 1 , then [
x[m−1](t)
Rm(t,t1)

]Δ

< 0; (2.7)

(b) if m � 2 , then for i = 0,1, ...,m−2

x[i](t) > φ−1
α [i+1,m−1]

[
x[m−1] (t)
Rm(t,t1)

]∫ t

t1
Rm,i+1(s,t1)Δs. (2.8)

Proof. (a) From (2.1) and (2.2), we get for t ∈ [t1,∞)T

x[m−1](t) = x[m−1](t1)+
∫ t

t1
φ−1

αm

[
x[m] (s)

]
r−1/αm
m (s) Δs

> φ−1
αm

[
x[m] (t)

]∫ t

t1
r−1/αm
m (s) Δs

= φ−1
αm

[
x[m] (t)

]
Rm(t,t1).

Noting that

[
x[m−1](t)
Rm(t, t1)

]Δ

=
r−1/αm
m (t)

Rm(t,t1)Rm(σ(t),t1)

[
Rm(t,t1)φ−1

αm

[
x[m] (t)

]
− x[m−1](t)

]
,
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we have [
x[m−1](t)
Rm(t,t1)

]Δ

< 0 for t ∈ (t1,∞)T.

(b) By (2.1) and the fact that x[m−1](t)/Rm(t,t1) is decreasing on (t1,∞)T , we have
for t ∈ (t1,∞)T

x[m−2](t) > x[m−2](t)− x[m−2](t1) =
∫ t

t1

(
x[m−2](s)

)Δ
Δs

=
∫ t

t1
φ−1

αm−1

[
x[m−1] (s)
Rm(s,t1)

][
Rm(s,t1)
rm−1 (s)

]1/αm−1

Δs

=
∫ t

t1
φ−1

αm−1

[
x[m−1] (s)
Rm(s,t1)

]
Rm,m−1(s,t1)Δs

> φ−1
αm−1

[
x[m−1] (t)
Rm(t,t1)

]∫ t

t1
Rm,m−1(s,t1)Δs.

This shows that (2.8) holds for i = m−2. Assume (2.8) holds for some i ∈ {1, . . . ,m−
2} . Then for t ∈ (t1,∞)T

[
x[i−1](t)

]Δ
> φ−1

α [i,m−1]

[
x[m−1] (t)
Rm(t,t1)

][
1

ri(t)

∫ t

t1
Rm,i+1(s,t1)Δs

]1/αi

= φ−1
α [i,m−1]

[
x[m−1] (t)
Rm(t,t1)

]
Rm,i(t,t1).

Replacing t by s in the above inequality and then integrating it from t1 to t ∈ (t1,∞)T ,
we have

x[i−1](t) > x[i−1](t)− x[i−1](t1)

�
∫ t

t1
φ−1

α [i,m−1]

[
x[m−1] (s)
Rm(s,t1)

]
Rm,i(s,t1)Δs

> φ−1
α [i,m−1]

[
x[m−1] (t)
Rm(t,t1)

]∫ t

t1
Rm,i(s,t1)Δs.

This shows that (2.8) holds for i−1. By induction, (2.8) holds for all i = 0,1, . . . ,m−
2. �

THEOREM 2. Assume Eq. (1.1) has an eventually positive solution x(t) and m is
given in Lemma 1 such that m ∈ {1, . . . ,n− 1} and (2.1) and (2.2) hold for t � t1 ∈
[0,∞)T . Then the following hold for t ∈ [t1,∞)T :



Differ. Equ. Appl. 6, No. 4 (2014), 527–549. 533

(a) for i = m, . . . ,n−1 ,
∫ ∞
t pi+1(s)Δs < ∞ and

(−1)m+ix[i](t) > φα [1,i] [x(g(t))]
∫ ∞

t
pi+1(s)Δs; (2.9)

(b) for i = 0,1, . . . ,m−1 ,

x[i](t) > φ−1
α [i+1,m]

[
x[m] (t)

]∫ t

t1
Rm,i+1(s,t1)Δs. (2.10)

Proof. (a) Note that m ∈ {1, . . . ,n−1} implies that x[1](t) > 0 and x[n−1](t) > 0
for all t ∈ [t1,∞)T . This implies that x(t) is strictly increasing on [t1,∞)T . Replacing
t by τ in Eq. (1.1), integrating from t � t1 to s ∈ [t,∞)T , and using the fact that g is
nondecreasing, we have

x[n−1](t) > −x[n−1](s)+ x[n−1](t) =
∫ s

t
p(τ)φα [1,n−1] (x(g(τ)))Δτ

� φα [1,n−1] (x(g(t)))
∫ s

t
p(τ)Δτ

= φα [1,n−1] (x(g(t)))
∫ s

t
pn (τ)Δτ.

Taking limits as s → ∞ we obtain that

x[n−1](t) > φα [1,n−1] (x(g(t)))
∫ ∞

t
pn (τ)Δτ.

This shows that
∫ ∞
t pn(τ)Δτ < ∞ and (2.9) holds for i = n−1. Assume

∫ ∞
t pi+1(τ)Δτ <

∞ and (2.9) holds for some i ∈ {m+1, . . . ,n−1} . Then

(−1)m+i
[
x[i−1](t)

]Δ
> φ−1

αi

[
φα [1,i] (x(g(t)))

][ 1
ri(t)

∫ ∞

t
pi+1 (τ)Δτ

]1/αi

= φ−1
αi

[
φα [1,i] (x(g(t)))

]
pi(t)

= φα [1,i−1] (x(g(t))) pi(t)

since
φ−1

αi
(φα [1,i] (x(g(t)))) = φα [1,i−1] (x(g(t))) .

Replacing t by τ in the above inequality and then integrating it from t � t1 to s ∈
[t,∞)T , we have

(−1)m+i−1x[i−1](t) > (−1)m+i(x[i−1](s)− x[i−1](t))

>
∫ s

t
φα [1,i−1] (x(g(τ))) pi(τ)Δτ.

Taking limits as s → ∞ we obtain that

(−1)m+i−1x[i−1](t) >

∫ ∞

t

[
φα [1,i−1] (x(g(τ)))

]
pi(τ)Δτ
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� φα [1,i−1] (x(g(t)))
∫ ∞

t
pi(τ)Δτ.

This shows that
∫ ∞
t pi(τ)Δτ < ∞ and (2.9) holds for i−1. Then the conclusion follows

from induction.

(b) By (2.2), x[m+1](t) < 0 and hence x[m](t) is strictly decreasing on [t1,∞)T . Let
t ∈ [t1,∞)T . Then

x[m−1](t) = x[m−1](t1)+
∫ t

t1

(
x[m−1](s)

)Δ
Δs

= x[m−1](t1)+
∫ t

t1
φ−1

αm

[
x[m] (s)

]
r−1/αm
m (s) Δs

> φ−1
αm

[
x[m] (t)

]∫ t

t1
r−1/αm
m (s) Δs

= φ−1
αm

[
x[m] (t)

]∫ t

t1
Rm,m(s,t1)Δs.

This shows that (2.10) holds for i = m−1. Assume (2.10) holds for some i∈{1, . . . ,m−
1} . Then

(
x[i−1](t)

)Δ
> φ−1

α [i,m]

[
x[m] (t)

][ 1
ri(t)

∫ t

t1
Rm,i+1(s,t1)Δs

]1/αi

= φ−1
α [i,m]

[
x[m] (t)

]
Rm,i(t,t1).

Replacing t by s in the above inequality and then integrating it for s from t1 to t with
t � t1 , we have

x[i−1](t) > x[i−1](t1)+
∫ t

t1
φ−1

α [i,m]

[
x[m] (s)

]
Rm,i(τ1,t1)Δs

> φ−1
α [i,m]

[
x[m] (t)

]∫ t

t1
Rm,i(s,t1)Δs.

This shows that (2.10) holds for i−1. By induction, (2.10) holds for all i = 0,1, . . . ,m−
1. �

3. Oscillation Criteria for Even Order Equations

In this section, we establish oscillation criteria for Eq. (1.1) when n is even. It
follows from Lemma 1 that there exists an odd m ∈ {1, . . . ,n− 1} such that (2.1) and
(2.2) hold eventually. In the following, we denote k+ := max{k,0} for any k ∈ R .

The first result is a Fite-Wintner type oscillation criterion.

THEOREM 3. Assume that ∫ ∞

0
p(t)Δt = ∞. (3.1)

Then every solution of Eq. (1.1) is oscillatory.
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Proof. Assume Eq. (1.1) has a nonoscillatory solution x(t) . Then without loss of
generality, assume there is a t0 ∈ [0,∞)T such that x(g(t)) > 0 for t ∈ [t0,∞)T . As
shown above, there exists an odd m ∈ {1, . . . ,n−1} such that (2.1) and (2.2) hold for
t � t1 ∈ [t0,∞)T . Then by Theorem 2, Part (a) we have that

x[n−1](t) > φα [1,n−1] [x(g(t))]
∫ ∞

t
pn(s)Δs.

Note from (2.6) that pn(t) = p(t) , this contradicts the assumption (3.1). �

In the following, we assume that pi, i = 2, . . . ,n , given by (2.6) are well defined.

THEOREM 4. Assume there exists a ρ ∈ C1
rd([0,∞)T,(0,∞)) such that for every

odd number i ∈ {1, . . . ,n−1} ,

limsup
t→∞

∫ t

T

[
ρ(u)Pi (u,T )− (

(
ρΔ(u)

)
+)αi+1ri(u)

(αi +1)αi+1ραi(u)

]
Δu = ∞ (3.2)

for sufficiently large T ∈ [0,∞)T , where

Pi (t,T ) := pi+1(t)
[∫ g(t)

T
Ri,1(s,T )Δs

]α [1,i]
/

Rαi
i (t,T ). (3.3)

Then every solution of Eq. (1.1) is oscillatory.

Proof. Assume Eq. (1.1) has a nonoscillatory solution x(t) . Then without loss of
generality, assume there is a t0 ∈ [0,∞)T such that x(g(t)) > 0 for t ∈ [t0,∞)T . As
shown above, there exists an odd m ∈ {1, . . . ,n−1} such that (2.1) and (2.2) hold for
t � t1 ∈ [t0,∞)T . Then by Theorem 2, Part (a) we have that for i = m+1

−x[m+1](t) > φα [1,m+1] [x(g(t))]
∫ ∞

t
pm+2(s)Δs,

which, together with (2.6), implies that for t ∈ [t1,∞)T

−
(
x[m](t)

)Δ
> φα [1,m] [x(g(t))] pm+1(t). (3.4)

(i) Assume m = 1. In this case, by (2.4) and (2.5) we see that

R1(g(t), t1) =
∫ g(t)

t1
r−1/α1
1 (s)Δs and Rm,1(t,t1) = r−1/α1

1 (t).

From (3.4) and Theorem 1, Part (a) we have for g(t) ∈ (t1,∞)T

−
(
x[1](t)

)Δ
> φα1 [x(g(t))] p2(t) = φα1

[
x(g(t))

R1(g(t), t1)

]
Rα1

1 (g(t), t1)p2(t)
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� φα1

[
x(t)

R1(t,t1)

]
Rα1

1 (g(t),t1)p2(t)

= φα1 [x(t)]
[
R1(g(t),t1)
R1(t,t1)

]α1

p2(t)

= p2(t)φα1 [x(t)]
[∫ g(t)

t1
Rm,1(s,t1)Δs

]α1
/

Rα1
1 (t,t1).

(ii) Assume m � 3. By Theorem 1, Part (b) with i = 0, we get for t ∈ (t1,∞)T

x(t) > φ−1
α [1,m−1]

[
x[m−1] (t)
Rm(t,t1)

]∫ t

t1
Rm,1(s,t1)Δs. (3.5)

Then by Theorem 1, Part (a) we see that for g(t) ∈ (t1,∞)T

x(g(t)) > φ−1
α [1,m−1]

[
x[m−1] (g(t))
Rm(g(t),t1)

]∫ g(t)

t1
Rm,1(s,t1)Δs

� φ−1
α [1,m−1]

[
x[m−1] (t)
Rm(t,t1)

]∫ g(t)

t1
Rm,1(s,t1)Δs. (3.6)

Substituting (3.6) into (3.4) and noting that φα [1,m]φ−1
α [1,m−1] = φαm , we obtain that for

g(t) ∈ (t1,∞)T

−
(
x[m](t)

)Δ
> pm+1(t) φαm

[
x[m−1] (t)

] [∫ g(t)

t1
Rm,1(s,t1)Δs

]α [1,m]
/

Rαm
m (t,t1).

Combining cases (i) and (ii) we see that for g(t) ∈ (t1,∞)T

−
(
x[m](t)

)Δ
> φαm

[
x[m−1] (t)

]
Pm(t, t1), t ∈ [t2,∞)T. (3.7)

Define

zm(t) :=
ρ(t)x[m](t)[
x[m−1] (t)

]αm
.

By the product rule and the quotient rule, we have

zΔ
m(t) =

ρ(t)[
x[m−1] (t)

]αm

(
x[m](t)

)Δ
+

[
ρ(t)[

x[m−1] (t)
]αm

]Δ

x[m] (σ (t))

= ρ(t)

(
x[m](t)

)Δ

[
x[m−1] (t)

]αm

+

⎡
⎢⎣ ρΔ(t)[

x[m−1] (σ (t))
]αm

−
ρ(t)

[[
x[m−1] (t)

]αm
]Δ

[
x[m−1] (t)

]αm
[
x[m−1] (σ (t))

]αm

⎤
⎥⎦x[m] (σ (t))
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= ρ(t)

(
x[m](t)

)Δ

[
x[m−1] (t)

]αm
+

ρΔ(t)
ρ(σ(t))

zm(σ(t))

− ρ(t)
ρ(σ(t))

[[
x[m−1] (t)

]αm
]Δ

[
x[m−1] (t)

]αm
zm(σ(t)). (3.8)

From (3.7) we get

zΔ
m(t) � −ρ(t)Pm (t,t1)+

ρΔ(t)
ρ(σ(t))

zm(σ(t))

− ρ(t)
ρ(σ(t))

[[
x[m−1] (t)

]αm
]Δ

[
x[m−1] (t)

]αm
zm(σ(t)).

By the Pötzsche chain rule ([6, Theorem 1.90]) we obtain

[(
x[m−1] (t)

)αm
]Δ

= αm

∫ 1

0

[
x[m−1] (t)+hμ (t)(x[m−1] (t))Δ

]αm−1
dh

(
x[m−1] (t)

)Δ

= αm

∫ 1

0

[
(1−h)x[m−1] (t)+hx[m−1] (σ (t))

]αm−1
dh

(
x[m−1] (t)

)Δ

�

⎧⎪⎨
⎪⎩

αm

(
x[m−1] (σ (t))

)αm−1(
x[m−1] (t)

)Δ
, 0 < αm � 1,

αm

[
x[m−1](t)

]αm−1(
x[m−1] (t)

)Δ
, αm � 1.

If 0 < αm � 1, we have

zΔ
m (t) � −ρ(t)Pm (t,t1)+

ρΔ(t)
ρ(σ(t))

zm(σ(t))

− αmρ(t)
ρ(σ(t))

(
x[m−1] (t)

)Δ

x[m−1] (σ (t))

[
x[m−1] (σ (t))

x[m−1] (t)

]αm

zm(σ(t));

and if αm � 1, we have

zΔ
m (t) � −ρ(t)Pm (t,t1)+

ρΔ(t)
ρ(σ(t))

zm(σ(t))

− αmρ(t)
ρ(σ(t))

(
x[m−1] (t)

)Δ

x[m−1] (σ (t))
x[m−1] (σ (t))

x[m−1] (t)
zm(σ(t)).
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Using the fact that
(
x[m−1] (t)

)Δ
> 0 on [t2,∞)T , we get that for any αm > 0,

zΔ
m (t) � −ρ(t)Pm (t,t1)+

ρΔ(t)
ρ(σ(t))

zm(σ(t))− αmρ(t)
ρ(σ(t))

(
x[m−1] (t)

)Δ

x[m−1] (σ (t))
zm(σ(t)).

Since x[m] = rmφαm

[(
x[m−1]

)Δ
]

is strictly decreasing,

(x[m−1](t))Δ =

(
x[m] ((t))

rm(t)

) 1
αm

�
(

x[m] (σ(t))
rm(t)

) 1
αm

. (3.9)

Then

zΔ
m (t) � −ρ(t)Pm (t,t1)+

(
ρΔ(t)

)
+

ρ(σ(t))
zm(σ(t))

− αmρ(t)

ρ(σ(t))r1/αm
m (t)

(
x[m] (σ(t))

x[m−1] (σ (t))

) 1
αm

zm(σ(t))

= −ρ(t)Pm (t,t1)+

(
ρΔ(t)

)
+

ρ(σ(t))
zm(σ(t))− αmρ(t)

ρλ (σ(t))r1/αm
m (t)

(zm(σ(t)))λ

� −ρ(t)Pm (t,t2)+

(
ρΔ(t)

)
+

ρ(σ(t))
zm(σ(t))− αmρ(t)

ρλ (σ(t))r1/αm
m (t)

(zm(σ(t)))λ ,

(3.10)

where λ := αm+1
αm

. Define

Aλ :=
αmρ(t)

ρλ (σ(t))r1/αm
m (t)

(zm(σ(t)))λ and Bλ−1 :=

(
ρΔ(t)

)
+ r1/(αm+1)

m (t)

λ (αmρ(t))1/λ .

Then by the inequality (see [30])

λABλ−1−Aλ � (λ −1)Bλ , (3.11)

we get that(
ρΔ(t)

)
+

ρ(σ(t))
zm(σ(t))− αmρ(t)

ρλ (σ(t))r1/αm
m (t)

(zm(σ(t)))λ �
(
(
ρΔ(t)

)
+)αm+1rm(t)

(αm +1)αm+1ραm(t)
.

From this and (3.10) we have

zΔ
m (t) � −ρ(t)Pm (t,t2)+

(
(
ρΔ(t)

)
+)αm+1rm(t)

(αm +1)αm+1ραm(t)
.
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Integrating both sides from t2 to t we get

∫ t

t2

[
ρ(u)Pm (u,t2)−

(
(
ρΔ(u)

)
+)αm+1rm(u)

(αm +1)αm+1ραm(u)

]
Δu � zm(t2)− zm(t) � zm(t2),

which contradicts (3.2). This completes the proof. �

THEOREM 5. Assume there exists a ρ ∈ C1
rd([0,∞)T,(0,∞)) such that for every

odd number i ∈ {1, . . . ,n−1} ,

limsup
t→∞

∫ t

T

[
ρ(u)pi+1(u)

−
[
(ρΔ(u))+

]γi+1

(γi +1)γi+1
[
ρ(u)gΔ (u)Ri,1(g(u),T )

]γi

]
Δu = ∞ (3.12)

for sufficiently large T ∈ [0,∞)T , where γi := α [1, i] . Then every solution of Eq. (1.1)
is oscillatory.

Proof. Assume Eq. (1.1) has a nonoscillatory solution x(t) . Then without loss of
generality, assume there is a t0 ∈ [0,∞)T such that x(g(t)) > 0 for t ∈ [t0,∞)T . As
shown at the beginning of this section, there exists an odd m ∈ {1, . . . ,n−1} such that
(2.1) and (2.2) hold for t � t1 ∈ [t0,∞)T . Define

wm(t) :=
ρ(t)x[m](t)
[x(g(t))]γm

. (3.13)

Similar to that in the proof of Theorem 4, we have that for t ∈ [t1,∞)T

wΔ
m(t) = ρ(t)

(
x[m](t)

)Δ

[x(g(t))]γm
+

ρΔ(t)
ρ(σ(t))

wm(σ(t))

− ρ(t) [xγm (g(t))]Δ

ρ(σ(t)) [x(g(t))]γm
wm(σ(t)) (3.14)

and

−
(
x[m](t)

)Δ
� φγm [x(g(t))] pm+1(t). (3.15)

Combining (3.14) and (3.15) we get

wΔ
m(t) � −ρ(t)pm+1(t)+

ρΔ(t)
ρ(σ(t))

wm(σ(t))

− ρ(t) [xγm (g(t))]Δ

ρ(σ(t)) [x(g(t))]γm
wm(σ(t)). (3.16)
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Since x and g are differentiable and g is nondecreasing, we have that

(x(g(t)))Δ = xΔ (g(t))gΔ (t) .

Then by the Pötzsche chain rule ([6, Theorem 1.90]) we obtain

[xγm (g(t))]Δ = γm

(∫ 1

0

[
x(g(t))+hμ (t) (x(g(t)))Δ

]γm−1
dh

)
(x(g(t)))Δ

= γm

(∫ 1

0
[(1−h)x(g(t))+h x(g(σ (t)))]γm−1 dh

)
xΔ (g(t))gΔ (t)

�
{

γm [x(g(σ (t)))]γm−1 xΔ (g(t))gΔ (t) , 0 < γm � 1,
γm [x(g(t))]γm−1 xΔ (g(t))gΔ (t) , γm � 1.

If 0 < γm � 1, we have

wΔ
m (t) � −ρ(t)pm+1(t)+

ρΔ(t)
ρ(σ(t))

wm(σ(t))

− γmρ(t)gΔ (t)
ρ(σ(t))

xΔ (g(t))
x(g(σ (t)))

[
x(g(σ (t)))

x(g(t))

]γm

wm(σ(t));

and if γm � 1, we have

wΔ
m (t) � −ρ(t)pm+1(t)+

ρΔ(t)
ρ(σ(t))

wm(σ(t))

− γmρ(t)gΔ (t)
ρ(σ(t))

xΔ (g(t))
x(g(σ (t)))

x(g(σ (t)))
x(g(t))

wm(σ(t)).

Using the fact that xΔ (t) > 0 on [t1,∞)T we see that for γm > 0

wΔ (t) � −ρ(t)pm+1(t)+
ρΔ(t)

ρ(σ(t))
wm(σ(t))

− γmρ(t)gΔ (t)
ρ(σ(t))

xΔ (g(t))
x(g(σ (t)))

wm(σ(t)). (3.17)

Now by (2.10) with i = 1 we have

x[1](t) � φ−1
α [2,m]

[
x[m] (t)

]∫ t

t1
Rm,2(s,t1) Δs

which implies

xΔ(t) � φ−1
α [1,m]

[
x[m] (t)

]
Rm,1(t,t1) for t � t1.

Since g(t) � σ(t) , from (2.2) for g(t) � t1

xΔ(g(t)) � φ−1
α [1,m]

[
x[m] (g(t))

]
Rm,1(g(t),t1)
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� φ−1
α [1,m]

[
x[m] (σ (t))

]
Rm,1(g(t),t1)

=
φ−1

α [1,m] [wm(σ (t))]

φ−1
α [1,m] [ρ(σ(t))]

x(g(σ (t)))Rm,1(g(t),t1)

=
φ−1

γm
[wm(σ (t))]

φ−1
γm [ρ(σ(t))]

x(g(σ (t)))Rm,1(g(t),t1). (3.18)

Then, from (3.17) and (3.18), we get for g(t) � t1

wΔ (t) � −ρ(t)pm+1(t)+
(ρΔ(t))+
ρ(σ(t))

wm(σ(t))

− γmρ(t)gΔ (t)Rm,1(g(t),t1)
[
wm(σ(t))
ρ(σ(t))

]λ
,

where λ := γm+1
γm

. Define

Aλ := γmρ(t)gΔ (t)Rm,1(g(t),t1)
[
wm(σ(t))
ρ(σ(t))

]λ

and

Bλ−1 :=
(ρΔ(t))+

λ
(

γmρ(t)gΔ (t)Rm,1(g(t), t1)
)1/λ .

Then from (3.11),

(ρΔ(t))+
ρ(σ(t))

wm(σ(t))− γmρ(t)gΔ (t)Rm,1(g(t),t1)
[
wm(σ(t))
ρ(σ(t))

]λ

�
[
(ρΔ(t))+

]γm+1

(γm +1)γm+1
[
ρ(t)gΔ (t)Rm,1(g(t),t1)

]γm
.

The rest of the proof is similar to that of Theorem 4 and hence is omitted. �
As direct consequences of Theorems 3-5, we obtain oscillation criteria for Eq.

(1.1) with n = 2, namely, for the equation(
r1(t)φα1

(
xΔ(t)

))Δ
+ p(t)φα1 (x(g(t))) = 0. (3.19)

COROLLARY 1. Every solution of Eq. (3.19) is oscillatory provided one of the
following conditions is satisfied:

(a)
∫ ∞
0 p(t)Δt = ∞;

(b) there exists a ρ ∈C1
rd([0,∞)T,(0,∞)) such that

limsup
t→∞

∫ t

T

[
ρ(u)P1 (u,T )− (

(
ρΔ(u)

)
+)α1+1r1(u)

(α1 +1)α1+1ρα1(u)

]
Δu = ∞
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for sufficiently large T ∈ [0,∞)T , where

P1 (t,T ) := p(t) Rα1
1 (g(t),T )

/
Rα1

1 (t,T );

(c) there exists a ρ ∈C1
rd([0,∞)T,(0,∞)) such that

limsup
t→∞

∫ t

T

[
ρ(u)p(u)−

[
(ρΔ(u))+

]α1+1
r1 (g(u))

(α1 +1)α1+1 [ρ(u)gΔ (u)]α1

]
Δu = ∞

for sufficiently large T ∈ [0,∞)T .

REMARK 1. 1. Let α1 > 1 be an odd number and g(t) = t on [0,∞)T . Then
Corollary 1 with condition (b) reduces to Theorem 3.1 in Saker [45].

2. Let α1 > 0 be a quotient of odd numbers and g(t) � t on [0,∞)T . Then
Corollary 1 with condition (b) reduces to Theorem 2.1 in Erbe, Hassan and Peterson
[20].

For Eq. (1.1) with an even n � 4, we have further criteria for oscillation as shown
below.

THEOREM 6. Assume

either
∫ ∞

0
pn−1(t)Δt = ∞ or

∫ ∞

0
pn−2(t)Δt = ∞. (3.20)

Suppose that there exists a ρ ∈C1
rd([0,∞)T,(0,∞)) such that

limsup
t→∞

∫ t

T

[
ρ(u)Pn−1 (u,T )− (

(
ρΔ(u)

)
+)αn−1+1rn−1(u)

(αn−1 +1)αn−1+1ραn−1(u)

]
Δu = ∞ (3.21)

for sufficiently large T ∈ [0,∞)T , where

Pn−1 (t,T ) := p(t)
[∫ g(t)

T
Rn−1,1(s,T )Δs

]α [1,n−1]
/

Rαn−1
n−1 (t,T ).

Then every solution of Eq. (1.1) is oscillatory.

THEOREM 7. Assume (3.20) holds. Suppose that there exists a

ρ ∈C1
rd([0,∞)T,(0,∞))

such that

limsup
t→∞

∫ t

T

[
ρ(u)p(u)

−
[
(ρΔ(u))+

]γn−1+1

(γn−1 +1)γn−1+1
[
ρ(u)gΔ (u)Rn−1,1(g(u),T )

]γn−1

]
Δu = ∞ (3.22)

for sufficiently large T ∈ [0,∞)T , where γn−1 := α [1,n−1]. Then every solution of
Eq. (1.1) is oscillatory.
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Proofs of Theorems 6 and 7. Assume (1.1) has a nonoscillatory solution x(t)
on [0,∞)T. Then without loss of generality, assume there is a t0 ∈ [0,∞)T such that
x(g(t)) > 0, for t ∈ [t0,∞)T . As shown at the beginning of this section, there exists an
odd m ∈ {1, . . . ,n−1} such that (2.1) and (2.2) hold for t � t1 ∈ [t0,∞)T .

We claim that (3.20) implies that m = n− 1. In fact, if 1 � m � n− 3, then for
t � t1 (

x[n−1](t)
)Δ

< 0, x[n−1](t) > 0, x[n−2](t) < 0, x[n−3](t) > 0. (3.23)

Since xΔ(t) > 0 on [t1,∞)T , then x(t) > x(t1) := c1 > 0 for t � t1 . Then there exists a
t2 ∈ [t1,∞)T such that x(g(t)) � c1 for t � t2 . It follows that for t ∈ [t2,∞)T

[x(g(t))]α [1,n−1] � c := cα [1,n−1]
1 > 0.

Integrating (1.1) from t to τ ∈ [t,∞)T and usung (3.23) we get that

x[n−1](t) � −x[n−1](τ)+ x[n−1](t)

=
∫ τ

t
p(s)φα [1,n−1] (x(g(s)))Δs � c

∫ τ

t
p(s)Δs.

By taking limits as τ → ∞ we have

x[n−1](t) � c
∫ ∞

t
p(s)Δs.

It is known from Theorem 3 that
∫ ∞
t p(s)Δs < ∞ . Thus,

(
x[n−2](t)

)Δ
� c1/αn−1

[
1

rn−1(t)

∫ ∞

t
p(s)Δs

]1/αn−1

= c1/αn−1 pn−1(t). (3.24)

Assume
∫ ∞
0 pn−1(t)Δt = ∞ . By integrating (3.24) from t2 to t ∈ [t2,∞)T we get

x[n−2](t)− x[n−2](t2) � c1/αn−1

∫ t

t2
pn−1 (s)Δs.

As a result,
lim
t→∞

x[n−2](t) = ∞,

which contradicts the fact that x[n−2] < 0 on [t2,∞)T .
Assume

∫ ∞
0 pn−2(t)Δt = ∞ . By integrating the inequality (3.24) from t to τ ∈

[t,∞)T and then taking limits as τ → ∞ and using the fact x[n−2] < 0 eventually, we get

−x[n−2](t) > c1/αn−1

∫ ∞

t
pn−1(s)Δs,

which implies

−
(
x[n−3](t)

)Δ
> c1/α [n−2,n−1]

[
1

rn−2(t)

∫ ∞

t
pn−1(s)Δs

]1/αn−2
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= c1/α [n−2,n−1]pn−2(t).

Again, integrating above inequality from t2 to t ∈ [t2,∞)T and noting that x[n−3] > 0
eventually, we get

x[n−3](t2)− x[n−3](t) � c1/α [n−2,n−1]
∫ t

t2
pn−2(s)Δs.

As a result,
lim
t→∞

x[n−3](t) = −∞,

which contradicts the fact that x[n−3] > 0 on [t2,∞)T . This shows that if (3.20) holds,
then m = n−1. The rest of proof of Theorems 6 and Theorem 7 are similar to the proof
of Theorems 4 and 5 with m = n−1 respectively and hence can be omitted. �

4. Oscillation Criteria for Odd Order Equations

In this section we establish the oscillation criteria for Eq. (1.1) when n is odd. It
follows from Lemma 1 that there exists an even m ∈ {0, . . . ,n−1} such that (2.1) and
(2.2) hold eventually.

THEOREM 8. Assume (3.1) holds. Then every solution of Eq. (1.1) is either oscil-
latory or tends to zero eventually.

Proof. Assume Eq. (1.1) has a nonoscillatory solution x(t) . Then without loss of
generality, assume there is a t0 ∈ [0,∞)T such that x(g(t)) > 0 for t ∈ [t0,∞)T . As
shown above, there exists an even m ∈ {0, . . . ,n−1} such that (2.1) and (2.2) hold for
t � t1 ∈ [t0,∞)T .

(i) Assume m � 2. Then the same argument as in the proof of Theorem 3 leads to
a contradiction to the assumption (3.1).

(ii) We show that if m = 0, then limt→∞ x(t) = 0. In this case

(−1)k x[k] > 0 for k = 0,1, ...,n.

Since xΔ(t) < 0 on [t1,∞)T , then limt→∞ x(t) = l1 � 0. Assume l1 > 0. Then for
sufficiently large t2 ∈ [t1,∞)T , we have x(g(t)) � l1 for t � t2 . It follows that

[x(g(t))]α [1,n−1] � l := lα [1,n−1]
1 > 0 for t ∈ [t2,∞)T.

Integrating (1.1) from t to s ∈ [t,∞)T , we get

x[n−1](t) > −x[n−1](s)+ x[n−1](t)

=
∫ s

t
p(τ)φα [1,n−1] (x(g(τ)))Δτ � l

∫ s

t
p(τ)Δτ.

Letting s → ∞ in the above we reach a contradiction to (3.1). This completes the
proof. �
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THEOREM 9. Assume (3.20) and (3.21) hold. Then every solution of Eq. (1.1) is
either oscillatory or tends to zero eventually.

THEOREM 10. Assume (3.20) and (3.22) hold. Then every solution of Eq. (1.1)
is either oscillatory or tends to zero eventually.

Proofs of Theorems 9 and 10. Assume Eq. (1.1) has a nonoscillatory solution x(t)
on [0,∞)T. Then, without loss of generality, assume there is a t0 ∈ [0,∞)T such that
x(g(t)) > 0 for t ∈ [t0,∞)T . As shown at the beginning of this section, there exists an
even m ∈ {0, . . . ,n−1} such that (2.1) and (2.2) hold for t � t1 ∈ [t0,∞)T .

(i) Assume m � 2. The same argument as in the proof of Theorems 6 and 7 and
hence is omitted.

(ii) We show that if m = 0, then limt→∞ x(t) = 0. In this case

(−1)k x[k] > 0 for k = 0,1, ...,n.

Since xΔ < 0 on [t1,∞)T , then limt→∞ x(t) = l1 � 0. Assume l1 > 0. Then there exists
a t2 ∈ [t1,∞)T such that x(g(t)) � l1 for t � t2 . It follows that

[x(g(t))]α [1,n−1] � l := lα [1,n−1]
1 > 0 for t ∈ [t2,∞)T.

Integrating (1.1) from t to τ ∈ [t,∞)T and using (3.23) we get

x[n−1](t) � −x[n−1](τ)+ x[n−1](t)

=
∫ τ

t
p(s)φφα[1,n−1] (x(g(s)))Δs � l

∫ τ

t
p(s)Δs.

Hence by taking limits as τ → ∞ we have

x[n−1](t) � l
∫ ∞

t
p(s)Δs.

It is known that
∫ ∞
t p(s)Δs < ∞ . Thus,

(
x[n−2](t)

)Δ
� l1/αn−1

[
1

rn−1(t)

∫ ∞

t
p(s)Δs

]1/αn−1

= l1/αn−1 pn−1(t).

Assume
∫ ∞
0 pn−1(s)Δs = ∞ . By integrating the above inequality from t2 to t ∈

[t2,∞)T we get

x[n−2](t)− x[n−2](t2) � l
1

αn−1

∫ t

t2
pn−1 (s)Δs. (4.1)

As a result,
lim
t→∞

x[n−2](t) = ∞,

which contradicts the fact that x[n−2] < 0 on [t1,∞)T .
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Assume
∫ ∞
0 pn−2(s)Δs = ∞ . By integrating the inequality (4.3) from t to ∞ and

using the fact that x[n−2] < 0 eventually, we get

−x[n−2](t) > l1/αn−1

∫ ∞

t
pn−1(s)Δs,

which implies

−
(
x[n−3](t)

)Δ
> l1/α [n−2,n−1]

[
1

rn−2(t)

∫ ∞

t
pn−1(s)Δs

]1/αn−2

= l1/α [n−2,n−1]pn−2(t).

Again integrating the above inequality from t2 to t ∈ [t2,∞)T and noting that x[n−3] > 0
eventually, we get

x[n−3](t2)− x[n−3](t) � l1/α [n−2,n−1]
∫ t

t2
pn−2(s)Δs.

As a result,

lim
t→∞

x[n−3](t) = −∞,

which contradicts the fact that x[n−3] > 0 on [t2,∞)T . This shows that if m = 0, then
limt→∞ x(t) = 0. �

As direct consequences of Theorems 8-10, we obtain oscillation criteria for Eq.
(1.1) when n = 3, namely, for the equation

(
r2(t)φα2

([
r1(t)φα1

(
xΔ(t)

)]Δ
))Δ

+ p(t)φα1α2 (x(g(t))) = 0. (4.2)

COROLLARY 2. Every solution of Eq. (4.2) is either oscillatory or tends to zero
eventually provided one of the following conditions is satisfied:

(a)
∫ ∞
0 p(t)Δt = ∞;

(b) either
∫ ∞
0 p1(t)Δt = ∞ or

∫ ∞
0 p2(t)Δt = ∞ , and there exists a

ρ ∈C1
rd([0,∞)T,(0,∞)) such that

limsup
t→∞

∫ t

T

[
ρ(u)P2 (u,T )− (

(
ρΔ(u)

)
+)α2+1r2(u)

(α2 +1)α2+1ρα2(u)

]
Δu = ∞ (4.3)

for sufficiently large T ∈ [0,∞)T , where

P2 (t,T ) := p(t)
[∫ g(t)

T
R2,1(s,T )Δs

]α [1,2]
/

Rα2
2 (t,T );
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(c) either
∫ ∞
0 p1(t)Δt = ∞ or

∫ ∞
0 p2(t)Δt = ∞ , and there exists a

ρ ∈C1
rd([0,∞)T,(0,∞)) such that

limsup
t→∞

∫ t

T

⎡
⎢⎣ρ(u)p(u)−

[
(ρΔ(u))+

]γ2+1

(γ2 +1)γ2+1
[
ρ(u)gΔ (u)R2,1(g(u),T )

]γ2

⎤
⎥⎦Δu = ∞

for sufficiently large T ∈ [0,∞)T .

REMARK 2. 1. Let α1 = 1, α2 a quotient of odd integers, and g(t) � t on
[0,∞)T . Then Corollary 2 with condition (a) reduces to Corollary 2.1 in Hassan [32];
and Corollary 2 with condition (c) reduces to Corollary 2.3 in Hassan [32].

2. Let α1 = α2 = 1 and g(t) = t on [0,∞)T . Then Corollary 2 with condition (c)
reduces to Theorem 1 in Erbe, Peterson and Saker [17].

3. Let α1 = 1, α2 � 1 a quotient of odd integers, and g(t) = t on [0,∞)T . Then
Corollary 2 with condition (c) reduces to Theorem 1 in Erbe, Peterson and Saker [18].

4. Let α1 and α2 be quotients of odd integers and g(t) � t on [0,∞)T . Then
Corollary 2 with condition (c) reduces to Theorem 3.1 in Chen [8].

5. Let g(t) = t on [0,∞)T . Then Corollary 2 with condition (c) reduces to Theo-
rem 2.1 in Yu and Wang [48].

6. Corollary 2 with condition (b) is new.
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