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ONE–DIMENSIONAL ATTRACTOR FOR A

NON–AUTONOMOUS STRONGLY DAMPED LATTICE

SYSTEM WITH PERIODIC DRIVING FORCE
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(Communicated by Michal Fečkan)

Abstract. In this paper, we consider one-dimensional attractor of a non-autonomous second or-
der strongly damped lattice system with periodic driving force under Neumann boundary condi-
tion or periodic boundary condition. We obtain the existence of a global attractor and prove this
attractor is homeomorphic to the circle.

1. Introduction

In this paper, we consider the following non-autonomous strongly damped lattice
system {

ÿi + ki(Aẏ)i +(Ay)i + γiẏi + f (t,yi) = 0,

yi(0) = yi0, ẏi(0) = yi,10,
(1.1)

where i = (i1, i2, ..., in) ∈ Zn
m = Zn ∩{1 � i1, i2, ..., in � m}, ki � 0, γi > 0, and f ∈

C(R×R,R) . y = (yi)i∈Zn
m

is a vector with the components yi and can be ordered as
the following form of 1-dimensional vector in Rmn

:

y = (y(1,1,...,1),y(2,1,...,1), · · ·,y(m,1,...,1), · · ·,y(1,m,...m),y(2,m,...,m), · · ·,y(m,m,...,m))T

= (y1,y2, · · ·,yν , · · ·,ymn)T ∈ Rmn
,

where ν = i1 +m(i2−1)+ · · ·+mn−1(in−1) , 1 � i1, i2, ..., in � m, ẏ = (ẏi)i∈Zn
m
.

A is a nonnegative definite symmetric matrix on Rmn
with eigenvalues λs(1 �

s � mn) , and 0 is the simple and minimal eigenvalue of A with corresponding eigen-
vector e = (1, ...,1)T ∈ Rmn

. (Aẏ)i , (Ay)i denote the ith component of Aẏ and Ay ,
respectively. For convenience, write λs as

0 = λ1 < λ2 � λ3 � · · · � λmn .

Mathematics subject classification (2010): 35B40, 35B41.
Keywords and phrases: global attractor, strongly damped lattice system, homeomorphism.
This research is supported by the National Natural Science Foundation of China (11101265), Shanghai Education

Research and Innovation Key Project (14ZZ157) and Visiting Scholar Abroad Program of Shanghai Municipal Education
Commission.

c© � � , Zagreb
Paper DEA-06-32

551

http://dx.doi.org/10.7153/dea-06-32


552 HONGYAN LI

An example of A is A = −� , the negative discrete Laplace operator which is subject
to Neumann boundary condition or periodic boundary condition: ∀i = (i1, i2, . . . , in) ∈
Zn

m,yi = y(i1,i2,...,in) ∈ Rmn
,

(Ay)i = 2ny(i1,i2,...,in) − y(i1−1,i2,...,in) − y(i1,i2−1,...,in)−·· ·− y(i1,i2,...,in−1)

− y(i1+1,i2,...,in)− y(i1,i2+1,...,in)−·· ·− y(i1,i2,...,in+1).

Equation (1.1) can be rewritten as{
ÿ+ kAẏ+Ay+ γ ẏ+F(t,y) = 0,

y(0) = (yi0)i∈Zn
m

= y0, ẏ(0) = (yi,10)i∈Zn
m

= y10,
(1.2)

where y = (yi)i∈Zn
m
, ẏ = (ẏi)i∈Zn

m
,k � 0,γ > 0,F(t,y) = ( f (t,yi))i∈Zn

m
.

For f : R×R → R is a continuous function verifying the following periodicity
conditions:

| f (t,y)|0 � c, f (t,y+ ω0) = f (t +T,y) = f (t,y), for some T > 0, (1.3)

where c � 0,ω0 > 0, | · |0 denotes the absolute value of number in R .
For some special cases, Eq. (1.1) can be regarded as a discrete analogue of the

initial-boundary value problem of the following continuous strongly damped wave
equation (see, e.g., [18]):

ytt − kΔyt −Δy+ γyt + f (t,y) = 0. (1.4)

When k = 0, f (t,y) = siny , equation (1.1) reduces to a usual wave equation which
arises as an evolutionary mathematical model in various systems (see [7, 14]), which
has been studied widely by using of the concept of global attractors; see, for example,
[1-3, 11, 13-14]. Under the periodic boundary conditions for any space dimension,
Wang and Zhu [15] discussed the existence and Hausdorff dimension of the global at-
tractor for discretization of the damped wave equations. Qian et al [12] showed that
the discretized damped sine-Gordon equation under Neumann boundary condition has
a one-dimensional global attractor, which is a restricted horizontal curve consisting of a
running periodic solution. It is different from them, we here want to study the strongly
damped lattice system under Neumann boundary condition or periodic boundary con-
dition.

For a complex mathematical physics equations, we want to study its long-time
behavior, so as to study the nature of its solution and its structure (see, e.g., [4-6, 9,
16-18]). But the understanding for the structure of the solutions is not enough. Li and
Zhou [8] proved the existence of a global attractor of a second order strongly damped
lattice system and the system has an unbounded one-dimensional global attractor. Mar-
tins [10] consider one-dimensional attractor for a dissipative system with a cylindrical
phase space and give conditions for this attractor to be homeomorphic to the circle. In-
spired by these two articles, we consider an attractor of a non-autonomous second order
strongly damped lattice system with periodic driving force under Neumann boundary
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condition or periodic boundary condition. We obtain the existence of a global attrac-
tor and prove this attractor is homeomorphic to the circle. In particular, when k = 0,
the system (1.1) is the damped discretized wave equations, we prove the attractor is
homeomorphic to the circle Γ1 = R/ω0Z and this result is consistent with [10].

In the next section, we recall some notation and results regarding the attractor for
second order strongly damped lattice system and prove the existence of global attractor.
Finally, we prove the attractor is homeomorphic to the circle in Section 3.

2. Global attractor

Let E = Rmn ×Rmn
, then system (1.2) is equivalent to the following initial value

problem in E, {
Ẏ = CY +G(t,Y ), t > 0,
Y (0) = Y0 = (y0,y10)T ∈ E,

(2.1)

where Y = (y, ẏ)T , G(t,Y ) = (0,−F(t,y))T , and

C =
(

0 I
−A −kA− γI

)
.

By the assumptions (1.3), it is easy to check that the function G(t,Y ) : E → E is con-
tinuous differentiable and globally Lipschitz continuous with respect to Y . By the
classical theory concerning the existence and uniqueness of the solutions of ordinary
differential equations, we obtain the existence and uniqueness of solution Y (t) for ini-
tial value problem (2.1) in R.

For any t � 0, the mapping

U(t) : Y0 = (y0,y10)T → (y(t), ẏ(t))T = Y (t,Y0), E → E, ∀t � 0,

where Y (t,Y0) is the solution of (2.1), then {U(t)|t � 0} is the process in E .
Let Ẽ = e⊥ is the the orthogonal complement of span{e} in Rmn

, which is
an invariant subspace of the linear operator A . Introducing an orthogonal projec-

tor P̃ : Rmn → Ẽ . Let y, y(1), y(2) ∈ Rmn
with the components yi, y(1)

i , y(2)
i for

i = (i1, i2, ..., in) ∈ Zn
m , respectively, we define the weighted inner products and norms

as follows:

(y(1),y(2))=
1
mn ∑

i∈Zn
m

y(1)
i y(2)

i , |y|= (y,y)1/2 =

(
1
mn ∑

i∈Zn
m

y2
i

)1/2

, ‖y‖= (Ay,y)1/2.

It is easy to see that | · | is a norm in Rmn
, and ‖ · ‖ is a norm in Ẽ .

Let
E0 = (Ẽ, | · |), E1 = (Ẽ,‖ · ‖),

and
V0 = (E1×Γ1)× (E0×R), V1 = E1×E0,



554 HONGYAN LI

where Γ1 = R/ω0Z is the one-dimensional torus. For any y = (yi)i∈Zn
m
∈ Rmn

, write

y = P̃y, then

(y,e) = (y,e)−
(

1
mn ∑

i∈Zn
m

yi

)
(e,e) = 0. (2.2)

Then the solutions (y(t), ẏ(t))T of the system (2.1) can be decomposed into

y(t) = y(t)+m(t)e, ẏ(t) = ẏ(t)+ ṁ(t)e,

where m(t) = 1
mn ∑i∈Zn

m
yi and

y(t) = P̃y(t) = y(t)−m(t)e∈ Ẽ, ẏ(t) = P̃ẏ(t) = ẏ(t)− ṁ(t)e ∈ Ẽ,

from (1.2), we have {
ÿ+ kAẏ+Ay+ γ ẏ+F(t,y) = 0,
y(0) = y0, ẏ(0) = y10,

(2.3)

where

F(t,y) = F(t,y)−
(

1
mn ∑

i∈Zn
m

f (t,yi)

)
e,

and

y(0) = y(0)−
(

1
mn ∑

i∈Zn
m

yi(0)

)
e, ẏ(0) = ẏ(0)−

(
1
mn ∑

i∈Zn
m

ẏi(0)

)
e.

Let Z = (y,z)T ,z = ẏ+ εy, where ε is

ε =
kλ1 + γ

4+2(kλ1 + γ)k+ γ2/λ1
, (2.4)

then the system (2.3) can be written as

Zt +H1(Z) = F1(t,Z), Z(0) = (y0,y10 + εy0)T , t � 0, (2.5)

where

F1(t,Z) =
(

0
−F(t,y)

)
, H1(Z) =

(
εy− z

Ay− ε(kA− ε)y+(kA− ε)z+ γ(z− εy)

)
.

(2.6)
We define a new weighted inner product and norm in V1 as

(Z1,Z2)V1 = α(Ay1,y2)+ (z1,z2), |Z|V1 = (Z,Z)1/2
V1

, (2.7)

for any Z1 = (y1,z1)T ,Z2 = (y2,z2)T ∈V1 , where α is

α =
4+(kλ1 + γ)k+ γ2/λ1

4+2(kλ1 + γ)k+ γ2/λ1
∈ (

1
2
,1). (2.8)

Obviously, the norm | · |V1 in (2.7) is equivalent to the usual norm ‖ · ‖ .
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LEMMA 1. For any Z = (y,z)T ∈V1, we have

(H1(Z),Z)V1 � δ |Z|2V1
+

k
2
‖z‖2 +

γ
2
|z|2 � δ |Z|2V1

+
kλ1 + γ

2
|z|2, (2.9)

where

δ =
kλ1 + γ

δ1 +
√

δ1δ2
, δ1 = 4+(kλ1 + γ)k+

γ2

λ1
, δ2 = (kλ1 + γ)k+

γ2

λ1
.

(2.10)

Proof. Let h(y) = γy , the proof is similar to Lemma 2.1 in [8]. �

LEMMA 2. Assume that B ⊂V0 is such that P̃B is bounded in V0 , and {y0,w(0)
= y10} is given in B . Then there exists t0 = t0(B,B0) > 0 depending on B and B0

such that for t � t0, P̃{y(t), dy
dt (t)} ⊂ B0 .

Proof. Let Z = (y,z)T ∈ V1 be a solution of (2.5). Take the inner product (·, ·)V1

of (2.5) with Z , we have

1
2

d
dt
|Z|2V1

= −(H1(Z),Z)V1 +(F1(t,Z),Z)V1 . (2.11)

By (2.6) and (2.9),

−2(H1(Z),Z)V1 � −2δ |Z|2V1
− (kλ1 + γ)|z|2, (2.12)

for the second term on the right-hand side of (2.11), we have

2(F1(t,Z),Z)V1 = −2

(
F(t,y)−

(
1
mn ∑

i∈Zn
m

f (t,yi)

)
e,z

)

� 2|z|
⎛⎝ 1

mn ∑
j∈Zn

m

(
f (t,y j)− 1

mn ∑
i∈Zn

m

f (t,yi)

)2
⎞⎠1/2

� 4c|z| � (kλ1 + γ)|z|2 +
4c2

kλ1 + γ
, (2.13)

where c is given by (1.3). By (2.11)-(2.13), we have

d
dt
|Z|2V1

� −2δ |Z|2V1
+

4c2

kλ1 + γ
. (2.14)

By Gronwall inequality, we have the absorbing inequality in V1 :

|Z(t)|2V1
� |Z(0)|2V1

e−2δ t +
2c2

δ (kλ1 + γ)
(1− e−2δ t),
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i.e.,

limsup
t→+∞

|Z(t)|2V1
� 4c2

δ (kλ1 + γ)
= ρ0. (2.15)

If y = y(t) is a solution of (1.2), then y = P̃y , the orthogonal projection of y∈Rmn

into y ∈ Ẽ satisfies (2.15). We have y(t) = y(t)+m(t)e, and

d2m
dt2

(t)+ γ
dm
dt

(t)+
1
mn ∑

i∈Zn
m

f (t,yi) = 0.

By (1.3), we have∣∣∣∣dm
dt

(t)
∣∣∣∣ �

∣∣∣∣dm
dt

(0)
∣∣∣∣e−γt +

1
mn

∣∣∣∣∣
∫ t

0
∑

i∈Zn
m

(− f (t,yi))e−γ(t−τ)dτ

∣∣∣∣∣
�
∣∣∣∣dm
dt

(0)
∣∣∣∣e−γt +

c
γ
(1− e−γt),

i.e.,

limsup
t→+∞

∣∣m′(y(t))
∣∣� 2c

γ
= a0. (2.16)

We note that the projection P̃ : Rmn → Ẽ induces a projection on V0 , denoted by
P̃ again:

P̃ : ψ = {y = y+m(y),w = w+m(w)}→ P̃ψ = {y,w = w+m(w)}, V0 →V0, (2.17)

and we select in P̃V0 a bounded set B0 defined by

‖{y,w+ εy}‖V0 � ρ ′
0, |m(w)| � a′0,

where ρ ′
0 > ρ0,a′0 > a0 are defined by (2.15) and (2.16), respectively. The proof is

completed. �
We observe that the change of y into y + ω0 leaves the system (1.2) unchanged

and it is natural to consider the function y modulo ω0 . Let Vi = P̃Vi×R (i = 0,1), such
that if ψ = {y = y+m(y),w = w+m(w)} ∈Vi (i = 0,1), then ψ ≡ {P̃ψ ,m(y)}, where
P̃ψ is defined by (2.17). Then we consider Ṽi = P̃Vi×Γ1 (i = 0,1), where Γ1 = R/ω0Z

is a torus. We find that the process {U(t)}t�0 induces a process {Ũ(t)}t�0 on Ṽi :

{y0,y10,m(y0)(mod ω0)}→ {y(t), ẏ(t),m(y(t))(mod ω0)}.
Then Lemma 2 imply

LEMMA 3. The sets B0 ×Γ1 and B×Γ1 are the absorbing set for the process
{Ũ(t)}t�0 in V0 and V1 , respectively.

THEOREM 1. The strongly damped lattice system (1.1) associated with a process
{Ũ(t)}t�0 which operates in

Ṽ0 = Rmn−1×Rmn ×Γ1

possesses a global attractor A which attracts the bounded set in Ṽ0 .
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3. One-dimensional attractor

In this section, we will establish the condition that the global attractor is homeo-
morphic to the circle Γ1 of the strongly damped lattice system (1.1).

Defining the equivalence relation in Rmn
by

a ∼ b ⇔ a−b∈ ω0eZ.

The set of equivalence classes will be denoted by C and â will denote the class of
a ∈ Rmn

. The space C is a metric space with the distance

d(â, b̂) = inf
y∈â−b

‖y‖.

Defining the function
π : C → Γ1 = R/ω0Z.

The following hypothesis clarifies the notion of dissipation.
(H1) There exists a non-empty compact set B ⊂ C such that for every compact

set B0 ⊂ C , there exists τ0 ∈ R in such a way that if y is a solution with y(t0) ∈ B0 ,

then ŷ(t) ∈ B,∀t > t0 + τ0.
Notice that G(t,Y + R) = G(t,Y ) , where R = (ω0e,0)T ∈ Rmn ×Rmn

and R ∈
KerC. From the section 2, we know that A is symmetric, let {e,e2,e3,e4, · · · ,emn} be
the orthonormal basis of λ1 = 0,λ2,λ3, · · · ,λmn of A . Elementary computation show
that

(kλi + γ)2−4λi > 0, i = 1,2, · · · ,mn, (3.1)

i.e., when kγ > 1, spectral sets of C are μ1 = 0,μ2, · · · ,μmn .

THEOREM 2. (Theorem 5 in [10]) Assume that (H1) hold, there exists a nonsin-
gular matrix M ∈ Mmn×mn(R) such that

MCM−1 = diag{0,μ2,μ3, . . . ,μmn},

and the function G(t,Y ) = MJ(t,M−1Y ) is K-Lipschitz on the second variable with
K < − μ2

2 . Then π/A is an homeomorphism from A onto Γ1 .

If Q1 = (e|e2| · · · |emn) is mn×mn matrix whose columns are formed by the eigen-
vectors of A , then QT

1 = Q−1
1 and QT

1 AQ1 = diag(0,λ2, · · · ,λmn). On the other hand,

if Q2 =
(

QT
1 0
0 QT

1

)
, then

Q2CQ−1
2 =

(
0 I

−diag(0,λ2, · · · ,λmn) −k diag(0,λ2, · · · ,λmn)− γI

)
.

Defining Q3 :

Q3 : R2mn → R2mn
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(y1,y2, . . . ,ymn , ẏ1, ẏ2, . . . , ẏmn) → (y1, ẏ1,y2, ẏ2, . . . ,ymn , ẏmn)

is such that

Q3Q2CQ−1
2 Q−1

3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
0 −γ · · · 0

0 1
−λ2 −kλ2− γ

...
. . .

...
0 1

0 · · · −λmn −kλmn − γ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

For every

Ai =
(

0 1
−λi −kλi − γ

)
, i = 1, · · · ,mn,

assume that kγ > 1, the matrix

Pi =

⎛⎝ 1√
2
√

(kλi+γ)2−4λi

1√
2
√

(kλi+γ)2−4λi

− kλi+γ
2
√

2
√

(kλi+γ)2−4λi
+ 1

2
√

2
− kλi+γ

2
√

2
√

(kλi+γ)2−4λi
− 1

2
√

2

⎞⎠

P−1
i =

⎛⎝ kλi+γ√
2

+
√

(kλi+γ)2−4λi√
2

√
2

− kλi+γ√
2

+
√

(kλi+γ)2−4λi√
2

−√
2

⎞⎠
are such that

P−1
i AiPi = diag

(
− kλi + γ

2
+

√
(kλi + γ)2−4λi

2
, −kλi + γ

2
−
√

(kλi + γ)2−4λi

2

)
.

We conclude that

Q4 =

⎛⎜⎝P−1
1 0

. . .
0 P−1

mn

⎞⎟⎠ (3.2)

is such that Q4Q3Q2CQ−1
2 Q−1

3 Q−1
4 is diagonal and have on its diagonal entries the

eigenvalues of C . Notice that if

kγ > 1, k > (2
√

λmn −α)/λmn ,

then the non-null eigenvalues of C are all real and negative. Moreover, the largest
non-null eigenvalue of C is

−kλ2 + γ
2

+

√
(kλ2 + γ)2−4λ2

2
.

In the following, we will prove the attractor A is homeomorphic to the circle
Γ1 = R/ω0Z using Theorem 2.
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LEMMA 4. Assume that kγ > 1,k > (2
√

λmn −α)/λmn hold. If Y = (0,z)T ∈
R2mn

, then ‖Q4Q3Q2Y‖ = 2‖z‖ and for any Y = (y,z)T ∈ R2mn
, we have

‖Q4Q3Q2Y‖ �
√

(kλmn + γ)2−4λmn‖y‖.

Proof. The first equality is a straightforward consequence by (3.2). Given Y =
(y,z)T ∈ R2mn

, because λmn is the largest of the eigenvalues of A , then

‖Q4Q3Q2Y‖ = ‖Q4(ey,ez,e2y,e2z, · · · ,emny,emnz)‖

= ‖
(

kλ1 + γ√
2

+

√
(kλ1 + γ)2−4λ1√

2

)
ey+

√
2ez,(

− kλ1 + γ√
2

+

√
(kλ1 + γ)2−4λ1√

2

)
ey−

√
2ez, · · · ‖

=

√
((kλ1 + γ)2−4λ1)(ey)2 +4(

kλ1 + γ
2

ey+ ez)2 + · · ·

�
√

((kλ1 + γ)2−4λ1)(ey)2 + · · ·+((kλmn + γ)2−4λmn)(emny)2

� min
i=1,...,mn

√
((kλi + γ)2−4λi)‖QT

1 y‖ =
√

((kλmn + γ)2−4λmn‖y‖.

The proof is completed. �

THEOREM 3. Suppose that kγ > 1 , and f (t,y) is K-Lipschitz on y, if

K <

√
(kλmn + γ)2−4λmn

8

(
kλ2 + γ −

√
(kλ2 + γ)2−4λ2

)
,

then π/A is an homeomorphism from A onto Γ1 .

Proof. By Theorem 2, we only need to show that the Lipschitz constant of

J(t,Y ) = Q4Q3Q2G(t, Q−1
2 Q−1

3 Q−1
4 Y )

on the second variable y is less than

(kλ2 + γ)−√(kλ2 + γ)2−4λ2

4
.

For any
Z = Q4Q3Q2(y,z)T , Z′ = Q4Q3Q2(y′,z′)T ∈ R2mn

and t ∈ R, from Lemma 4, we have

‖J(t,Z)− J(t,Z′)‖ = ‖Q4Q3Q2(0,−F(t,y)+F(t,y′)‖
= 2‖F(t,y)−F(t,y′)‖



560 HONGYAN LI

� 2K‖y− y′‖

�
√

(kλmn + γ)2−4λmn

4

(
kλ2 + γ −

√
(kλ2 + γ)2−4λ2

)
‖y− y′‖

�

(
kλ2 + γ −√(kλ2 + γ)2−4λ2

)
4

‖Z−Z′‖.

The proof is completed. �

REMARK 1. When k = 0, the system (1.1) is the damped discretized wave equa-
tions {

ÿi +(Ay)i + γiẏi + f (t,yi) = 0,
yi(0) = yi0, ẏi(0) = yi,10,

when λmn < γ2/4, the attractor is homeomorphic to the circle Γ1 = R/ω0Z , this result
is consistent with [10].

RE F ER EN C ES

[1] T. CARABALLO, A.N. CARVALHO, J.A. LANGA, F. RIVERO, A non-autonomous strongly damped
wave equation: Existence and continuity of the pullback attractor, Nonlinear Analysis: Theory, Meth-
ods and Applications, 74, 6 (2011), 2272–2283.

[2] V.V. CHEPYZHOV AND M.I. VISHIK, Attractor of Equations of Mathematical Physics, Amer. Math.
Soc., Province, RI, 2002.

[3] I. CHUESHOV AND I. LASIECKA,Long-time Dynamics of a Semilinear Wave Equation with Nonlinear
Interior/Boundary Damping and Sources of Critical Exponents, Contemporary Mathematics, AMS,
Providence, RI, 2007.

[4] F. DELL’ORO, V. PATA, Long-term analysis of strongly damped nonlinear wave equations, Nonlin-
earity, 24, 12 (2011), 3413–3435.

[5] R. IKEHATA, Asymptotic profiles for wave equations with strong damping, Journal of Differential
Equations, 257, 6 (2014), 2159–2177.

[6] P. KOKCKI, Conley index of invariant sets for strongly damped hyperbolic equations at resonance,
arXiv:1404.3429v1.

[7] M. LEVI, F.C. HOPPENSYEADT, W. L. MIRNKER, Dynamics of the Josephson junction, Quart. Appl.
Math., 7, 1 (1978), 167–198.

[8] H. LI, S. ZHOU, Structure of the global attractor for a second order strongly damped lattice system,
Journal of Mathematical Analysis and Applications, 330, 2 (2007), 1426–1446.

[9] G. LIN, F. XIA, G. XU, The global and pullback attractors for a strongly damped wave equation with
delays, International Journal of Modern Nonlinear Theory and Application, 2 (2013), 209–218.

[10] R. MARTINS, One-dimensional attractor for a dissipative system with a cylindrical phase space,
Discrete and Continuous Dynamical Systems, 14, 3(2006), 533–547.

[11] V. PATA AND S. ZELIK, A remark on the damped wave equation, Communications on Pure and
Applied Analysis, 5, 3 (2006), 611–616.

[12] M. QIAN, W. QIN AND S. ZHU, One-Dimensional global attractor for discretization of the damped
driven sine-Gordon equation, Nonlinear Analysis: Theory, Methods and Applications, 34, 7 (1998),
941–951.

[13] C. SUN, D. CAO, J. DUAN, Uniform attractors for nonautonomous wave equations with nonlinear
damping, SIAM Journal on Applied Dynamical Systems, 6, 2 (2007), 293–318.
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