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SINGLE-POINT BLOW-UP FOR A
SEMILINEAR REACTION-DIFFUSION SYSTEM

NEJIB MAHMOUDI

(Communicated by Jean-Michel Rakotoson)

Abstract. In this paper, we consider positive solutions of the system
w—Au=u"vl, v,—Av=ulV’

1€ (0,T), xeB(0,R) ={x € R"||x] <R} or xe R" and p, g, r, s > 1. We prove single-point
blow-up if »r < g+ lands < p+1 and for a large class of radial decreasing solutions. This
extends the result of Friedman and Giga for this basic system known only for p=g=r=s. We
also obtain lower pointwise estimates for the blow-up profiles.

1. Introduction and main results
Let us consider the following reaction-diffusion system:

uy—Au= [u| " luy|P~ly, x€Q,t >0,
v —Av=|u|9 v, xeQ,t>0,

u=v=0, x€dQ, >0, (1.1)
u(O,x) = uo(X), x€Q,
v(0,x) =vo(x), xeQ,

where p, q,r, s> 1, Q=B(0, R) = {x € R"||x| <R} with R>0 or Q=R", (ug, vo) €
L=(Q) x L=(Q) and ug, vy are positive, radially symmetric and radially nonincreasing.
Itis known that (1.1) has a unique positive, radially symmetric and radially nonincreas-
ing maximal solution on [0, T*) x Q, classical for t > 0, i.e. u,v >0, u,v depend
only on p = |x| at a given 7 (we shall identify (u(z,x), v(¢,x)) and (u(z, p), v(z, p)),
up,vp < 0, where up,v, denote the derivatives of u, v with respect to p, and u,
v € C((0,T*) x [0, R]) NC2((0, T*) x (0, R)). This follows by standard contraction
mapping argument. Moreover, if 7% < eo, then

limsup([[u(t)[| +[|v(2) ) = +oo, (1.2)
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we say that the solution blows up in finite time with blow-up time T*. See [1, 4, 12].
‘We also known that, if

r<qg+1 and s<p-+1
then the blow-up is simultaneous, i.e.

limsup ||u(2)]|e = limsup |[v(2)]|cc = 0.
T T

See [7, Theorem 4.1].
Throughout the paper, we assume that

pg—(r=1)(s—1)#0 (1.3)
and we shall use the notation

1— 1—
o — ptl—s B qt+l—-r

T (r—O(s—1) T pg—(r—Ds—1)

By (1.3)and p,q,r,s>1,for r<g+1 and s < p+ 1, we have o, B > 0.

The purpose of this paper is to localize the blow-up points for (u, v) the solution of
the system (1.1). Let us mention that Friedman and Giga ([5]) proved that the solution
of the following system

(1.4)

w—Au= Py, xeQ,t>0,
(1.5)

v —Av=|ul9'u, x€ Q,t >0,

blows up at the single point x = 0 for a symmetric decreasing initial data, n = 1 and
under the very restrictive condition p = g. Moreover, they extended their result to the
system

u—Au= f(u,v), x€Q,1>0,

vi—Av=g(u,v), xe€Q,r>0,

where the functions f and g satisfy some hypotheses, see [5, pp. 75-76]. Under these
hypotheses, the solution of our system blows-up at the single point x = 0 only under
the condition p = g = r = s. More recently, Souplet proved that single-point blow-up
occurs for the system (1.5) for a large class of radial decreasing solutions, in a ball or
in the whole space and without the condition p = ¢, see [10]. Note that for the system
(1.5) only simultaneous blow-up occurs.

It is therefore natural to ask whether and under which conditions x = 0 is the
single-point blow-up point for system (1.1). An answer to this question is given by the
following theorem, which is the main result of this paper.

THEOREM 1. Let Q=B(0,R) and p, q,r,s > 1 be such that

r<q+1 and s<p+1. (1.6)
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Let o, B be given by (1.4). Let (u,v) be a positive, radially symmetric and
classical solution of (1.1) such that uy, vp <0 and T* < e. Assume that (u,v)
satisfies the upper blow-up estimates:

sup (7" —1)%||u(t)[|e < oo, sup (T =1)P||v(1)]c < eo. (1.7)
0<t<T* 0<e<T*

Then blow-up occurs only at the origin, i.e.

sup (u(t,p)+v(t,p)) <<, forallp € (0,R). (1.8)

0<r<T*

REMARKS 1. (i) The upper blow-up estimates (1.7) are known to be true if we
assume in addition that
U,V =2 >0 on (0 T )XBR,

where u,, v; denote the derivatives of u, v with respect to 7, and if there exists a positive

constant € such that
Aug+ (1 —&)ufvl =0
Avo+ (1 —€)ulvi > 0.

)

We note that the existence of a positive, radially symmetric and classical solution of
(L.1) such that up,vp, <O, u,v, >0 and T* < oo, can be obtained for initial data
(Aug, Avg) with A > 0 large enough, whenever

up, vo are positive, radially symmetric and nonincreasing,
Aug +ufvh >0,
Avo+ ugvf) > 0.

See [7]. We also refer to [2, 11] for other results related to properties (1.7).

(i1) The result of Theorem 1 remains true for the Cauchy problem (1.1) (thatis, R = o)
provided ug, vy are not both constant. This follows from straightforward modifications
of the proof.

Our second aim is to establish pointwise lower bounds on the blow-up profiles.

THEOREM 2. Let Q =B(0,R) and p,q,r,s > 1 be such that
r<q+1 and s<p+1.

Let (u,v) be a positive, radially symmetric and classical solution of (1.1) such that
up,vp <0, u,v; 20, T" < oo and satisfies the upper blow-up estimates (1.7). Then
we have the estimates

?u(T*,x) > 1, 0<|x|<n
and
WPPo(T*,x) > e, 0 <|x| <,

for some cy, ¢z, N> 0.
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The organization of this paper is as follows. In the second section, we prove
asymptotic comparison properties between the components of the solution (u, v) near
blow-up points. Next, we use them to prove Theorem 1 in the third section. Finally,
in Section 4, we establish the pointwise lower bounds on the blow-up profiles, which
proves Theorem 2.

2. Asymptotic comparison of components

As in [5] (and cf. [6]) the basic idea for proving single-point blow-up is to apply
the maximum principle to a couple (G, J) of functions of the form

G(t,p) =up+ecp)u’, J(t,p)=vp+ed(p)’.

However, this turns out to require good comparison properties between u and v. Due
to the general comparison properties used in [5], the result there for system (1.1) im-
poses the severe restriction p = g =r = s (see Remark 1 below). To overcome this,
we follow the strategy in [10]. Namely, instead of looking for comparison properties
valid everywhere, we assume for contradiction that single-point blow-up fails (i.e., that
blow-up occurs everywhere in a ball near the origin), and we prove asymptotic compar-
ison properties between components near blow-up points. It turns out that they can be
obtained without making any extra assumption on the exponents p,q,r,s and they are
sufficient to handle the system satisfied by suitable functions of the form G,J.

This section is devoted to the derivation of such comparison properties. They are
given by the following lemma.

LEMMA 1. Let Q=B(0,R) and p, q,r,s > 1 be such that
r<q+1, s<p+1.

Let (u,v) be a positive, radially symmetric and classical solution of (1.1), such that
up, vp <0 and T* < oo. Assume that (u,v) satisfies the upper estimates (1.7). If there
exists po € (0, R) such that

limsup (u(t, po) +v(t, po)) = o,

t—T*

then for all 0 < p < po, we have

lim (77 —1)%u(t, p) = Ao, lim (1" =1)Pv(t, p) = By, 2.1
where

Aoz(ﬁl’alf-v)m, Boz(aqﬁl”)m. (2.2)
In particular,

uq+17r

tl_l}I]I_:l* |:vp+1—s ’

1=rp—(p+1)+s
[0y =g ra e

uniformly on [0, p1], for each py € (0, po). (2.3)
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This lemma will be proved in Subsection 2.3. As in [10], we prepare a number of
preliminaries and of auxiliary results that will be given in Subsections 2.1 and 2.2. The
main idea of the proof is to identify suitable space limits of rescaled solutions in terms
of an ODE system, and of a criterion for excluding blow-up at a given point.

REMARK 1. Let us mention that in [5], Friedman and Giga prove single-point
blow-up for positive solutions of the following system

u—Au= f(u,v), v,—Av=g(u,v)

under the hypotheses u < C(v+1) and v < C(v+ 1), and the functions f and g satisfy
the following conditions:

f.g€C (R?); (2.4)
F(u,v), g(,v) >0, fu for 8ur 8w =0 ifu>0,v>0; (2.5)

af<ufy+vfy, if v>M u> g—l and for some constants M, ¢; > 1; (2.6)

cog<Lugy+vgy, if u>M,v> % — 1 and for some constants M, ¢, > 1; (2.7)

gly+1,ey) > ef(y+1,ey), for some small € >0 and for all y > 0; (2.8)
fO+1,ey) > eg(y+1,ey), for some small € >0 and for all y > 0. (2.9)

Then, for the particular case f(u,v) =vPu" and g(u,v) = u¥v*, the result of Friedman
and Giga for the system (1.1) is true only in the very restrictive case p =g =r =s.
Indeed, let f(u, v) =vPu" and g(u,v) = udv*, we obtain

ufy+vf,=pu" +nrfu"

>c1(vPu"), wherec; =min(p, r)
ugy+vgy = quiv' +sv’'u? > co(v'u?), where c; = min(q, s).

Moreover, the hypotheses (2.8) and (2.9) imply that

e+ 1)% = el (y+1)yr,
eP(y+1)y? = e (y+1)%".

Then, taking y in the neighborhood of 0 and then in neighborhood of e, we obtain

So that these inequalities are valid, it necessary to choose p, ¢, r and s such that
p = q =r=3Sg.
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2.1. Local criterion for excluding blow-up

As in [10], in this section, we allow Q to be an arbitrary smooth domain in R”.
We also allow sign-changing solutions of (1.1). Let b € Q, we define the similarity
variables around (7%, b) by

o= —log(T" 1), y=—l = ¢ (x—b),

and the rescaled solution by
w=wp(o,y) = (T"—1)%(t,x),
z=z(0,y) = (T* —1)Bv(t, x),

on
D:={(0,y)|b+ye ®?€Q,0y<0 <}, oy=—logT".

In similarity variables, the partial differential equations in system (1.1) read

we —Lw=|w|/"w|z|P"z—aw, (0,y) €D,
—D%Z: ‘W‘q71W|Z‘S711_ﬁZ7 (Gay) €D7

where
L=A— %.V =K 'V.(KV), K(y)= @) "2 b4 vyeRrn

We denote by (T(0))s>0 the semlgroup associated with .Z. More precisely, for each
¢ € L*(R"), we set T(0)¢ :=w(0, .), where w is the unique solution of

{wngw, yeR" >0,
w(0,y) =¢(y), yeR"

For any ¢ € L~(R"), we put

11
lolly = ([ Joorxmar) . 1<i<e

Let 1 <k <l <o, then
1915 <clklm)dly, 1<k<i<e. (2.10)

If the function ¢ is defined only on a subdomain of R", then |[¢||z- denotes the norm
of the extension of ¢ by 0 on R".
The semigroup (7(0))s>0 has the following two properties (see e.g. [10]):

(1) (Contraction) For any 1 <1 < oo,

1706l <l6ll. ©>0.6eL=®). @.11)
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(2) (Delayed regularizing effect) For any 1 < m <[ < oo, there exist Cyp, o > 0 such
that

IT(0)¢ll <Colldlly, o>0",¢cLl™(R). (2.12)

REMARK 2. Let Q =Bg and u, v radially symmetric, then write u(¢, x) =U(z, p),
v(t,x) =V (t,p) with p = |x|. We set

W =Wy(0,8) = (T* —1)?U 1, p),

Z=2,(0,0)=(T"=1)PV(1,p),

0= p—|b|
VT =1’

Then (W,Z) is a solution of

(n—l)eiﬁ/2 ~

Ws — Wy + %We = ‘W‘V*IW‘ZV’*lZ_ aW + mWe, (G, 0)eD (2.13)
_ . 1 -0/2 e .
Zo—Zoo +8Zo = WS 'W |2 12— BZ+ ermeze, (6,0) €D,

with
D:={(0,0)[ —[ble°* <0 < (R |b[}e?"?, 6y < & < o}, G = —log(T").

We also note that
wp(0,y) =W, (0, |be®/? +y| — |ble®/?). (2.14)

And a similar relation holds for Z, .

PROPOSITION 1. Let M > 0 and (u, v) be a classical solution of (1.1) such that
T* < oo and

(T =0)*u(@)lle <M, (T*=0)P|p(@)]|l. <M, 0<t<T". (2.15)

Let a € Q andlet (w, z) be the rescaled solution by similarity variables around (T*,a).
There exists € = €(n,p,q,s,r,M) such that, if

lw(on)lly +llz(on)lly <e (2.16)

for some 6 > 09 = —1log(T™), then a is not a blow-up point of (u,v), i.e. (u,v) is
uniformly bounded in the neighborhood of (T*, a).

Proof. For given 0, > 0p, we denote respectively by w and z the solution of

W — Lw=|w|"]Z|’ —aw, yeR", 0 > 03,
Ww(02,y) = [W(02, y)l, yeR",



570 NEJIB MAHMOUDI

and

Z(02,y) = [z(02, y)I, y€ER",

where w and 7 denote the extensions by 0 of w and z to the whole of R”. We note
that (W, Z) exists globally. We denote by

{Zo—fﬁwlqﬂs—ﬁz yeR" 0> 0y,

(7" = 1)~ ( —log(T* —1), J=2 ), (1,%) € (10, T") x Q,

v=(T* —t)*ﬁZ(—log(T* —1), %), (t,x) € (to, T*) x Q.

N|
Il

]

(@, v) is a solution of the following system:

0 —Au=ul"vP, xeQ,t>1,
v —AV=|ul? |5, x€Q,t> 1,
u(to, x) = [u(to, x)|, x € Q,
V(to, x) = |v(19, x)|, x € Q.

By the maximum principle, we obtain |u| <% and |v| <V for all 7 > #y. Return to
(W, Z), we obtain that |w| < W and |Z] < Z for any 0 > 0. By the variation constants
formula, we deduce that

[w(or+0)| <w(or+0)
= e %T (o) |w(om)| + /0 Ge_a(G_T)T(G —1) (\W(Gz +17)|"2(02 + T)|p>d’l.'
— T (5) (o) + /0 "o w0 1(0 1) (ji(0r + 1) o2 + D) ).
Then, we have
e*|w(or+ o)
< T(0) ()| + /OG T (6 — 1) <\v’\7(62 + 1) (o + T)|p>dr. 2.17)
By exchanging the roles of w, p and r and Z, ¢ and s in (2.17), we obtain
ePoZ(0r + o)
< T(0)E(on)] + /O (o) (jilo + Do+ 1) )dr @18)
for all 0> > 0y, 0 > 0. By (2.15), we have
[W(0)[leo = (T = 1)*||u(t) ]| oo < M

and [|2(0) || = (T* —1)B||v(1)||- < M, for all ¢ > 6y. Then the function h :=Ww+3Z
satisfies

he — Lh=Ws+75— Lw—L7= W2V + |W|z]’ — aw— BZ
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<Mp—1+r|z] +Mq—l+s‘w~|
Ci(|w[+[2])

C(W+7)

— Cyh,

<
<

with C; = max(M9~!+5 MP~1+7). Therefore
h(c) < 19T (0)h(o,), forall oy > o), 6 > 0.
Therefore
W(02+0)| +[2(02 + 0)| < W(02+ 0) +Z(02 +0)
<eN9T(0)(|w(0s)| + [2(02)|), for all 65 > 6y, & > 0. (2.19)
Fix a finite [ such that
[ > max(2,n)max(p, q, 1, s) (2.20)

and let * be given by (2.12), with m = 1. For o] given by (2.16), then by (2.19) and
(2.11), we obtain

1701+ )|y + (01 + 6) 3. = 117+ (01 +0)
<[[SeT (@) ([0 + (o))

<9 w(on)| + o)l

<%,
Therefore
[#(01+ o)l +IEo1+0)ly <G, 0<o<o’, G=e7. (22D
Let now

Ag = {a >0 e [[i(01+ 0" +7) |y +eP|E01+ 0"+ 7).
<206, 1€ [070]}.
By (2.21), we have
1701+ 6"l + 1201+ 07)lly, < Coe,
on the other hand the function

0 = |01 + 0" + )|y +ePTz(o1 + 0"+ o)y
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is continuous in (0,e0) and
. _ s * = *
lim £(0) = |01+ ")l + |01 + 0"

then Ag # 0. We denote by Ty = supAg, note that 7o > 0. We assume by contradiction
that Ty < e. Assuming that p < g, without loss of generality, hence o < 3, then by
(2.21), we obtain

|lw(or+0"+ a)||L}< +|z(o1 +0" + G)HL}{ <2Cee ™, —0"<o<T. (2.22)
Let 0 < 1< Ty, by (2.19), (2.12) and (2.22), we have

1701+ 6"+ 1)l +[E01 + 0" + 7)1
<265 | T(0*)(#(01 + )|+ [2(01 + D)) 1
<25 T () W(or + D)l 1.+ IT(0*) (E01 + 7))l
<25 Go([#(01 + )l + (01 + 7))

4C>Cye€10" ge— (107,

N

Therefore

Iw(or+ 0"+ r)||L1K +zZ(o1 + 0"+ 1) HL% < Cyee™ 7, (2.23)

forall 0 < 7 < Tp, with C3 = 4C,Cpel*HC1)o™
Using (2.17), with 6, = 01+ ¢*, then by (2.11), (2.10) and (2.23), we obtain

(o1 + 0"+ o)l
< [[w(or+ 07l
* /OGeMHT(G — (W' (o1 + 0"+ 1) (01 + 0" + 7)) || L d7
<101+ 0"y + [ eIl (01 +0" + D (01 + 07 + D)y
<wlor+09) | +/06 ¢*||Ww(oy + 0" +1)|L|[Z(01 + 0F + T)I|§2dr
< (o1 +0°)y +MC” [ (o1 +0" + D) dn
< [w(on -f'O'*)HL}< + (CC3£)erAGeaTe_aPTdT.

Therefore

(o1 + 0" + )|y < W01 +0")llyy +M(CC)P[1/e(p—1)]eP. (2.24)
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By exchanging the roles of w, p and r and Z, ¢ and s and by using (2.18) with
0y = 01+ 0%, since oig > 3, we obtain

Po|E(o1+ 0" +0)
< [z(o1+ 07l
+/Ogeﬁr||T(0—T)W‘1(m+G*+1)F(cl+g*+1)||L}<dT
< ”Z(Gl+G*)||L}<+/()geﬁr||wq(01+0*+‘f)?(61+G*+T)||L}<d1
< ”Z(Gl+G*)”L}<+/Ogeﬁr||w(al+G*‘|‘T>HZ?{HZ(01—|—G*—|—‘L')||‘;d’[
<01 +07)ly +3ct [P0+ 0" + ) dt
<01+ 0"l +MS(CC38)‘1/06 ety
Therefore
eﬁ0||3(61 + ot 4+ O')”L}< < z(o +G*)HL,'( + M (CC3)1[1/(oig — B)]e?. (2.25)

For 0 = Tj in (2.24) and (2.25). By definition of 7 and by using (2.21) with 6 = ¢*,
we obtain

206 < PP|Z(01+ 0" +To)|| g +e“PW(01 + 0"+ To)lly
w(or+ 07|y +M'(CC3)P[1/a(p —1)]e”
+ [[z(o1 + 07l +M*(CC3)[1/ (g — B)le

S Ge+ M (CG)P[1/a(p—1)]e? + M*(CC3)"[1/ (g — B)le”.

<
<

Therefore
Cy <M'(CC3)P[1/a(p—1)]eP ™" +M*(CC3)[1/ (g — )]

in(p—1,q—1
< C gminlp—La-1),

which is impossible for & > 0 sufficiently small, because C; = ¢“1° > 0. Conse-
quently, Ty = eo. It follows in particular from (2.23) that

lw(o)+0™ + T)HM( <Gee ™, 120.
Then
w(o)ll, < Ciee ™, 0> 01+0", Cy=C3e™ 7).
Then, there exists 6 > 0 such that

HW(G)H%SCAQ(T*—I)“, T -8 <t<T". (2.26)
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Now, by continuity of (w, z), there exists 17 > 0 small such that (2.16) and hence

(2.26) is still to be true when the point a is replaced by any b € Q such that [b—a| <
(note that C4 and € are independent of @). Then, by (2.26) we have

1/
w(o)ll, = (/ W(G,y)’e_'y'z/“dy)
K R

= ( / (T* =)™ |u(t, b+ y\/T*——t)|le_y2/4dy)

< Cue(T*—1)*, forallT* -8 <t<T".

1/1

Therefore
/]R u(t, b+ T —1)le PP lay<c, T —8<t<T* |b—d/<n. (227

For 6 < 1n/2, it follows from Fubini-Tonelli’s theorem that

/ lu(t, 2)|'dz
lz—al<n/2

<C(n)s™2 / / u(t, b+ yWT* —1)|le P14/ 4ayap
lb—a|<n J|y|<5!/?
<C, Tr—-86<i<T"
Therefore
ueL”((T"~§,T%),L'(B(a, m)))
and similarly, we get also
veL”((T*-6,T%),L'(B(a,n))).

Now set fi = u; —Au=u"vP and f, = v, — Av =v'u?. By Holder’s inequality and
(2.20), it follows that

fip € LN((T" =8, T%), L%(B(a, m)))

with k; = oo and k, > max(1,n/2), hence % + 51; < 1. We deduce from standard
local parabolic regularity [8] that

u,v € L”((T* = 8/2,T*), L (B(a,n/2))),

hence u and v are bounded around (T*,a). O
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2.2. Properties of the rescaled ODE systems

In this section, we study the nonnegative and bounded solutions of the ODE system

{w’:w’zp—aw,

Z=wiz"— Bz (2.28)

where p, g, r, s> 1, pg—(r—1)(s—1)#0, o, B >0 and ' =d/do. The only
nonnegative constant solutions of the system (2.28) are given by (w, z) = (0,0) and
(w,2) = (Ao, Bo), where

Ao = (BPal =) T | By = (041 T

Let us mention that, (0,0) and (Ag, By) are also the only nonnegative constant solu-
tions of the system

/AT D _
{w Azl — aw, (2.29)

7 =Biw!—Pz.

PROPOSITION 2. (a) Let 0y € R and (w, z) be a nonnegative, bounded and global
solution of either (2.28) or (2.29) for 6 > 0y. Then for all ¢ > 0y, one of the following
holds:

i) (w,2) =(0,0);

(11) (W7 Z) = (A07 BO);

(iii) w'Z < 0 for all o > oy and (}im (w(o), z(0)) = (Ao, Bo) s

(iv) There exists G > 0y such that w'Z <0 on [0y, ) and W', 7 <0 on (G,).
Moreover, ;im (w(o),z(0)) =(0,0).

(b) Let oy € R. Then, the problems (2.28) and (2.29), with

w(0o) = Ao, z(00) =By and (w(00),z(00)) # (Ao, Bo)
have no nonnegative, bounded and global solutions for ¢ > 0y.

(c) Let (w, z) be a nonnegative, bounded and global solution of (2.28) or (2.29), for all
o € R. Then either:

(1) (W» Z) = (Ov 0);

(ii) (w, z) = (Ao, Bo);

(iii) glin} (w(o), z(0)) = (Ao, Bo) and lim (w(o), z(c)) = (0, 0).

O —00

Proof. (a) Stepl:Let Z =0, [>\{(0,0); (Ao, Bo)}. We claim that the regions

0; X1Y* —
0; X17° —

G ={(X,Y)eZ|X"Y" — aX

BY >0}
Py = {(X,Y) e Z|X"YP —oX BY <0}

//\ WV
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are positively invariant for the system (2.28). Indeed, let (w, z) be a solution of (2.28)
such that (w(0y), z(0yp)) € %>. By contradiction, we assume that (w, z) leaves %, at
some time 07 > 0p. In particular, this implies w(o;) > 0 and z(o7) > 0 (by defini-
tion of the region), since (w, z) is not constant, then either w’ (01) <0 and 7(0y) =
0 or w'(o1) =0 and Z/(o1) < 0. But we have 7’(o7) = (g~ 2w + sz~ w7 —
BZ)(o1) = qw? 2w (01) < 0 or w'(01) = (pz’~ W7 +rw 12w —aw') (o) =
pz"~ w7 (01) < 0, therefore for 6 > 07 with 6 — o] small, we have W (o), 7 (o) <
0, consequently (w, z) € %»; a contradiction.

Similarly, we prove that the region % is positively invariant for the system (2.28)
and the regions

%, = {(X,Y) € Z|A,YP — aX
Py = {(X,Y) € Z|ApYP — aX

are positively invariant for the system (2.29).

Moreover, we note that if, say, (w(0p),z(0p)) € %>, then w' (o) < 0,7(0) <0
for all 0 > o0p. Indeed, assume on the contrary that there exists 07 > 0y such that
w/(01) <0 and Z(01) =0 or w(01) =0 and 7/(01) < 0. Then we have 7’(0}) =
(qwq—lzsw —ﬁZ +st—1 r /)(Gl) — qwq—lzsw/(gl) <0 or W//(Gl) _ (pzp—lwrz/ _
aw' +rw 12w (01) = pzP~'w'Z (61) < 0. Therefore, for 6] > ¢ with 61 — o small,
we have w/(0) > 0 or 7(0) > 0; a contradiction with the positivre invariance of %, .
Step?2: Let (w, z) be a nonnegative, bounded, global and nonconstant solution of (2.28)
or (2.29), then we have either:

(1) (w(0),2(0)) € Z\{% U %>} ,i.e. w7 <0 forall 6 > 0p;

(2) There exists G > oy such that (w(7), z(G)) € %), then w, Z >0 on (T, ) and

7 <0 on [0y, 5);
(3) There exists G > oy such that (w(G), z2(5)) € %>, then w', 7 <0 on (G, ) and

w'Z <0 on [op, G).

Indeed, by Step 1, if (w(5),z(0)) € Z), respectively %>, then (w(0), z(0)) €
X, respectively %, for all ¢ > &, which proves the existence of one of the later three
cases.
In the first case, we have w' < 0 and 2 >0 or w >0 and 7 < 0 for all o > oy.
Since (w, z) is bounded, then (w, z) must converge to an equilibrium (nonzero). This
yields assertion (iif). In the second and the third cases, (w, z) must converge again to
an equilibrium. Since %, C {X <AporY < By} and w, 7 <0 on (G,) then (u, v)
must be converge to (0, 0). Finally, since %) C {X > AgorY > By} and w', 7 >0
on (0,e0) then the second case cannot occur, which implies (iv).
(b) Let
Xy ={(X,Y) € Z|X =AY > Bo}.

5 is positively invariant for the system (2.28).

Indeed, we assume that (w, z) leaves %5 at some time 0] > 0y, since (w, z) # (Ao, Bo),
then either w(o;) = Ag and z(o1) > By or w(oy) > Ap and z(o)) = By, therefore
w(01) = (2w —ow)(oy) > ALB) — aAg =0 or Z(01) = (Wiz° — Bz)(01) > AIB) —
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BBy =0. Therefore w > Ay and z > By for 0 — 67 > 0 small; a contradiction. There-
fore (w(0),z(0)) € #3 for all 6 > op. Similarly, we prove that the region %5 is
positively invariant for the system (2.29).

If we assume that (w, z) is a global and bounded solution of (2.28) or (2.29), then
we have a contradiction with (a), because (i), (if) and (iv) cannot occur, because
w > Ag, z = By and (w, z) # (Ao, Bo), and for the case (iii), we have either w < 0
and 7 >0 or w' >0 and 7 < 0 forall 6 > oy, then (w, z) cannot converge to (Ao, Bo)
when ¢ tends to oo.

(¢) Let (w, z) be a nonnegative, bounded, global and nonconstant solution of (2.28) or
(2.29), then by Step 2, we have either:
(1) w >0, Z <0 forall 6 €R and lim (w, z) = (4,, By );

O —0

(2)w' <0, 7 >0forall 6 €R and lim (w,z) = (A;, By );

O—00
(3) There exists & € RU{—eo} such that w'Z <0 on (—e, ), w, Z <0 on (G, =)
and lim (w, z) = (0, 0).

O—o0

In all cases, (w,z) is bounded and monotone as ¢ tends to —eo. Therefore, it

must converge to an equilibrium (0, 0) or (Ag, By) when 0 — —eo. In cases (1) and
(2) both limits are impossible. Indeed, if lim (w,z) = (A, , By ), since ' < 0 then z
O —o00

cannot tend neither to 0 nor to By, as ¢ — —eo. Similarly, if lim (w,z) = (A, By ),
O —so0

since w' < 0 then w cannot tend neither to 0 nor to Ay, as 0 — —oo.
In the third case, we have either w' < 0 on R, or 7 < 0 on R. This rules out
convergence to (0,0) as ¢ — —oo and we conclude that lim (w, z) = (Ag, Bp). O
O——o0

We shall also need the following consequence of Proposition 2(b), concerning the
system of differential inequalities corresponding to (2.29).

PROPOSITION 3. Let oy € R. Then the problem

w > AP —aw, ¢ > 0y,
s (2.30)
7 > Bywl—Bz, ©> oy,
with
w(0o) = Ao, z(00) =Bo and (w(0v),z(00)) # (Ao, Bo), (2.31)

has no nonnegative, bounded and global solutions.

Proof. Let (w, z) be the unique maximal solution of (2.29), such that w(cp) =
w(0op) and z(0p) = z(0p). We put 0 < T} < e its maximal existence time and 0 <
T* < oo the maximal existence time of (w, z). We define the function f by

f(x,y) = (Apx” — oy, Byy? — Bx),
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since f isa C' function on R?, then by a comparison principle of ODE, we have

wZ=w,
7>z, forallop <o < min(Ty, T%).

Then, by Proposition 2(b), (w, z) cannot be a nonnegative, bounded and global solution
of (2.30). O

2.3. Proof of the Comparison Lemma 1

In this subsection, by using the local criterion for excluding blow-up (Proposition
1) and the properties of the rescaled ODE system (Proposition 2 and Proposition 3), we
prove Lemma 1. We distinguish two cases. In a first step, we prove (2.1) for p # 0,
then for p =0, in a second step.
Stepl. Let p = |a| € (0, pp). Let (W, Z) be a radial rescaling of (u, v) by similarity
variables around (7%, a) defined in Remark 2 and let K and ||. || Lk defined in the sub-

section 2.1. Fix a sequence (0;); such that o; — . By (1.7), W and Z are bounded.
By (2.13) and parabolic estimates, it follows that for some subsequence denoted also
(o;), the sequence of translates (W}, Z;) defined by

W; = W(G+Gj7 0), Z; Z:Z(O'-l-O'j, 0)

converges in W124(Q) to some pair of functions (¢, y), for each compact Q of R x R
and each g € (1, o). Consequently, (¢, y) is a bounded solution of

b — doo+ 500 ='W —ap, 0,0€R,
Vo — Voo + 2wo = ¢7y* — By, 6,0 €R.

Moreover, since up, vp < 0 then,
Wo = e_[a+1/2]6up, Zo = e_[ﬁH/z]va <0, 0p < 0 < oo,
—|ale®? < 6 < (R—|al|)e®>.
Therefore
%o, Yo <0, 0,0€cR. (2.32)
Since ¢ and y are bounded and nonincreasing, we may define

lim ¢(0,0), yi(o)= lim y(o,0).

Y R Y e

¢+ (0)

This gives that

N
h

¢+ < ¢*7 /28
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Moreover, we have

‘Pi:(l’jr:‘!/i_afpi» GER» (233)
vi=¢lyl — By, cER.
Indeed, let
U(t7x) = (T*_t)7a¢ —IOg(T*—t), )i 5
N ( . VTX*’) (2.34)
V(tax) :(T _t) l//(—lOg(T _t)7 T )7
—t
for x € R and —oo <t < T*. We observe that
UL(t) = III:Itl U(t,x) = (T*—1)"%¢s (—log(T* —1)). (2.35)
X—too
Similarly for V. Moreover, (U, V) is a solution of the system
U—-Uy,=U"VP xeR, —co<t <T",
(2.36)
Vi= Ve =U1V* xeR, —o <t <T*.

Fix y € Z(R), with [px =1 andlet & € Z(—eo, T*). Let j € N, we replace x by
X+ j in (2.36), multiplying by x(x)&(7) and integrating on (—eo, T*) X R, we obtain

- .
/ /Ut(t,x+j)x(x)§(t)dxdt:/ /[VI’U’+Uxx](t,x+j)x(x)§(t)dxdt.
— JR —oo JR
Integrating by parts, we get
[° [utx s hrozaa
——/T /U(t,x—l—j)x(x)é'(t)dxdt
_/ /Uthx+] dxdt+/ /sz+] " ()& (¢)dxdt.

We put
T*
Aj:[m/RU(t7x+j)x(x)§’(t)dxdt,

since ¢ is bounded then

U(t,x)x(x)&' (1)

(T"=1)"“ox (x)&'(2)
SC(T* =) "y (&' (r) € L'((—, T*) xR),

by (2.35) and dominated convergence theorem, we obtain

T*
lim 4, _/ (/x dx>U+ 1)dt = / Uy (t) . (2.37)
]—} oo
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Similarly, we obtain

T*

Tlim ! /VPU’(t,x+j)x(x)§(t)dxdt: VPUL (1)& (1)dt, (2.38)
J=te ) —eo JR

—oo

.
fim /R Ut x+ )" ()€ (1) dndt

o) oo
_ /_ : ( /R x”(x)dx>U+(t)§(t)dt:0. (2.39)

By (2.37), (2.38) and (2.39), we obtain

s

- [ vwgwar= [ (vioUi o3
Therefore

-
/ (U (1))~ VP (OUT (0)E(1)dt =0, forall & € P(—oo, T*).
Then U/ (t) = V(1)UL (r) on (—ee, T*) in the distribution sense, since U;, Vi €
L7 .(—oo, T*) then the result is true in the classical sense.

By the same argument, we obtain U’ = V’U”, V| =U?V$ and V! = UVS.
Converting back to ¢4 et y+, we obtain (2.33). Since ¢4 < ¢_ and y < y_ by
Proposition 2(c), only two cases are possible:

Case 1. (¢4, w1 ) = (Ag, Bo)- Then (¢_, w_) = (A, Bo), therefore (¢, w) = (Ao, Bo);
Case 2. Jim (6 (0). y:-(0)) = (0.0).
In the first case, for all #; — T, there exists a subsequence such that

lim (T* —1;)*U(tj, p) = limW (0}, 0) = Ag
J—eo

Jj—reo

and
lim (T* —1;)PV (1;, p) = limZ(c;, 0) = Bo.
J—oe

J—oo

Let us assume that case 2 occurs and show that this leads to a contradiction. Let
b such that |a| < |b| < po and let (wp, z5) and (W, Z,) be respectively the rescaling
and the radial rescaling of (u,v) by similarity variables around of (7*,b) defined in
the subsection 2.1. Then there exist € > 0 and o] > oy such that

ws(an) s + llzs(o0)ll . <e. (2.40)
Indeed, by assumption, there exists & such that

¢+7 Yy < 8/8
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Then, by definition of v, and ¢, , there exists 0 such that

0(3,0), (G, 0) <e/4
Consequently, there exists jo such that, for all j > j, we have
Wo(G+0j,0),Z(G+0j,0) <eg/2.
For 6; =6 — (|b| —|a|)e®*%)/2 we have
Wy (6+0;,0,),Z,(5+0;,0,) <e/2.
Since
Wo = e_[‘”l/z]oup, Zo = e_mH/z]va <0, 0p) < 0 < oo,
—lale®? <6 < (R—|a|)e®* and ;> —|ble®T9)/2,
then
W,(G+0j,0),Z,(G+0;,0)<e/2, 6>0;
Using 6; — —co as j — o, along with (2.14), wy,z, <M and K € L', we infer that

||Wb(6+6j)HL}( +l|z5(0 + Gj)“L}( <& forjlarge.

By Proposition 1, (2.40) implies that u(¢,b) and v(z, ) are bounded when t — T*,
contradicting |b| < po. This concludes the proof of Lemma 1, in the case when p €

(07 PO)
Step2. By Step 1, we know that

lim (7" —1)%u(t, p) =Ao,  lim (7" —0)Pv(t,p) =By, 0<p <po.
t—T*

t—T*

Since up, vp <0, then
(T* = 0)%u(t,0) = (T* —0)%u(t, p), (T*—1)Pv(t,0) = (T* —1)%(z, p).
Therefore

liminf(T* —1)%u(z,0) > Ag, liminf(T* —1)Pv(z, 0) > By. (2.41)

—T* t—T*

By contradiction, we assume that limsup(7* —7)%u(z, 0) > Ay, i.e. there exist a sub-
t—T*
sequence (¢;); and [ > Ag such that

limsup(7T* —1)%u(z,0) = 1. (2.42)

t—T*
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Let (w,z) = (wo, z0) be the rescaled solution given by similarity variables around
(T*,0), there exists a subsequence (0;); such that (w(o + 0, y),z(0 + 0j,y)) con-
verges locally uniformly to a nonnegative and bounded solution (¢, y) of the system

¢G_A¢+%V¢:¢VWP_O“P7 yeRn7 GER7 (243)
Vo —Ay+5.Vy =¢9y* — By, yeR", o €R.
Moreover, by Step 1, up, vp <0 and lim (T* —1)%u(t,0) =1 > Ag, we obtain
t—T*
¢ >Ao, Yy=By and ¢(0,0) > Ao. (2.44)

Multiplying (2.43) by K and integrating by parts, we obtain

i5 Jren OKdy = [ 0" WPKdy — ot [ 9K dy,
% Jrn WKdy = [pn 9Ty Kdy — B [pn WKdy.
Let f(0) = [pn 9Kdy and g(0) = [p. WKdy, by Jensen’s inequality and (2.44), we
conclude that
f/>A6gp_af7 GERa
¢ >B)f1—Pg, c€R.

Moreover, f(0) > Ag and g(0) > By, this contradicts the Proposition 3, since (f, g) is
a nonnegative, bounded and global solution. Consequently,

limsup(T* —1)%u(z, 0) < Ap.

t—T*

By exchanging the roles of u, Ay and & and v, By and 3, we prove that

limsup(7* —1)Pv(z, 0) < By.

t—T*

By (2.41), we conclude that

lim (T* —1)%u(t,0) = Ay and  lim (7" —1)Pv(z,0) = By.

t—T* t—T*

In particular, by the continuity of the function x +— x?” for p >0 on R, we have

lim (T* — 1)@= 451=r (1 o) = AT forall p € [0, py.

t—T*

lim (7% —)PPHI=9pH1=5( oy = BPHI75 - forall p € [0, py].

t—T*

Therefore

. uq+1—r(t7p/) g+1—rp—(p+1)+s /
[EI}]*W :AO BO s for all p,p € [07 pl]

Since we have
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1—
utt r(’:Pl) _AqulfrBf(erl)Jrs

vp'H_S(t,O) 0 0
uittr g+1—rp—(p+1)+s
S s p) Ay By
uq+l—r(t,0) q+1—rp—(p+1)+s
K—— 4 B, .
Vp+175(t7p1)
Then

+1—rp—(p+1)+s
(ta p) _Ag BO P

‘ uq+17r(t7 Pl)
S yrtl=s(e,0)

) uq+1—r

pp+l=s

_Ag+1—rB—(p+l)+s ’ ”q+lir(t7 0) _Aq+l—rB—(p+1)+s

0 —s 0 0
vrtl S(t’ pl)
—0.
t—T*
- —s , —rp—(p+1)+s
Then, we conclude that u?t'~"/yP*1=5 converges uniformly to AS™' "B, (PED+s o

[Ov pl]

3. Single-point blow-up

In this section, we are concerned with the proof of Theorem 1. Asin [3, 5, 10], we
consider the following modified functions

G(t,p) =up+ec(p)u’, J(t,p)=vp+ed(p)’, 3.1)

with
c(p) =sin*(mp/a), d(p)=Ke(p), (32)

where ¥, > 1 and €, K, a > 0 are to be fixed later. We note that G, J € C((0, T*) x
[0, R])NC"2((0, T*) x (0, R)). We show that (G, J) satisfies a new system of parabolic
inequalities (See Lemma 2 below), from a maximum principle we deduce that G, J <0
on [, T*) x [0, po/2] for some 7 € (0, T*). By integrating these inequalities, we obtain
upper bounds on # and v, away from p = 0, hence in particular single-point blow-up
occurs.

As a starting point of our improvement, by using the comparison properties be-
tween u and v in Lemma 1, we get the following lemma:

LEMMA 2. Let (u,v) be a positive classical solution of (1.1) and satisfy the as-
sumptions of Lemma 1, let a = py/2, where pg is as in Lemma 1. Then there exist v,
¥>1, K>0and t€(0,T*), such that for all € € (0,1], G and J satisfy

{ G, — Gpp — np;le + "p;zlG < pvp—lurj+ + [}"u"—lvp _ ZC/YSMY_l]G, 53

Ji=Jpp = "5Hp + BT < quim WG+ v ud = 2d" eV,

Sforallt € (t,T*) and for all p €0, a.
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Proof. Let F = u”. By derivation of (3.1), we obtain
G, — Gpp = (up); + €cF, — (upp)p — €c"F — 2&c'F, — €cFpp
= (u[ - upp)p +& (C(E - Fpp) - ZC/FP - C”F) .
Using

n—1

(ut_upp)p B < up +urvp>
n—1 n—1 _ _
= 5 upp—?up—kpvp 1u’vp—|—ru’ 1vpup,

p

F—Fyp = yu? 'u, —y(y— l)u”_zu’z) — " upp
<y (ur — upp)

= Yu7_1<n_

1
up—l—u’vp),

up =G —ecu? and v, =J — edv?, we obtain

n—1

| ,
G; —Gpp < (G—ecu’), — np—z(G—£cu7)—|—pvp71u’(J—8dv7)

+ ru"" WP (G —ecu?) +eu’! [)/c(n_

—1 —1 —1 —1
- Gp—sn ut — " cyuyflup—n G
P P p p
+ Snp_2 cu? + pvP N (J — edv?) + r " WP (G — ecu)
—1
+ eu?! [yc(n up + u’vp> -2y (G —ecu?) — "ul.
Consequently,
n—1 n—1
Gi—Gpp = "= Gp + "G
<pvP WL+ [ru’_lvp - 2c'y£u7_1]G+£H1,
with
Hy := —pdv’ 7 Y — reu 7 1yP
—1
+ u?! [YC(urvp) —|—287c/cuy—|—u<n 5 (% - c’) - c”)} .

We get

1
Up +u’v”> —2ycup —c"u

(3.4)
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[ —
U
vi-t u? u m—171 ¢\
— pK—— 2eyc (==(--5)-%). 653
PR T rby e u’vP+u’vF p \p ¢ c (3-5)

By exchanging the roles of u, ¢, r, ¥ and ¢ and v, p, s, 7 and d, we have

h—dpp— "Ly gLy
t—Jpp p P2
<qui WGy + [ ul —2d' eV’ T +eHy,  (3.6)
with
- H,
Hy ' = ———F"——
2T T T (u)
q ur! Y v (n—l(l d’) d”)
=12 __ 2e7d ——S)-2). @7
Kvr-1 Sy ey uqu+uqv5 p \p d d 3.7)
We choose y and 7 such that
Jeyepdtlor g2 (3.8)
LA e puri b A P g '
and
g+1—r _ . — ylp+l=s)+g—p+s—r
—l=——-1 .e. Y= . 3.9
T ey S 6)

On the other hand, we have

Lod_ 1 1]
p cop p p
Therefore
n—l<1 c’) n—1
JR— “ — —o00
p \p ¢/ 0 pT poof
) SN 21
Lt (5) e
— —O0
p—07T
Then
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Moreover, when p — a™,

n—1,1 ¢ " n—1 2rn—1 272 & T
(— - —) = - [— +—5-cot—p|cot—p +
p \p ¢ a p a a a

272

¢ p?
— —o00 .
p—a-

a

. — / I . . .
Since ”p—l (% - %) — & is continuous on ]0,a[, then there exists C >0 (C denotes a

positive constant which may vary from line to line) such that

n—1,1 ¢ "
I . .
5 (p c) E <C, forallp €[0,d] (3.10)

By (2.3), there exist C > 0 and 11 € (0,T*) such that
W10/ p) < Cole, ) in [1,T7) % [0, a).

Therefore

—plg+1-r)

v P, p)<Cu P (t,p) in[1,T*)x[0,dq]. (3.11)
Then, by (3.5), (3.10) and (3.11), we obtain

~ 7-1 . plgtl-r) C
H) < —PK% —ry+Cu T P
u

ur—lvp
-1 _p_platl=r) ¢
< Ko =y Clu(n,a)”™ s w=1(1,a)vv(t,a)

in [11,7%) x [0, a], where we also used u,,v, <0 and (3.8). As a consequence of (2.1),
(3.9) and (3.8), the RHS of the last inequality converges uniformly on [0,d] to

BZ_I
L:=—pK———r+y
y-1 ’
Ap

as t — T, where (Ao, Bo) is given by (2.2). Taking

B Ag_l qg+1—r

B Bl 'pt1l-s
it follows from (3.8) that L < 0. Therefore, there exists T € [7;, T*) such that H; <0
in Q:=1[1,T*) x[0,d]. By (3.4), we conclude that

-1 —1
n Gp+ np2 G<p" Wi+ [ru’_lvp - 20/y£u7’_1]G in Q.

G —Gpp —
Similarly, by (3.6), (3.7) and by exchanging the roles of u, ¢, r, ¥ and ¢ and v, p, s,
Y and d, we prove that

1 1 -
Jr—=Jpp — nTJp + inJ <qui~ WG, + [svs_luq — 2d/778v7’_1]1 in Q.0
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With Lemma 1 and Lemma 2 at hand, we turn now to prove Theorem 1.

Proof of Theorem 1. Let (u,v) be a solution of the system (1.1) satisfy the hy-
potheses of Theorem | and assume by contradiction that there exists pg € (0, R) such
that

limsup(u(t, po) +v(t, o)) = . (3.12)

t—T*
Since we have
up <0 on{(0,7%)x{0}}U{(0,T") x {R}} U{{0} x [0,R]}, R < oo

and
n—1

Uy — Upp — up = f(t,p) on (0,7%)x (0,R),

with

ft,p)=uV’' and f,= pv”flurvp +ru" " WPu, <0,
then by using the maximum principle [9, Lemma 52.18], we have u, <0 on (0, 7*) x
(0,R] and up,(r,0) <0 on (0, T*). By exchanging the roles of u and v, we obtain
vp <0 on (0,7*) x (0,R] and vp,(t,0) <0 on (0,7%). (If Q=R" (0, R] can be
replaced by (0, «)).

Let J, G and 7 be given by Lemma 2. Taking € sufficiently small, we have J,
G<0on {(t,T*) x {0} }U{(7,T*) x {a}} U{{7} x [0,d]}, with a = py/2, then by
using the maximum principle (See Remark 3 below), we obtain J, G <0 on (7, T") X
[0, a].

Since J < 0, we obtain

—Vp = edV7.

By integration, we deduce that
VWt a) > c5/ sin®(né Ja)dé >0, forall T<r<T*"
0

Using y > 1, it follows that v(z, a), and similarly u(z, a), is bounded on |7, T*). Since
up,vp < 0, this yields a contradiction with (3.12). The theorem is proved. L]

REMARK 3. For completeness, we now prove the maximum principle for the sys-
tem of parabolic inequalities (3.3). Fixing T} € (7,7*), multiplying (3.3) by p"~'G+ >
0 and integrating by parts over (0, a). Since G(z, 0), G(z, a) < 0, we obtain

Ld ¢ 42
—— "Ghd
2dt/op +4P

a a
< p/ p Wl G ydp —|—/ p" P — 2 yeu’ ) GLdp
0 0
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— /O XiG=01p" 'Gpdp

a
< c/ p" L2 +G2)dp, forallr € (1,T}).
0

Similarly, we obtain

n—1 42 2 2
Jrdp <C (J2+G)d
2dt/p p< /p + G4 )dp.
Then,

1 2\dp < /” n—1/12 2\dp.
2d;/” (J2 +GL)dp cl P (5 +G)dp

Integrating over (7, 1). Since G(7,.),J(7,.) <0, by Gronwall’s lemma, we conclude
that J2 +G% =0. Then, G,J <0 in [7, T*) x [0, a].

4. Lower pointwise estimates

In this section we are concerned with the proof of Theorem 2. As a starting point
we prepare the following lemma:

LEMMA 3. Under the assumptions of Theorem 2, we obtain
lu(@)l|le > CUT* =1)% V()] > Co(T* =) P, T*/2<1<T7,

for some constants Cy, C, > 0 depending on u and v.

Proof. We put
U(t) =u(t,0), V()=v(,0).

Under the assumptions of Theorem 2, blow-up occurs only at the origin, then U (T*) =
V(T*) = oo. By (1.1), it follows that

U'(t) = u(t,0) = Au(t, 0) +u"(t, 0V (¢, 0).
Since Au(t, 0) <0, then U'(r) <U"VP. Similarly, we obtain V'(r) < VSU4. Therefore,

by (1.7), |lu(t)|| = u(z, 0) and ||v(z)]| = v(t, 0), there exists C (C denotes a positive
constant which may vary from line to line) such that

ptl—=s
u(t,0) < Cvati=r(z,0).
Therefore

1—s
W (2,0) < OV ET (1, 0). @.1)
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Similarly, we have
. Yq+l—r
Vi (2, 0) < Cu’ 715 (1, 0). (4.2)
Therefore,
U/(Z) < Cvarr(erlfs)/(qulfr) and V/(l) < CUqu.\'(qulfr)/(erlfs).
Then,
Lqt1-r

g+s pHI—

, 1 p+rp+l:x .
Vi(t)<C(U0)+C | VIT &= (0)do , forallz € (0,T%).
0

Therefore

g+1—

4 1-s +s
V’(z)<C(/ V””isil*'(c)dG)q P forallr € (T2, 7).
0

Multiplying by V2 +7(P+1-9)/{a+1=r) and integrating between 0 and 7, we obtain

, +rp+1—s 1 +rp+l—x q+.\'% LppEl=s +1-s
V Vp q+1—r < C( Vp q+1—r (G)do-> Vp g+1— r
0

+1—r
prl=s 4 ptl=s g+l
Vp+rq+17,+ < C(/ Verqurl*V (G)dG) )4 s ,
0

ptl—s
gt 1l D r
P+ ptl=s
p+l+rq+lfr
’

Vp-&-r”q%tf < C(/t Vp+r7§ill:f (G)dG)
0
forall € (T*/2,T*). Then, we put

flt) = /t yPrrpH=9)/(aH1=n) (6 d o

0
and +1—s
1= [g+ 14T PHig
pt+1l-s p+1+rgjf_;
we have
fny<cro),
" f/( Ydo < C(T* —1t)
. Al ’

S () S 0) <O ), foralli € (17/2,T7)

Since —I+1= —é <0, then f'=!(T*) = 0. Therefore

1
l_—lfl_l(f) <C(T" —1),
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fOt<c—1)(T* 1), forallt € (T*/2,T").

Therefore

1
/ VIR (0)do > C(T" —1)7%, forallr € (T°/2,T7).
0

Let 1€ (T*/2,T*), by (1.7) and V was being nondecreasing, there exists C' > 0 such
that

C(T* —1) °‘</ yPriET ‘(o dcr—i—/ P = (0)do

ptl— s
< C/(T* o "L') -B <P+rq+1 ,)'H n (Z B T)Vp-"_risillfr (l‘)

Taking T =T* — y(T* —t), for y > max(1, (2C'/C /e , we obtain
g Y

The lower estimate on U follows similarly. [
Proof of Theorem 2. Since v, = 0, up <0 and vp <0 then,

d

1 ' ' '
op (2 5+ v(h')) = (vop +ul')vp +qut™ VT Uy + sutv,

n—1 _
vp)vp + gvul? lup +sulv'v, <O0.

= (v —

Then
1 2

(395 +v(W) (1, p) < (53 + () 1,0)
= v()1,0).

On the other hand, by (1.7) and Lemma 3, there exists C > 0 such that

ut,0) < C(T*—1)~“

<Cv(t, 00 B, 0), forallr € (T7/2,T%).



Then

with
that
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[vp (1)]] < COVM™D2(0), foralls € (T7)2, TY),

m=[q(p+1)+s(1—r)]/(g+1—r). Asin [10, p. 187], there exists ) > 0 such

v(T*, |x]) = Clx|~%#, forallxe (0,n).

The estimate on u is obtained similarly. [J
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