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Abstract. In this paper, we consider positive solutions of the system

ut −Δu = ur vp, vt −Δv = uq vs

t ∈ (0, T ) , x ∈ B(0, R) = {x ∈ R
n | |x| < R} or x ∈ R

n and p, q, r, s > 1 . We prove single-point
blow-up if r < q + 1 and s < p + 1 and for a large class of radial decreasing solutions. This
extends the result of Friedman and Giga for this basic system known only for p = q = r = s . We
also obtain lower pointwise estimates for the blow-up profiles.

1. Introduction and main results

Let us consider the following reaction-diffusion system:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ut −Δu = |u|r−1u |v|p−1v, x ∈ Ω, t > 0,

vt −Δv = |u|q−1u |v|s−1v, x ∈ Ω, t > 0,

u = v = 0, x ∈ ∂Ω, t > 0,

u(0, x) = u0(x), x ∈ Ω,

v(0, x) = v0(x), x ∈ Ω,

(1.1)

where p, q, r, s > 1, Ω =B(0, R)= {x∈R
n | |x|<R} with R > 0 or Ω = R

n , (u0, v0)∈
L∞(Ω)×L∞(Ω) and u0 , v0 are positive, radially symmetric and radially nonincreasing.
It is known that (1.1) has a unique positive, radially symmetric and radially nonincreas-
ing maximal solution on [0, T ∗)×Ω , classical for t > 0, i.e. u, v > 0, u, v depend
only on ρ = |x| at a given t (we shall identify (u(t, x), v(t,x)) and (u(t, ρ), v(t, ρ)),
uρ , vρ � 0, where uρ , vρ denote the derivatives of u, v with respect to ρ , and u ,
v ∈ C((0, T ∗)× [0, R])∩C1,2((0, T ∗)× (0, R)). This follows by standard contraction
mapping argument. Moreover, if T ∗ < ∞ , then

limsup
t→T ∗

(‖u(t)‖+‖v(t)‖∞) = +∞, (1.2)
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we say that the solution blows up in finite time with blow-up time T ∗ . See [1, 4, 12].
We also known that, if

r < q+1 and s < p+1

then the blow-up is simultaneous, i.e.

limsup
t→T ∗

‖u(t)‖∞ = limsup
t→T ∗

‖v(t)‖∞ = +∞.

See [7, Theorem 4.1].
Throughout the paper, we assume that

pq− (r−1)(s−1) �= 0 (1.3)

and we shall use the notation

α =
p+1− s

pq− (r−1)(s−1)
, β =

q+1− r
pq− (r−1)(s−1)

. (1.4)

By (1.3) and p, q, r, s > 1, for r < q+1 and s < p+1, we have α, β > 0.
The purpose of this paper is to localize the blow-up points for (u, v) the solution of

the system (1.1). Let us mention that Friedman and Giga ([5]) proved that the solution
of the following system {

ut −Δu = |v|p−1v, x ∈ Ω, t > 0,

vt −Δv = |u|q−1u, x ∈ Ω, t > 0,
(1.5)

blows up at the single point x = 0 for a symmetric decreasing initial data, n = 1 and
under the very restrictive condition p = q. Moreover, they extended their result to the
system {

ut −Δu = f (u, v), x ∈ Ω, t > 0,

vt −Δv = g(u, v), x ∈ Ω, t > 0,

where the functions f and g satisfy some hypotheses, see [5, pp. 75-76]. Under these
hypotheses, the solution of our system blows-up at the single point x = 0 only under
the condition p = q = r = s. More recently, Souplet proved that single-point blow-up
occurs for the system (1.5) for a large class of radial decreasing solutions, in a ball or
in the whole space and without the condition p = q, see [10]. Note that for the system
(1.5) only simultaneous blow-up occurs.

It is therefore natural to ask whether and under which conditions x = 0 is the
single-point blow-up point for system (1.1). An answer to this question is given by the
following theorem, which is the main result of this paper.

THEOREM 1. Let Ω = B(0, R) and p, q, r, s > 1 be such that

r < q+1 and s < p+1. (1.6)
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Let α, β be given by (1.4). Let (u, v) be a positive, radially symmetric and
classical solution of (1.1) such that uρ , vρ � 0 and T ∗ < ∞ . Assume that (u, v)
satisfies the upper blow-up estimates:

sup
0<t<T ∗

(T ∗ − t)α‖u(t)‖∞ < ∞, sup
0<t<T ∗

(T ∗ − t)β‖v(t)‖∞ < ∞. (1.7)

Then blow-up occurs only at the origin, i.e.

sup
0<t<T∗

(u(t, ρ)+ v(t, ρ)) < ∞, for all ρ ∈ (0, R). (1.8)

REMARKS 1. (i) The upper blow-up estimates (1.7) are known to be true if we
assume in addition that

ut ,vt � 0 on (0, T ∗)×BR,

where ut , vt denote the derivatives of u, v with respect to t , and if there exists a positive
constant ε such that {

Δu0 +(1− ε)ur
0v

p
0 � 0,

Δv0 +(1− ε)uq
0v

s
0 � 0.

We note that the existence of a positive, radially symmetric and classical solution of
(1.1) such that uρ , vρ � 0, ut ,vt � 0 and T ∗ < ∞ , can be obtained for initial data
(λu0, λv0) with λ > 0 large enough, whenever⎧⎪⎨⎪⎩

u0, v0 are positive, radially symmetric and nonincreasing,

Δu0 +ur
0v

p
0 � 0,

Δv0 +uq
0v

s
0 � 0.

See [7]. We also refer to [2, 11] for other results related to properties (1.7).

(ii) The result of Theorem 1 remains true for the Cauchy problem (1.1) (that is, R = ∞)
provided u0, v0 are not both constant. This follows from straightforward modifications
of the proof.

Our second aim is to establish pointwise lower bounds on the blow-up profiles.

THEOREM 2. Let Ω = B(0, R) and p, q, r, s > 1 be such that

r < q+1 and s < p+1.

Let (u, v) be a positive, radially symmetric and classical solution of (1.1) such that
uρ ,vρ � 0, ut ,vt � 0 , T ∗ < ∞ and satisfies the upper blow-up estimates (1.7). Then
we have the estimates

|x|2αu(T ∗, x) � c1, 0 < |x| < η

and

|x|2β v(T ∗, x) � c2, 0 < |x| < η ,

for some c1 , c2, η > 0.



566 NEJIB MAHMOUDI

The organization of this paper is as follows. In the second section, we prove
asymptotic comparison properties between the components of the solution (u, v) near
blow-up points. Next, we use them to prove Theorem 1 in the third section. Finally,
in Section 4, we establish the pointwise lower bounds on the blow-up profiles, which
proves Theorem 2.

2. Asymptotic comparison of components

As in [5] (and cf. [6]) the basic idea for proving single-point blow-up is to apply
the maximum principle to a couple (G, J) of functions of the form

G(t, ρ) = uρ + εc(ρ)uγ , J(t, ρ) = vρ + εd(ρ)vγ .

However, this turns out to require good comparison properties between u and v . Due
to the general comparison properties used in [5], the result there for system (1.1) im-
poses the severe restriction p = q = r = s (see Remark 1 below). To overcome this,
we follow the strategy in [10]. Namely, instead of looking for comparison properties
valid everywhere, we assume for contradiction that single-point blow-up fails (i.e., that
blow-up occurs everywhere in a ball near the origin), and we prove asymptotic compar-
ison properties between components near blow-up points. It turns out that they can be
obtained without making any extra assumption on the exponents p,q,r,s and they are
sufficient to handle the system satisfied by suitable functions of the form G,J .

This section is devoted to the derivation of such comparison properties. They are
given by the following lemma.

LEMMA 1. Let Ω = B(0, R) and p, q, r, s > 1 be such that

r < q+1, s < p+1.

Let (u, v) be a positive, radially symmetric and classical solution of (1.1), such that
uρ , vρ � 0 and T ∗ < ∞ . Assume that (u, v) satisfies the upper estimates (1.7). If there
exists ρ0 ∈ (0, R) such that

limsup
t→T ∗

(
u(t, ρ0)+ v(t, ρ0)

)
= ∞,

then for all 0 � ρ < ρ0, we have

lim
t→T ∗(T

∗ − t)αu(t, ρ) = A0, lim
t→T ∗(T

∗ − t)βv(t, ρ) = B0, (2.1)

where

A0 =
(
β pα1−s) 1

pq−(s−1)(r−1) , B0 =
(
αqβ 1−r) 1

pq−(s−1)(r−1) . (2.2)

In particular,

lim
t→T ∗

[
uq+1−r

vp+1−s

]
(t, ρ) = Aq+1−r

0 B−(p+1)+s
0 ,

uniformly on [0, ρ1], for each ρ1 ∈ (0, ρ0). (2.3)
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This lemma will be proved in Subsection 2.3. As in [10], we prepare a number of
preliminaries and of auxiliary results that will be given in Subsections 2.1 and 2.2. The
main idea of the proof is to identify suitable space limits of rescaled solutions in terms
of an ODE system, and of a criterion for excluding blow-up at a given point.

REMARK 1. Let us mention that in [5], Friedman and Giga prove single-point
blow-up for positive solutions of the following system

ut −Δu = f (u, v), vt −Δv = g(u, v)

under the hypotheses u �C(v+1) and v �C(v+1), and the functions f and g satisfy
the following conditions:

f , g ∈C1(R2); (2.4)

f (u, v), g(u, v) > 0, fu, fv, gu, gv � 0 if u > 0, v > 0; (2.5)

c1 f � u fu + v fv, if v > M, u >
v
C
−1 and for some constants M, c1 > 1; (2.6)

c2 g � ugu + vgv, if u > M, v >
u
C
−1 and for some constants M, c2 > 1; (2.7)

g(y+1, εy) � ε f (y+1, εy), for some small ε > 0 and for all y � 0; (2.8)

f (y+1, εy) � εg(y+1, εy), for some small ε > 0 and for all y � 0. (2.9)

Then, for the particular case f (u, v) = vp ur and g(u, v) = uq vs, the result of Friedman
and Giga for the system (1.1) is true only in the very restrictive case p = q = r = s .
Indeed, let f (u, v) = vp ur and g(u, v) = uq vs , we obtain

u fu + v fv = pvp ur + rvp ur � c1(vp ur), where c1 = min(p, r)
ugu + vgv = quq vs + svs uq � c2(vs uq), where c2 = min(q, s).

Moreover, the hypotheses (2.8) and (2.9) imply that

εs(y+1)qys � ε p+1(y+1)ryp,

ε p(y+1)ryp � εs+1(y+1)qys.

Then, taking y in the neighborhood of 0 and then in neighborhood of ∞ , we obtain

ys−p � ε p+1−s,

yp−s � εs+1−p,

yq+s−(p+r) � ε p+1−s,

yp+r−(q+s) � εs+1−p.

So that these inequalities are valid, it necessary to choose p , q , r and s such that
p = q = r = s .
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2.1. Local criterion for excluding blow-up

As in [10], in this section, we allow Ω to be an arbitrary smooth domain in R
n .

We also allow sign-changing solutions of (1.1). Let b ∈ Ω, we define the similarity
variables around (T ∗, b) by

σ = − log(T ∗ − t), y =
x−b√
T ∗ − t

= eσ/2(x−b),

and the rescaled solution by{
w = wb(σ , y) = (T ∗ − t)αu(t, x),

z = zb(σ , y) = (T ∗ − t)βv(t, x),

on
D := {(σ , y) | b+ ye−σ/2 ∈ Ω, σ0 < σ < ∞}, σ0 = − logT ∗.

In similarity variables, the partial differential equations in system (1.1) read{
wσ −L w = |w|r−1w |z|p−1z−αw, (σ , y) ∈ D,

zσ −L z = |w|q−1w |z|s−1z−β z, (σ , y) ∈ D,

where

L = Δ− y
2
.∇ = K−1∇.(K∇), K(y) = (4π)−n/2e−|y|2/4, ∀ y ∈ R

n.

We denote by (T (σ))σ�0 the semigroup associated with L . More precisely, for each
φ ∈ L∞(Rn), we set T (σ)φ := w(σ , .) , where w is the unique solution of{

wσ = L w, y ∈ R
n, σ > 0,

w(0, y) = φ(y), y ∈ R
n.

For any φ ∈ L∞(Rn), we put

‖φ‖Ll
K

=
(∫

Rn
|φ(y)|lK(y)dy

)1/l

, 1 � l < ∞.

Let 1 � k < l < ∞ , then

‖φ‖Lk
K

� c(k, l,n)‖φ‖Ll
K
, 1 � k < l < ∞. (2.10)

If the function φ is defined only on a subdomain of R
n, then ‖φ‖Lr

K
denotes the norm

of the extension of φ by 0 on R
n.

The semigroup (T (σ))σ�0 has the following two properties (see e.g. [10]):

(1) (Contraction) For any 1 � l < ∞,

‖T (σ)φ‖Ll
K

� ‖φ‖Ll
K
, σ � 0, φ ∈ L∞(Rn). (2.11)
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(2) (Delayed regularizing effect) For any 1 � m < l < ∞, there exist C0, σ∗ > 0 such
that

‖T (σ)φ‖Ll
K

� C0‖φ‖Lm
K
, σ � σ∗, φ ∈ L∞(Rn). (2.12)

REMARK 2. Let Ω = BR and u , v radially symmetric, then write u(t, x)=U(t, ρ),
v(t, x) = V (t, ρ) with ρ = |x|. We set⎧⎪⎪⎨⎪⎪⎩

W = Wb(σ , θ ) = (T ∗ − t)αU(t, ρ),

Z = Zb(σ , θ ) = (T ∗ − t)βV (t, ρ),

θ = ρ−|b|√
T∗−t

.

Then (W,Z) is a solution of⎧⎨⎩Wσ −Wθθ + θ
2Wθ = |W |r−1W |Z|p−1Z−αW + (n−1)e−σ/2

|b|+e−σ/2θ Wθ , (σ , θ ) ∈ D̃,

Zσ −Zθθ + θ
2 Zθ = |W |q−1W |Z|s−1Z−βZ + (n−1)e−σ/2

|b|+e−σ/2θ Zθ , (σ , θ ) ∈ D̃,
(2.13)

with

D̃ :=
{
(σ , θ ) | − |b|eσ/2 < θ < (R−|b|)eσ/2, σ0 < σ < ∞

}
, σ0 = − log(T ∗).

We also note that
wb(σ , y) = Wb

(
σ , |beσ/2 + y|− |b|eσ/2). (2.14)

And a similar relation holds for Zb .

PROPOSITION 1. Let M > 0 and (u, v) be a classical solution of (1.1) such that
T ∗ < ∞ and

(T ∗ − t)α‖u(t)‖∞ � M, (T ∗ − t)β‖v(t)‖∞ � M, 0 < t < T ∗. (2.15)

Let a∈ Ω and let (w, z) be the rescaled solution by similarity variables around (T ∗,a) .
There exists ε = ε(n, p,q,s,r,M) such that, if

‖w(σ1)‖L1
K

+‖z(σ1)‖L1
K

< ε (2.16)

for some σ1 � σ0 = − log(T ∗), then a is not a blow-up point of (u, v) , i.e. (u, v) is
uniformly bounded in the neighborhood of (T ∗, a).

Proof. For given σ2 � σ0, we denote respectively by w and z the solution of{
wσ −L w = |w̃|r |z̃|p−αw, y ∈ R

n, σ > σ2,

w(σ2, y) = |w̃(σ2, y)|, y ∈ R
n,
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and {
zσ −L z = |w̃|q |z̃|s −β z, y ∈ R

n, σ > σ2,

z(σ2, y) = |z̃(σ2, y)|, y ∈ R
n,

where w̃ and z̃ denote the extensions by 0 of w and z to the whole of R
n. We note

that (w, z) exists globally. We denote by⎧⎨⎩ u = (T ∗ − t)−αw
(
− log(T ∗ − t), x−b√

T ∗−t

)
, (t, x) ∈ (t0, T ∗)×Ω,

v = (T ∗ − t)−β z
(
− log(T ∗ − t), x−b√

T ∗−t

)
, (t, x) ∈ (t0, T ∗)×Ω.

(u, v) is a solution of the following system:⎧⎪⎪⎪⎨⎪⎪⎪⎩
ut −Δu = |u|r |v|p, x ∈ Ω, t > t0,

vt −Δv = |u|q |v|s, x ∈ Ω, t > t0,

u(t0, x) = |u(t0, x)|, x ∈ Ω,

v(t0, x) = |v(t0, x)|, x ∈ Ω.

By the maximum principle, we obtain |u| � u and |v| � v for all t � t0 . Return to
(w, z) , we obtain that |w̃| � w and |z̃| � z for any σ � σ2 . By the variation constants
formula, we deduce that

|w̃(σ2 + σ)| � w(σ2 + σ)

= e−ασ T (σ)|w̃(σ2)|+
∫ σ

0
e−α(σ−τ)T (σ − τ)

(
|w̃(σ2 + τ)|r|z̃(σ2 + τ)|p

)
dτ

= e−ασT (σ)|w̃(σ2)|+
∫ σ

0
e−ασ eατT (σ − τ)

(
|w̃(σ2 + τ)|r|z̃(σ2 + τ)|p

)
dτ.

Then, we have

eασ |w̃(σ2 + σ)|
� T (σ)|w̃(σ2)|+

∫ σ

0
eατT (σ − τ)

(
|w̃(σ2 + τ)|r|z̃(σ2 + τ)|p

)
dτ. (2.17)

By exchanging the roles of w̃ , p and r and z̃, q and s in (2.17), we obtain

eβ σ |z̃(σ2 + σ)|
� T (σ)|z̃(σ2)|+

∫ σ

0
eβ τT (σ − τ)

(
|w̃(σ2 + τ)|q|z̃(σ2 + τ)|s

)
dτ, (2.18)

for all σ2 � σ0, σ > 0. By (2.15), we have

‖w(σ)‖∞ = (T ∗ − t)α‖u(t)‖∞ � M

and ‖z(σ)‖∞ = (T ∗ − t)β‖v(t)‖∞ � M, for all σ � σ0. Then the function h := w+ z
satisfies

hσ −L h = wσ + zσ −L w−L z = |w̃|r|z̃|p + |w̃|q|z̃|s −αw−β z
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� Mp−1+r|z̃|+Mq−1+s|w̃|
� C1(|w̃|+ |z̃|)
� C1(w+ z)
= C1h,

with C1 = max(Mq−1+s, Mp−1+r). Therefore

h(σ) � eC1σ T (σ)h(σ2), for all σ2 � σ0, σ > 0.

Therefore

|w̃(σ2 + σ)|+ |z̃(σ2 + σ)|� w(σ2 + σ)+ z(σ2 + σ)

� eC1σ T (σ)(|w̃(σ2)|+ |z̃(σ2)|), for all σ2 � σ0, σ > 0. (2.19)

Fix a finite l such that

l > max(2,n)max(p, q, r, s) (2.20)

and let σ∗ be given by (2.12), with m = 1. For σ1 given by (2.16), then by (2.19) and
(2.11), we obtain

‖w̃(σ1 + σ)‖L1
K
+‖z̃(σ1 + σ)‖L1

K
= ‖(|w̃|+ |z̃|)(σ1 + σ)‖L1

K

� ‖eC1σ T (σ)(|w̃(σ1)|+ |z̃(σ1)|)‖L1
K

� eC1σ‖|w̃(σ1)|+ |z̃(σ1)|‖L1
K

< eC1σ ε.

Therefore

‖w̃(σ1 + σ)‖L1
K
+‖z̃(σ1 + σ)‖L1

K
� C2ε, 0 < σ � σ∗, C2 = eC1σ∗

. (2.21)

Let now

Aσ =
{

σ > 0 | eατ‖w̃(σ1 + σ∗+ τ)‖L1
K
+ eβ τ‖z̃(σ1 + σ∗ + τ)‖L1

K

� 2C2ε, τ ∈ [0,σ ]
}
.

By (2.21), we have

‖w̃(σ1 + σ∗)‖L1
K
+‖z̃(σ1 + σ∗)‖L1

K
� C2ε,

on the other hand the function

σ 
→ eασ‖w̃(σ1 + σ∗+ σ)‖L1
K
+ eβ σ‖z̃(σ1 + σ∗ + σ)‖L1

K



572 NEJIB MAHMOUDI

is continuous in (0,∞) and

lim
σ→0

f (σ) = ‖w̃(σ1 + σ∗)‖L1
K

+‖z̃(σ1 + σ∗)‖L1
K
,

then Aσ �= /0. We denote by T0 = supAσ , note that T0 > 0. We assume by contradiction
that T0 < ∞. Assuming that p � q , without loss of generality, hence α � β , then by
(2.21), we obtain

‖w̃(σ1 + σ∗+ σ)‖L1
K
+‖z̃(σ1 + σ∗ + σ)‖L1

K
� 2C2εe−ασ , −σ∗ � σ � T0. (2.22)

Let 0 � τ � T0, by (2.19), (2.12) and (2.22), we have

‖w̃(σ1 + σ∗ + τ)‖Ll
K
+‖z̃(σ1 + σ∗ + τ)‖Ll

K

� 2eC1σ∗‖T (σ∗)(|w̃(σ1 + τ)|+ |z̃(σ1 + τ)|)‖Ll
K

� 2eC1σ∗‖T (σ∗)|w̃(σ1 + τ)|‖Ll
K
+‖T(σ∗)(|z̃(σ1 + τ)|)‖Ll

K

� 2eC1σ∗
C0(‖w̃(σ1 + τ)|‖L1

K
+‖z̃(σ1 + τ)‖L1

K
)

� 4C2C0e
C1σ∗

εe−α(τ−σ∗).

Therefore

‖w̃(σ1 + σ∗ + τ)‖Ll
K
+‖z̃(σ1 + σ∗ + τ)‖Ll

K
� C3εe−ατ , (2.23)

for all 0 � τ � T0, with C3 = 4C2C0e(α+C1)σ∗
.

Using (2.17), with σ2 = σ1 + σ∗ , then by (2.11), (2.10) and (2.23), we obtain

eασ‖w̃(σ1 + σ∗+ σ)‖L1
K

� ‖w̃(σ1 + σ∗)‖L1
K

+
∫ σ

0
eατ‖T (σ − τ)(|w̃|r(σ1 + σ∗+ τ)|z̃|p(σ1 + σ∗ + τ))‖L1

K
dτ

� ‖w̃(σ1 + σ∗)‖L1
K

+
∫ σ

0
eατ‖|w̃|r(σ1 + σ∗ + τ)|z̃|p(σ1 + σ∗+ τ)‖L1

K
dτ

� ‖w̃(σ1 + σ∗)‖L1
K

+
∫ σ

0
eατ‖w̃(σ1 + σ∗ + τ)‖r

∞‖z̃(σ1 + σ∗+ τ)‖p
Lp

K
dτ

� ‖w̃(σ1 + σ∗)‖L1
K

+MrCp
∫ σ

0
eατ‖z̃(σ1 + σ∗+ τ)‖p

Ll
K
dτ

� ‖w̃(σ1 + σ∗)‖L1
K

+(CC3ε)pMr
∫ σ

0
eατe−α pτdτ.

Therefore

eασ‖w̃(σ1 + σ∗+ σ)‖L1
K

� ‖w̃(σ1 + σ∗)‖L1
K
+Mr(CC3)p[1/α(p−1)]ε p. (2.24)
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By exchanging the roles of w̃ , p and r and z̃, q and s and by using (2.18) with
σ2 = σ1 + σ∗ , since αq > β , we obtain

eβ σ‖z̃(σ1 + σ∗+ σ)‖L1
K

� ‖z̃(σ1 + σ∗)‖L1
K

+
∫ σ

0
eβ τ‖T (σ − τ)w̃q(σ1 + σ∗ + τ) z̃s(σ1 + σ∗+ τ)‖L1

K
dτ

� ‖z̃(σ1 + σ∗)‖L1
K

+
∫ σ

0
eβ τ‖w̃q(σ1 + σ∗ + τ)z̃s(σ1 + σ∗ + τ)‖L1

K
dτ

� ‖z̃(σ1 + σ∗)‖L1
K

+
∫ σ

0
eβ τ‖w̃(σ1 + σ∗ + τ)‖q

Lq
K
‖z̃(σ1 + σ∗+ τ)‖s

∞dτ

� ‖z̃(σ1 + σ∗)‖L1
K

+MsCq
∫ σ

0
eβ τ‖w̃(σ1 + σ∗+ τ)‖q

Ll
K
dτ

� ‖z̃(σ1 + σ∗)‖L1
K

+Ms(CC3ε)q
∫ σ

0
eβ τe−αqτdτ.

Therefore

eβ σ‖z̃(σ1 + σ∗+ σ)‖L1
K

� ‖z̃(σ1 + σ∗)‖L1
K

+Ms(CC3)q[1/(αq−β )]εq. (2.25)

For σ = T0 in (2.24) and (2.25). By definition of T0 and by using (2.21) with σ = σ∗ ,
we obtain

2C2ε � eβT0‖z̃(σ1 + σ∗+T0)‖L1
K

+ eαT0‖w̃(σ1 + σ∗+T0)‖L1
K

� ‖w̃(σ1 + σ∗)‖L1
K

+Mr(CC3)p[1/α(p−1)]ε p

+ ‖z̃(σ1 + σ∗)‖L1
K
+Ms(CC3)q[1/(αq−β )]εq

� C2ε +Mr(CC3)p[1/α(p−1)]ε p +Ms(CC3)q[1/(αq−β )]εq.

Therefore

C2 � Mr(CC3)p[1/α(p−1)]ε p−1 +Ms(CC3)q[1/(αq−β )]εq−1

� C εmin(p−1,q−1),

which is impossible for ε > 0 sufficiently small, because C2 = eC1σ∗
> 0. Conse-

quently, T0 = ∞. It follows in particular from (2.23) that

‖w̃(σ1 + σ∗ + τ)‖Ll
K

� C3εe−ατ , τ � 0.

Then

‖w̃(σ)‖Ll
K

� C4εe−ασ , σ � σ1 + σ∗, C4 = C3e
α(σ1+σ∗).

Then, there exists δ > 0 such that

‖w̃(σ)‖Ll
K

� C4ε(T ∗ − t)α , T ∗ − δ < t < T ∗. (2.26)
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Now, by continuity of (w, z) , there exists η > 0 small such that (2.16) and hence
(2.26) is still to be true when the point a is replaced by any b∈ Ω such that |b−a|< η
(note that C4 and ε are independent of a ). Then, by (2.26) we have

‖w̃(σ)‖Ll
K

=
(∫

Rn
|w̃(σ , y)|le−|y|2/4dy

)1/l

=
(∫

Rn
(T ∗ − t)α l|u(t, b+ y

√
T ∗ − t)|le−|y|2/4dy

)1/l

� C4ε(T ∗ − t)α , for all T ∗ − δ < t < T ∗.

Therefore∫
Rn

|u(t, b+ y
√

T ∗ − t)|le−|y|2/4dy � C, T ∗ − δ < t < T ∗, |b−a|< η . (2.27)

For δ < η/2, it follows from Fubini-Tonelli’s theorem that∫
|z−a|<η/2

|u(t, z)|ldz

� C(n)δ−n/2
∫
|b−a|<η

∫
|y|<δ 1/2

|u(t, b+ y
√

T ∗ − t)|le−|y|2/4eδ/4dydb

� C, T ∗ − δ < t < T ∗.

Therefore

u ∈ L∞(
(T ∗ − δ , T ∗), Ll(B(a, η))

)
and similarly, we get also

v ∈ L∞(
(T ∗ − δ , T ∗), Ll(B(a, η))

)
.

Now set f1 = ut −Δu = urvp and f2 = vt −Δv = vsuq . By Hölder’s inequality and
(2.20), it follows that

f1, f2 ∈ Lk1
(
(T ∗ − δ , T ∗), Lk2(B(a, η))

)
with k1 = ∞ and k2 > max(1,n/2) , hence 1

k1
+ n

2k2
< 1. We deduce from standard

local parabolic regularity [8] that

u,v ∈ L∞(
(T ∗ − δ/2, T ∗), L∞(B(a, η/2))

)
,

hence u and v are bounded around (T ∗, a). �
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2.2. Properties of the rescaled ODE systems

In this section, we study the nonnegative and bounded solutions of the ODE system{
w′ = wr zp −αw,
z′ = wq zs −β z,

(2.28)

where p , q , r , s > 1, pq− (r− 1)(s− 1) �= 0, α, β > 0 and ′ = d/dσ . The only
nonnegative constant solutions of the system (2.28) are given by (w, z) = (0,0) and
(w, z) = (A0,B0), where

A0 =
(
β pα1−s) 1

pq−(s−1)(r−1) , B0 =
(
αqβ 1−r) 1

pq−(s−1)(r−1) .

Let us mention that, (0, 0) and (A0, B0) are also the only nonnegative constant solu-
tions of the system {

w′ = Ar
0 zp−αw,

z′ = Bs
0 wq−β z.

(2.29)

PROPOSITION 2. (a) Let σ0 ∈R and (w, z) be a nonnegative, bounded and global
solution of either (2.28) or (2.29) for σ � σ0 . Then for all σ � σ0 , one of the following
holds:

(i) (w, z) = (0, 0);
(ii) (w, z) = (A0, B0);
(iii) w′z′ < 0 for all σ � σ0 and lim

σ→∞
(w(σ), z(σ)) = (A0, B0);

(iv) There exists σ � σ0 such that w′z′ < 0 on [σ0, σ) and w′, z′ < 0 on (σ ,∞).
Moreover, lim

σ→∞
(w(σ), z(σ)) = (0, 0).

(b) Let σ0 ∈ R. Then, the problems (2.28) and (2.29), with

w(σ0) � A0, z(σ0) � B0 and (w(σ0), z(σ0)) �= (A0, B0)

have no nonnegative, bounded and global solutions for σ � σ0 .

(c) Let (w, z) be a nonnegative, bounded and global solution of (2.28) or (2.29), for all
σ ∈ R. Then either:

(i) (w, z) = (0, 0);
(ii) (w, z) = (A0, B0);
(iii) lim

σ→−∞
(w(σ), z(σ)) = (A0, B0) and lim

σ→∞
(w(σ), z(σ)) = (0, 0).

Proof. (a) Step1 : Let R = [0, ∞[2\{(0, 0); (A0, B0)}. We claim that the regions

R1 := {(X ,Y ) ∈ R |XrY p−αX � 0; XqY s−βY � 0}
R2 := {(X ,Y ) ∈ R |XrY p−αX � 0; XqY s−βY � 0}
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are positively invariant for the system (2.28). Indeed, let (w, z) be a solution of (2.28)
such that (w(σ0), z(σ0)) ∈ R2. By contradiction, we assume that (w, z) leaves R2 at
some time σ1 � σ0 . In particular, this implies w(σ1) > 0 and z(σ1) > 0 (by defini-
tion of the region), since (w, z) is not constant, then either w′(σ1) < 0 and z′(σ1) =
0 or w′(σ1) = 0 and z′(σ1) < 0. But we have z′′(σ1) = (qwq−1zsw′ + szs−1wqz′ −
β z′)(σ1) = qwq−1zsw′(σ1) < 0 or w′′(σ1) = (pzp−1wrz′ + rwr−1zsw′ − αw′)(σ1) =
pzp−1wrz′(σ1) < 0, therefore for σ > σ1 with σ −σ1 small, we have w′(σ), z′(σ) <
0, consequently (w, z) ∈ R2; a contradiction.

Similarly, we prove that the region R1 is positively invariant for the system (2.28)
and the regions

R1 := {(X , Y ) ∈ R |Ar
0Y p−αX � 0; Bs

0 Xq−βY � 0}
R2 := {(X , Y ) ∈ R |Ar

0Y p−αX � 0; Bs
0 Xq−βY � 0}

are positively invariant for the system (2.29).
Moreover, we note that if, say, (w(σ0), z(σ0)) ∈ R2 , then w′(σ) < 0,z′(σ) < 0

for all σ > σ0 . Indeed, assume on the contrary that there exists σ1 > σ0 such that
w′(σ1) < 0 and z′(σ1) = 0 or w′(σ1) = 0 and z′(σ1) < 0. Then we have z′′(σ1) =
(qwq−1zsw′ − β z′ + szs−1wrz′)(σ1) = qwq−1zsw′(σ1) < 0 or w′′(σ1) = (pzp−1wrz′ −
αw′+rwr−1zsw′)(σ1) = pzp−1wrz′(σ1) < 0. Therefore, for σ1 > σ with σ1−σ small,
we have w′(σ) > 0 or z′(σ) > 0; a contradiction with the positivre invariance of R2 .
Step2 : Let (w, z) be a nonnegative, bounded, global and nonconstant solution of (2.28)
or (2.29), then we have either:

(1) (w(σ), z(σ)) ∈ R\{R1∪R2} , i.e. w′z′ < 0 for all σ > σ0 ;

(2) There exists σ � σ0 such that (w(σ ), z(σ)) ∈ R1 , then w′, z′ > 0 on (σ , ∞) and
w′z′ < 0 on [σ0, σ);

(3) There exists σ � σ0 such that (w(σ ), z(σ)) ∈ R2 , then w′, z′ < 0 on (σ , ∞) and
w′z′ < 0 on [σ0, σ).

Indeed, by Step 1, if (w(σ ), z(σ)) ∈ R1 , respectively R2 , then (w(σ), z(σ)) ∈
R1, respectively R2 for all σ > σ , which proves the existence of one of the later three
cases.
In the first case, we have w′ < 0 and z′ > 0 or w′ > 0 and z′ < 0 for all σ � σ0.
Since (w, z) is bounded, then (w, z) must converge to an equilibrium (nonzero). This
yields assertion (iii). In the second and the third cases, (w, z) must converge again to
an equilibrium. Since R2 ⊂ {X � A0 or Y � B0} and w′, z′ < 0 on (σ ,∞) then (u, v)
must be converge to (0, 0) . Finally, since R1 ⊂ {X � A0 or Y � B0} and w′, z′ > 0
on (σ ,∞) then the second case cannot occur, which implies (iv).
(b) Let

R3 := {(X ,Y ) ∈ R |X � A0; Y � B0}.
R3 is positively invariant for the system (2.28).
Indeed, we assume that (w, z) leaves R3 at some time σ1 � σ0, since (w, z) �= (A0, B0),
then either w(σ1) = A0 and z(σ1) > B0 or w(σ1) > A0 and z(σ1) = B0, therefore
w′(σ1) = (zpwr −αw)(σ1) > Ar

0B
p
0 −αA0 = 0 or z′(σ1) = (wqzs −β z)(σ1) > Aq

0B
s
0 −
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βB0 = 0. Therefore w > A0 and z > B0 for σ −σ1 > 0 small; a contradiction. There-
fore (w(σ), z(σ)) ∈ R3 for all σ � σ0. Similarly, we prove that the region R3 is
positively invariant for the system (2.29).

If we assume that (w, z) is a global and bounded solution of (2.28) or (2.29), then
we have a contradiction with (a), because (i) , (ii) and (iv) cannot occur, because
w � A0 , z � B0 and (w, z) �= (A0, B0), and for the case (iii), we have either w′ < 0
and z′ > 0 or w′ > 0 and z′ < 0 for all σ � σ0, then (w, z) cannot converge to (A0, B0)
when σ tends to ∞ .
(c) Let (w, z) be a nonnegative, bounded, global and nonconstant solution of (2.28) or
(2.29), then by Step 2, we have either:

(1) w′ > 0, z′ < 0 for all σ ∈ R and lim
σ→∞

(w, z) = (A−
0 , B+

0 );

(2) w′ < 0, z′ > 0 for all σ ∈ R and lim
σ→∞

(w, z) = (A+
0 , B−

0 );

(3) There exists σ ∈ R∪{−∞} such that w′z′ < 0 on (−∞, σ) , w′, z′ < 0 on (σ , ∞)
and lim

σ→∞
(w, z) = (0, 0).

In all cases, (w, z) is bounded and monotone as σ tends to −∞ . Therefore, it
must converge to an equilibrium (0, 0) or (A0, B0) when σ → −∞. In cases (1) and
(2) both limits are impossible. Indeed, if lim

σ→∞
(w, z) = (A−

0 , B+
0 ), since z′ < 0 then z

cannot tend neither to 0 nor to B0, as σ →−∞. Similarly, if lim
σ→∞

(w, z) = (A+
0 , B−

0 ),

since w′ < 0 then w cannot tend neither to 0 nor to A0, as σ →−∞.

In the third case, we have either w′ < 0 on R , or z′ < 0 on R . This rules out
convergence to (0,0) as σ →−∞ and we conclude that lim

σ→−∞
(w, z) = (A0, B0). �

We shall also need the following consequence of Proposition 2(b), concerning the
system of differential inequalities corresponding to (2.29).

PROPOSITION 3. Let σ0 ∈ R. Then the problem{
w′ � Ar

0 zp−αw, σ > σ0,

z′ � Bs
0 wq−β z, σ > σ0,

(2.30)

with

w(σ0) � A0, z(σ0) � B0 and (w(σ0), z(σ0)) �= (A0, B0), (2.31)

has no nonnegative, bounded and global solutions.

Proof. Let (w, z) be the unique maximal solution of (2.29), such that w(σ0) =
w(σ0) and z(σ0) = z(σ0). We put 0 < T1 � ∞ its maximal existence time and 0 <
T ∗ � ∞ the maximal existence time of (w, z) . We define the function f by

f (x,y) =
(
Ar

0x
p−αy, Bs

0y
q −βx

)
,
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since f is a C1 function on R
2, then by a comparison principle of ODE, we have{

w � w,

z � z, for all σ0 � σ � min(T1, T ∗).

Then, by Proposition 2(b), (w, z) cannot be a nonnegative, bounded and global solution
of (2.30). �

2.3. Proof of the Comparison Lemma 1

In this subsection, by using the local criterion for excluding blow-up (Proposition
1) and the properties of the rescaled ODE system (Proposition 2 and Proposition 3), we
prove Lemma 1. We distinguish two cases. In a first step, we prove (2.1) for ρ �= 0,
then for ρ = 0, in a second step.
Step1. Let ρ = |a| ∈ (0, ρ0). Let (W, Z) be a radial rescaling of (u, v) by similarity
variables around (T ∗, a) defined in Remark 2 and let K and ‖ .‖L1

K
defined in the sub-

section 2.1. Fix a sequence (σ j) j such that σ j → ∞. By (1.7), W and Z are bounded.
By (2.13) and parabolic estimates, it follows that for some subsequence denoted also
(σ j) , the sequence of translates (Wj, Zj) defined by

Wj := W (σ + σ j, θ ), Zj := Z(σ + σ j, θ )

converges in W 1,2;q(Q) to some pair of functions (φ , ψ), for each compact Q of R×R

and each q ∈ (1, ∞) . Consequently, (φ , ψ) is a bounded solution of{
φσ −φθθ + θ

2 φθ = φ rψ p−αφ , θ , σ ∈ R,

ψσ −ψθθ + θ
2 ψθ = φqψs−β ψ , θ , σ ∈ R.

Moreover, since uρ , vρ � 0 then,

Wθ = e−[α+1/2]σuρ , Zθ = e−[β+1/2]σvρ � 0, σ0 < σ < ∞,

−|a|eσ/2 < θ < (R−|a|)eσ/2.

Therefore

φθ , ψθ � 0, θ , σ ∈ R. (2.32)

Since φ and ψ are bounded and nonincreasing, we may define

φ±(σ) = lim
θ→±∞

φ(σ , θ ), ψ±(σ) = lim
θ→±∞

ψ(σ , θ ).

This gives that

φ+ � φ−, ψ+ � ψ−.
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Moreover, we have {
φ ′± = φ r±ψ p

±−αφ±, σ ∈ R,

ψ ′± = φq
±ψs±−β ψ±, σ ∈ R.

(2.33)

Indeed, let {
U(t, x) := (T ∗ − t)−αφ

(− log(T ∗ − t), x√
T∗−t

)
,

V (t, x) := (T ∗ − t)−β ψ
(− log(T ∗ − t), x√

T ∗−t

)
,

(2.34)

for x ∈ R and −∞ < t < T ∗ . We observe that

U±(t) = lim
x→±∞

U(t, x) = (T ∗ − t)−αφ±(− log(T ∗ − t)). (2.35)

Similarly for V. Moreover, (U, V ) is a solution of the system{
Ut −Uxx = UrV p, x ∈ R, −∞ < t < T ∗,
Vt −Vxx = UqVs, x ∈ R, −∞ < t < T ∗.

(2.36)

Fix χ ∈ D(R), with
∫
R

χ = 1 and let ξ ∈ D(−∞, T ∗) . Let j ∈ N, we replace x by
x+ j in (2.36), multiplying by χ(x)ξ (t) and integrating on (−∞, T ∗)×R, we obtain

∫ T ∗

−∞

∫
R

Ut(t, x+ j)χ(x)ξ (t)dxdt =
∫ T ∗

−∞

∫
R

[V pUr +Uxx](t, x+ j)χ(x)ξ (t)dxdt.

Integrating by parts, we get∫ T ∗

−∞

∫
R

Ut(t, x+ j)χ(x)ξ (t)dxdt

= −
∫ T ∗

−∞

∫
R

U(t, x+ j)χ(x)ξ ′(t)dxdt

=
∫ T ∗

−∞

∫
R

UrV p(t, x+ j)χ(x)ξ (t)dxdt +
∫ T∗

−∞

∫
R

U(t, x+ j)χ ′′(x)ξ (t)dxdt.

We put

Aj =
∫ T ∗

−∞

∫
R

U(t, x+ j)χ(x)ξ ′(t)dxdt,

since φ is bounded then

U(t, x)χ(x)ξ ′(t) = (T ∗ − t)−αφ χ(x)ξ ′(t)

� C(T ∗ − t)−α χ(x)ξ ′(t) ∈ L1((−∞, T ∗)×R),

by (2.35) and dominated convergence theorem, we obtain

lim
j→+∞

Aj =
∫ T ∗

−∞

(∫
R

χ(x)dx

)
U+(t)ξ ′(t)dt =

∫ T ∗

−∞
U+(t)ξ ′(t)dt. (2.37)
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Similarly, we obtain

lim
j→+∞

∫ T ∗

−∞

∫
R

V pUr(t, x+ j)χ(x)ξ (t)dxdt =
∫ T∗

−∞
V p

+Ur
+(t)ξ (t)dt, (2.38)

lim
j→+∞

∫ T ∗

−∞

∫
R

U(t, x+ j)χ ′′(x)ξ (t)dxdt

=
∫ T ∗

−∞

(∫
R

χ ′′(x)dx

)
U+(t)ξ (t)dt = 0. (2.39)

By (2.37), (2.38) and (2.39), we obtain

−
∫ T ∗

−∞
U+(t)ξ ′(t)dt =

∫ T∗

−∞
(V p

+(t)Ur
+(t))ξ (t)dt.

Therefore ∫ T ∗

−∞
(U ′

+(t)−V p
+(t)Ur

+(t))ξ (t)dt = 0, for all ξ ∈ D(−∞, T ∗).

Then U ′
+(t) = V p

+(t)Ur
+(t) on (−∞, T ∗) in the distribution sense, since U+, V+ ∈

L∞
loc(−∞, T ∗) then the result is true in the classical sense.

By the same argument, we obtain U ′− = V p
−Ur−, V ′

+ = Uq
+Vs

+ and V ′− = Uq
−Vs−.

Converting back to φ± et ψ± , we obtain (2.33). Since φ+ � φ− and ψ+ � ψ− by
Proposition 2(c), only two cases are possible:

Case 1. (φ+, ψ+)≡ (A0, B0). Then (φ−, ψ−)≡ (A0, B0), therefore (φ , ψ)≡ (A0, B0);
Case 2. lim

σ→∞
(φ+(σ), ψ+(σ)) = (0, 0).

In the first case, for all t j → T ∗, there exists a subsequence such that

lim
j→∞

(T ∗ − t j)αU(t j, ρ) = lim
j→∞

W (σ j, 0) = A0

and
lim
j→∞

(T ∗ − t j)βV (t j, ρ) = lim
j→∞

Z(σ j, 0) = B0.

Let us assume that case 2 occurs and show that this leads to a contradiction. Let
b such that |a| < |b| < ρ0 and let (wb, zb) and (Wb, Zb) be respectively the rescaling
and the radial rescaling of (u, v) by similarity variables around of (T ∗,b) defined in
the subsection 2.1. Then there exist ε > 0 and σ1 > σ0 such that

‖wb(σ1)‖L1
K
+‖zb(σ1)‖L1

K
� ε. (2.40)

Indeed, by assumption, there exists σ such that

φ+, ψ+ < ε/8.
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Then, by definition of ψ+ and φ+, there exists θ such that

φ(σ , θ ), ψ(σ , θ ) < ε/4.

Consequently, there exists j0 such that, for all j > j0 we have

Wa(σ + σ j, θ ), Za(σ + σ j, θ ) < ε/2.

For θ j = θ − (|b|− |a|)e(σ+σ j)/2, we have

Wb(σ + σ j, θ j), Zb(σ + σ j, θ j) < ε/2.

Since

Wθ = e−[α+1/2]σuρ , Zθ = e−[β+1/2]σvρ � 0, σ0 < σ < ∞,

−|a|eσ/2 < θ < (R−|a|)eσ/2 and θ j � −|b|e(σ+σ j)/2,

then

Wb(σ + σ j, θ ), Zb(σ + σ j, θ ) < ε/2, θ > θ j.

Using θ j →−∞ as j → ∞ , along with (2.14), wb,zb � M and K ∈ L1 , we infer that

‖wb(σ + σ j)‖L1
K
+‖zb(σ + σ j)‖L1

K
� ε for j large.

By Proposition 1, (2.40) implies that u(t, b) and v(t, b) are bounded when t → T ∗,
contradicting |b| < ρ0. This concludes the proof of Lemma 1, in the case when ρ ∈
(0, ρ0).

Step2. By Step 1, we know that

lim
t→T ∗(T

∗ − t)αu(t, ρ) = A0, lim
t→T ∗(T

∗ − t)βv(t, ρ) = B0, 0 < ρ < ρ0.

Since uρ , vρ � 0, then

(T ∗ − t)αu(t, 0) � (T ∗ − t)αu(t, ρ), (T ∗ − t)β v(t, 0) � (T ∗ − t)αv(t, ρ).

Therefore

liminf
t→T ∗ (T ∗ − t)αu(t, 0) � A0, liminf

t→T ∗ (T ∗ − t)βv(t, 0) � B0. (2.41)

By contradiction, we assume that limsup
t→T ∗

(T ∗ − t)αu(t, 0) > A0, i.e. there exist a sub-

sequence (t j) j and l > A0 such that

limsup
t→T ∗

(T ∗ − t)αu(t, 0) = l. (2.42)
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Let (w, z) = (w0, z0) be the rescaled solution given by similarity variables around
(T ∗, 0), there exists a subsequence (σ j) j such that (w(σ + σ j, y), z(σ + σ j, y)) con-
verges locally uniformly to a nonnegative and bounded solution (φ , ψ) of the system{

φσ −Δφ + y
2 .∇φ = φ rψ p−αφ , y ∈ R

n, σ ∈ R,

ψσ −Δψ + y
2 .∇ψ = φqψs−β ψ , y ∈ R

n, σ ∈ R.
(2.43)

Moreover, by Step 1, uρ , vρ � 0 and lim
t→T ∗(T

∗ − t)αu(t, 0) = l > A0, we obtain

φ � A0, ψ � B0 and φ(0, 0) > A0. (2.44)

Multiplying (2.43) by K and integrating by parts, we obtain{
d

dσ
∫
Rn φKdy =

∫
Rn φ rψ pKdy−α

∫
Rn φKdy,

d
dσ

∫
Rn ψKdy =

∫
Rn φqψsKdy−β

∫
Rn ψKdy.

Let f (σ) =
∫
Rn φKdy and g(σ) =

∫
Rn ψKdy , by Jensen’s inequality and (2.44), we

conclude that {
f ′ � Ar

0 gp−α f , σ ∈ R,

g′ � Bs
0 f q −βg, σ ∈ R.

Moreover, f (0) > A0 and g(0) � B0 , this contradicts the Proposition 3, since ( f , g) is
a nonnegative, bounded and global solution. Consequently,

limsup
t→T ∗

(T ∗ − t)αu(t, 0) � A0.

By exchanging the roles of u , A0 and α and v , B0 and β , we prove that

limsup
t→T ∗

(T ∗ − t)βv(t, 0) � B0.

By (2.41), we conclude that

lim
t→T ∗(T

∗ − t)αu(t, 0) = A0 and lim
t→T ∗(T

∗ − t)β v(t, 0) = B0.

In particular, by the continuity of the function x 
→ xp for p > 0 on R+ , we have

lim
t→T ∗(T

∗ − t)α(q+1−r)uq+1−r(t, ρ) = Aq+1−r
0 , for all ρ ∈ [0, ρ1].

lim
t→T ∗(T

∗ − t)β (p+1−s)vp+1−s(t, ρ) = Bp+1−s
0 , for all ρ ∈ [0, ρ1].

Therefore

lim
t→T ∗

uq+1−r(t, ρ ′)
vp+1−s(t, ρ)

= Aq+1−r
0 B−(p+1)+s

0 , for all ρ , ρ ′ ∈ [0, ρ1].

Since we have
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uq+1−r(t, ρ1)
vp+1−s(t, 0)

−Aq+1−r
0 B−(p+1)+s

0

� uq+1−r

vp+1−s (t, ρ)−Aq+1−r
0 B−(p+1)+s

0

� uq+1−r(t, 0)
vp+1−s(t, ρ1)

−Aq+1−r
0 B−(p+1)+s

0 .

Then∣∣∣uq+1−r

vp+1−s (t, ρ)−Aq+1−r
0 B−(p+1)+s

0

∣∣∣
�

∣∣∣uq+1−r(t, ρ1)
vp+1−s(t, 0)

−Aq+1−r
0 B−(p+1)+s

0

∣∣∣+ ∣∣∣ uq+1−r(t, 0)
vp+1−s(t, ρ1)

−Aq+1−r
0 B−(p+1)+s

0

∣∣∣
→ 0
t→T ∗ .

Then, we conclude that uq+1−r/vp+1−s converges uniformly to Aq+1−r
0 B−(p+1)+s

0 on
[0, ρ1].

3. Single-point blow-up

In this section, we are concerned with the proof of Theorem 1. As in [3, 5, 10], we
consider the following modified functions

G(t, ρ) = uρ + εc(ρ)uγ , J(t, ρ) = vρ + εd(ρ)vγ , (3.1)

with
c(ρ) = sin2(πρ/a), d(ρ) = Kc(ρ), (3.2)

where γ , γ > 1 and ε , K , a > 0 are to be fixed later. We note that G , J ∈C((0, T ∗)×
[0, R])∩C1,2((0, T ∗)×(0, R)). We show that (G, J) satisfies a new system of parabolic
inequalities (See Lemma 2 below), from a maximum principle we deduce that G, J � 0
on [τ, T ∗)× [0, ρ0/2] for some τ ∈ (0, T ∗). By integrating these inequalities, we obtain
upper bounds on u and v , away from ρ = 0, hence in particular single-point blow-up
occurs.

As a starting point of our improvement, by using the comparison properties be-
tween u and v in Lemma 1, we get the following lemma:

LEMMA 2. Let (u, v) be a positive classical solution of (1.1) and satisfy the as-
sumptions of Lemma 1, let a = ρ0/2, where ρ0 is as in Lemma 1. Then there exist γ ,
γ > 1 , K > 0 and τ ∈ (0, T ∗) , such that for all ε ∈ (0, 1] , G and J satisfy{

Gt −Gρρ − n−1
ρ Gρ + n−1

ρ2 G � pvp−1urJ+ +
[
rur−1vp−2c′γεuγ−1

]
G,

Jt − Jρρ − n−1
ρ Jρ + n−1

ρ2 J � quq−1vsG+ +
[
svs−1uq−2d′γεvγ−1

]
J,

(3.3)

for all t ∈ (τ, T ∗) and for all ρ ∈ [0, a].
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Proof. Let F = uγ . By derivation of (3.1), we obtain

Gt −Gρρ = (uρ)t + εcFt − (uρρ)ρ − εc′′F −2εc′Fρ − εcFρρ

= (ut −uρρ)ρ + ε
(
c
(
Ft −Fρρ

)−2c′Fρ − c′′F
)
.

Using

(ut −uρρ)ρ =
(n−1

ρ
uρ +ur vp

)
ρ

=
n−1

ρ
uρρ − n−1

ρ2 uρ + pvp−1ur vρ + rur−1 vpuρ ,

Ft −Fρρ = γuγ−1ut − γ(γ −1)uγ−2u2
ρ − γuγ−1uρρ

� γuγ−1(ut −uρρ
)

= γuγ−1
(n−1

ρ
uρ +urvp

)
,

uρ = G− εcuγ and vρ = J− εdvγ , we obtain

Gt −Gρρ � n−1
ρ

(G− εcuγ)ρ − n−1
ρ2 (G− εcuγ)+ pvp−1ur(J− εdvγ)

+ rur−1 vp(G− εcuγ)+ εuγ−1
[
γc

(n−1
ρ

uρ +ur vp
)
−2γc′uρ − c′′u

]
=

n−1
ρ

Gρ − ε
n−1

ρ
c′uγ − ε

n−1
ρ

cγuγ−1uρ − n−1
ρ2 G

+ ε
n−1

ρ2 cuγ + pvp−1ur(J− εdvγ)+ rur−1 vp(G− εcuγ)

+ εuγ−1
[
γc

(n−1
ρ

uρ +urvp
)
−2γc′(G− εcuγ)− c′′u

]
.

Consequently,

Gt −Gρρ − n−1
ρ

Gρ +
n−1

ρ2 G

� pvp−1urJ+ +
[
rur−1vp−2c′γεuγ−1]G+ εH1, (3.4)

with

H1 := −pdvp+γ−1ur − rcur+γ−1vp

+ uγ−1
[
γc(urvp)+2εγc′cuγ +u

(n−1
ρ

( c
ρ
− c′

)
− c′′

)]
.

We get
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H̃1 :=
H1

cur+γ−1vp

= −pK
vγ−1

uγ−1 − r+ γ + 2εγc′
uγ

urvp +
u

urvp

(n−1
ρ

( 1
ρ
− c′

c

)
− c′′

c

)
. (3.5)

By exchanging the roles of u, q, r, γ and c and v , p, s, γ and d , we have

Jt − Jρρ − n−1
ρ

Jρ +
n−1

ρ2 J

� quq−1vsG+ +
[
svs−1uq−2d′γεvγ−1]J + εH2, (3.6)

with

H̃2 :=
H2

dvγ−1(uqvs)

= − q
K

uγ−1

vγ−1 − s+ γ +2εγd′ vγ

uqvs +
v

uqvs

(n−1
ρ

( 1
ρ
− d′

d

)
− d′′

d

)
. (3.7)

We choose γ and γ such that

1 < γ < p
q+1− r
p+1− s

+ r, 1 < γ < q
p+1− s
q+1− r

+ s (3.8)

and

γ −1 =
q+1− r
p+1− s

(γ −1) (i. e. γ =
γ(p+1− s)+q− p+ s− r

q+1− r
). (3.9)

On the other hand, we have

1
ρ
− c′

c
�
0

1
ρ
−2

1
ρ

= − 1
ρ

.

Therefore

n−1
ρ

( 1
ρ
− c′

c

)
�
0
−n−1

ρ2 →−∞
ρ→0+

.

−c′′

c
= −2π2

a2 cot2
(π

a
ρ
)

+
2π2

a2

→−∞
ρ→0+

.

Then
n−1

ρ

( 1
ρ
− c′

c

)
− c′′

c
→−∞

ρ→0
.
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Moreover, when ρ → a−,

n−1
ρ

( 1
ρ
− c′

c

)
− c′′

c
=

n−1
ρ2 −

[2π
a

n−1
ρ

+
2π2

a2 cot
π
a

ρ
]
cot

π
a

ρ +
2π2

a2

→−∞
ρ→a−

.

Since n−1
ρ

(
1
ρ − c′

c

)
− c′′

c is continuous on ]0,a[ , then there exists C > 0 (C denotes a

positive constant which may vary from line to line) such that

n−1
ρ

( 1
ρ
− c′

c

)
− c′′

c
� C, for all ρ ∈ [0,a]. (3.10)

By (2.3), there exist C > 0 and τ1 ∈ (0,T ∗) such that

u(q+1−r)/(p+1−s)(t, ρ) � Cv(t, ρ) in [τ1,T ∗)× [0, a].

Therefore

v−p(t, ρ) � Cu
−p(q+1−r)

p+1−s (t, ρ) in [τ1,T ∗)× [0, a]. (3.11)

Then, by (3.5), (3.10) and (3.11), we obtain

H̃1 � −pK
vγ−1

uγ−1 − r+ γ +Cuγ−r− p(q+1−r)
p+1−s +

C
ur−1vp

� −pK
vγ−1

uγ−1 − r+ γ +C(u(t,a))γ−r− p(q+1−r)
p+1−s +

C
ur−1(t,a)vp(t,a)

in [τ1,T ∗)× [0, a] , where we also used uρ ,vρ � 0 and (3.8). As a consequence of (2.1),
(3.9) and (3.8), the RHS of the last inequality converges uniformly on [0,a] to

L := −pK
Bγ−1

0

Aγ−1
0

− r+ γ,

as t → T ∗ , where (A0, B0) is given by (2.2). Taking

K =
Aγ−1

0

Bγ−1
0

q+1− r
p+1− s

,

it follows from (3.8) that L < 0. Therefore, there exists τ ∈ [τ1, T ∗) such that H1 � 0
in Q := [τ,T ∗)× [0,a] . By (3.4), we conclude that

Gt −Gρρ − n−1
ρ

Gρ +
n−1

ρ2 G � pvp−1urJ+ +
[
rur−1vp−2c′γεuγ−1]G in Q .

Similarly, by (3.6), (3.7) and by exchanging the roles of u , q, r, γ and c and v, p , s,
γ and d , we prove that

Jt − Jρρ − n−1
ρ

Jρ +
n−1
ρ2 J � quq−1vsG+ +

[
svs−1uq−2d′γεvγ−1]J in Q . �
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With Lemma 1 and Lemma 2 at hand, we turn now to prove Theorem 1.

Proof of Theorem 1. Let (u, v) be a solution of the system (1.1) satisfy the hy-
potheses of Theorem 1 and assume by contradiction that there exists ρ0 ∈ (0, R) such
that

limsup
t→T ∗

(u(t, ρ0)+ v(t, ρ0)) = ∞. (3.12)

Since we have

uρ � 0 on {(0, T ∗)×{0}}∪{(0, T ∗)×{R}}∪{{0}× [0,R]}, R < ∞

and

ut −uρρ − n−1
ρ

uρ = f (t, ρ) on (0, T ∗)× (0, R),

with
f (t, ρ) = urvp and fρ = pvp−1urvρ + rur−1vpur � 0,

then by using the maximum principle [9, Lemma 52.18], we have uρ < 0 on (0, T ∗)×
(0, R] and uρρ(t, 0) < 0 on (0, T ∗). By exchanging the roles of u and v , we obtain
vρ < 0 on (0, T ∗)× (0, R] and vρρ(t, 0) < 0 on (0, T ∗). (If Ω = R

n (0, R] can be
replaced by (0, ∞)).

Let J, G and τ be given by Lemma 2. Taking ε sufficiently small, we have J,
G � 0 on {(τ, T ∗)×{0}}∪{(τ, T ∗)×{a}}∪{{τ}× [0,a]}, with a = ρ0/2, then by
using the maximum principle (See Remark 3 below), we obtain J, G � 0 on (τ, T ∗)×
[0, a].

Since J � 0, we obtain

− vρ � εd vγ .

By integration, we deduce that

v1−γ(t, a) � C5

∫ a

0
sin2(πξ/a)dξ > 0, for all τ � t < T ∗.

Using γ > 1, it follows that v(t, a) , and similarly u(t, a) , is bounded on [τ, T ∗) . Since
uρ ,vρ � 0, this yields a contradiction with (3.12). The theorem is proved. �

REMARK 3. For completeness, we now prove the maximum principle for the sys-
tem of parabolic inequalities (3.3). Fixing T1 ∈ (τ,T ∗), multiplying (3.3) by ρn−1G+ �
0 and integrating by parts over (0, a) . Since G(t, 0), G(t, a) � 0, we obtain

1
2

d
dt

∫ a

0
ρn−1G2

+dρ

� p
∫ a

0
ρn−1vp−1urJ+G+dρ +

∫ a

0
ρn−1[rur−1vp−2c′γεuγ−1]G2

+dρ
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−
∫ a

0
χ{G>0}ρn−1G2

ρdρ

� C
∫ a

0
ρn−1(J2

+ +G2
+)dρ , for all t ∈ (τ, T1).

Similarly, we obtain

1
2

d
dt

∫ a

0
ρn−1J2

+dρ � C
∫ a

0
ρn−1(J2

+ +G2
+)dρ .

Then,

1
2

d
dt

∫ a

0
ρn−1(J2

+ +G2
+)dρ � C

∫ a

0
ρn−1(J2

+ +G2
+)dρ .

Integrating over (τ, t). Since G(τ, .), J(τ, .) � 0, by Gronwall’s lemma, we conclude
that J2

+ +G2
+ = 0. Then, G, J � 0 in [τ, T ∗)× [0, a].

4. Lower pointwise estimates

In this section we are concerned with the proof of Theorem 2. As a starting point
we prepare the following lemma:

LEMMA 3. Under the assumptions of Theorem 2, we obtain

‖u(t)‖∞ � C1(T ∗ − t)−α , ‖v(t)‖∞ � C2(T ∗ − t)−β , T ∗/2 < t < T ∗,

for some constants C1, C2 > 0 depending on u and v.

Proof. We put

U(t) = u(t, 0), V (t) = v(t, 0).

Under the assumptions of Theorem 2, blow-up occurs only at the origin, then U(T ∗) =
V (T ∗) = ∞ . By (1.1), it follows that

U ′(t) = ut(t, 0) = Δu(t, 0)+ur(t, 0)vp(t, 0).

Since Δu(t, 0) � 0, then U ′(t) �UrV p . Similarly, we obtain V ′(t) �VsUq. Therefore,
by (1.7), ‖u(t)‖∞ = u(t, 0) and ‖v(t)‖∞ = v(t, 0) , there exists C (C denotes a positive
constant which may vary from line to line) such that

u(t, 0) � Cv
p+1−s
q+1−r (t, 0).

Therefore

ur(t, 0) � Cvr p+1−s
q+1−r (t, 0). (4.1)
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Similarly, we have

vs(t, 0) � Cus q+1−r
p+1−s (t, 0). (4.2)

Therefore,

U ′(t) � CV p+r(p+1−s)/(q+1−r) and V ′(t) � CUq+s(q+1−r)/(p+1−s).

Then,

V ′(t) � C
(
U(0)+C

∫ t

0
V p+r p+1−s

q+1−r (σ)dσ
)q+s q+1−r

p+1−s
, for all t ∈ (0, T ∗).

Therefore

V ′(t) � C
(∫ t

0
V p+r p+1−s

q+1−r (σ)dσ
)q+s q+1−r

p+1−s
, for all t ∈ (T ∗/2, T ∗).

Multiplying by V p+r(p+1−s)/(q+1−r) and integrating between 0 and t , we obtain

V ′V p+r p+1−s
q+1−r � C

(∫ t

0
V p+r p+1−s

q+1−r (σ)dσ
)q+s q+1−r

p+1−s
V p+r p+1−s

q+1−r ,

V p+r p+1−s
q+1−r +1 � C

(∫ t

0
V p+r p+1−s

q+1−r (σ)dσ
)q+s q+1−r

p+1−s+1
,

V p+r p+1−s
q+1−r � C

(∫ t

0
V p+r p+1−s

q+1−r (σ)dσ
)[q+1+s q+1−r

p+1−s ]
p+r p+1−s

q+1−r

p+1+r p+1−s
q+1−r ,

for all t ∈ (T ∗/2, T ∗) . Then, we put

f (t) =
∫ t

0
V p+r(p+1−s)/(q+1−r)(σ)dσ

and

l =
[
q+1+ s

q+1− r
p+1− s

] p+ r p+1−s
q+1−r

p+1+ r p+1−s
q+1−r

,

we have

f ′(t) � C f l(t),∫ T ∗

t

f ′

f l
(σ)dσ � C(T ∗ − t),

1
1− l

(
f 1−l(T ∗)− f 1−l(t)

)
� C(T ∗ − t), for all t ∈ (T ∗/2, T ∗).

Since −l +1 = − 1
α < 0, then f 1−l(T ∗) = 0. Therefore

1
l−1

f 1−l(t) � C(T ∗ − t),
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f (t)1−l � C(l−1)(T∗ − t), for all t ∈ (T ∗/2, T ∗).

Therefore

f (t) � C(T ∗ − t)−α ,∫ t

0
V p+r p+1−s

q+1−r (σ)dσ � C(T ∗ − t)−α , for all t ∈ (T ∗/2, T ∗).

Let τ ∈ (T ∗/2, T ∗), by (1.7) and V was being nondecreasing, there exists C′ > 0 such
that

C(T ∗ − t)−α �
∫ τ

0
V p+r p+1−s

q+1−r (σ)dσ +
∫ t

τ
V p+r p+1−s

q+1−r (σ)dσ

� C′(T ∗ − τ)
−β

(
p+r p+1−s

q+1−r

)
+1

+(t− τ)V p+r p+1−s
q+1−r (t).

Taking τ = T ∗ − γ(T ∗ − t), for γ > max(1,
(
2C′/C

)1/α) , we obtain

V (t) � C
2γ

(T ∗ − t)−β .

The lower estimate on U follows similarly. �

Proof of Theorem 2. Since vt � 0, uρ � 0 and vρ � 0 then,

∂
∂ρ

(1
2
v2

ρ + v(uqvs)
)

= (vρρ +uqvs)vρ +quq−1vs+1uρ + suqvsvρ

=
(
vt − n−1

ρ
vρ

)
vρ +qvuq−1uρ + suqvsvρ � 0.

Then (1
2
v2

ρ + v(uqvs)
)
(t, ρ) �

(1
2
v2

ρ + v(uqvs)
)
(t, 0)

= v(uqvs)(t, 0).

On the other hand, by (1.7) and Lemma 3, there exists C > 0 such that

u(t, 0) � C(T ∗ − t)−α

=C
(
(T ∗ − t)−β) α

β

� Cv
α
β (t, 0), for all t ∈ (T ∗/2, T ∗).

Therefore, by (4.2), we obtain

1
2
v2

ρ � Cv(t, 0)s+1v
α
β q(t, 0), for all t ∈ (T ∗/2, T ∗).
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Then

‖vρ(t)‖∞ � Cv(m+1)/2(t, 0), for all t ∈ (T ∗/2, T ∗),

with m = [q(p+1)+ s(1− r)]/(q+1− r). As in [10, p. 187], there exists η > 0 such
that

v(T ∗, |x|) � C|x|−2β , for all x ∈ (0, η).

The estimate on u is obtained similarly. �
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Laboratoire Équations aux Dérivées Partielles LR03ES04

2092 Tunis, Tunisie
e-mail: mahmoudinejib@yahoo.fr

Differential Equations & Applications
www.ele-math.com
dea@ele-math.com


