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ASYMPTOTIC PROPERTIES OF SOLUTIONS TO A NONLINEAR

SYSTEM OF NEUTRAL DIFFERENTIAL EQUATIONS

JULIO G. DIX, EVA ŠPÁNIKOVÁ AND HELENA ŠAMAJOVÁ

(Communicated by Qingkai Kong)

Abstract. In this article we study the behavior of solutions to the system of delay differential
equations [

y1(t)+a(t)y1(g(t))]′ = p1(t) f1
(
y2(h2(t))

)
y′2(t) = p2(t) f2

(
y3(h3(t))

)
. . .

y′n−1(t) = pn−1(t) fn−1
(
yn(hn(t))

)
y′n(t) = fn

(
t,y1(h1(t))

)
,

where the coefficients pi may have zeros, and the components of the solution may change signs.
We prove properties to the components of the solutions as t approaches infinity.

1. Introduction

We consider the system of nonlinear differential equations
[
y1(t)+a(t)y1(g(t))]′ = p1(t) f1

(
y2(h2(t))

)
y′2(t) = p2(t) f2

(
y3(h3(t))

)
. . .

y′n−1(t) = pn−1(t) fn−1
(
yn(hn(t))

)
y′n(t) = fn

(
t,y1(h1(t))

)
,

(1.1)

where a , fi , g , hi , and pi are given functions that satisfy the conditions stated below.
Since the deviating arguments hi(t) and g(t) may or may not be larger than t , we can
have advanced, or retarded, or neutral differential equations. Our goal is to study the
limit of the components yi as t approaches infinity, by considering the possible limits
of the quotient [y1 +ay1]/

∫
p1

∫
p2 . . . .
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Systems of functional differential equations with deviating arguments have been
studied by many authors; see for example [1]–[15] and their references. When the
coefficients pi(t) do not have zeros, (1.1) can be rewritten as an n -th order differential
equation, for which there are several publications available; see for example [4, 5].
However, most of these publications study only consider non-oscillatory solutions.

The main two features in this article are allowing the coefficients pi to have zeros,
and allowing the functions yi to oscillate. This work is also motivated by the work of
Kitamura [8] for the system

y′1(t) = p1(t)y2(t)

y′2(t) = fn
(
t,y1(h1(t))

)
.

Several techniques from [8] are used in our proofs, as indicated at the appropriate
places.

By a solution we mean a continuous function y = (y1, . . . ,yn) that satisfies (1.1)
on an interval [t0,∞) . Obviously, this requires the components to be defined for t �
min{t0, inft�t0 hi(t), inft�t0 g(t)} .

We will use the following assumptions:

(H1) For i = 1, . . . ,n , the delay/advance functions hi belong to C([0,∞), [0,∞)) and
limt→∞ hi(t) = ∞ .

(H2) For i = 1, . . . ,n− 1, the coefficients pi belong to C([0,∞), [0,∞)) and satisfy∫ ∞
0 pi(s)ds = ∞ .

(H3) For i = 1, . . . ,n−1: the functions fi belong to C(R,R) ; there exist constants βi

such that | fi(x)| � βi|x| for all x ∈ R ; and fi(x) = 0 if and only if x = 0.

(H4) The function fn belongs to C([t0,∞)×R,R) ; there exists a non-negative function
ω such that | fn(t,x)| � ω(t, |x|) ; and ω(t,x) is non-decreasing with respect to x
for each t � t0 .

Initially, we set a(t) = 0 and study the system

y′1(t) = p1(t) f1
(
y2(h2(t))

)
. . .

y′n−1(t) = pn−1(t) fn−1
(
yn(hn(t))

)
y′n(t) = fn

(
t,y1(h1(t))

)
.

(1.2)

Later, we add some assumptions and obtain results for (1.1).

2. Results for a(t) ≡ 0

Let

Pi,..., j(t) =
∫ t

t0
pi(xi)

∫ xi

t0
pi+1(xi+1) . . .

∫ x j−1

t0
p j(x j)dx j . . .dxi+1 dxi ,



Differ. Equ. Appl. 7, No. 1 (2015), 1–13. 3

Pi(t) =
∫ t

t0
pi(s)ds .

Using (H2) we can show that the functions Pi(t) and Pi,..., j(t) are non-decreasing and
both approach infinity as t → ∞ . It is easy to show that Pi(t)Pi+1(t) � Pi,i+1(t) , and
d
dt Pi,..., j(t) = pi(t)Pi+1,..., j(t) . Using L’Hôpital’s Rule, for i < j , we have

lim
t→∞

Pi,i+1(t)
Pi,..., j(t)

= lim
t→∞

Pi+1(t)
Pi+1,..., j(t)

, lim
t→∞

Pi(t)
Pi,..., j(t)

= 0 .

LEMMA 2.1. Assume (H1)–(H3), and let (y1, . . . ,yn) be a solution of (1.2). If

limsup
t→∞

|y1(t)|
P1,...,n−1(t)

= ∞ ,

then

limsup
t→∞

|y2(t)|
P2,...,n−1(t)

= ∞, . . . , limsup
t→∞

|yn−1(t)|
Pn−1(t)

= ∞, limsup
t→∞

|yn(t)| = ∞

and limsupt→∞ y1(t) = ∞ .

Proof. Using a contrapositive argument, we assume that there are constants M and
t∗ > t0 such that |y2(t)|/P2,...,n−1(t)� M for all t � t∗ , and show that |y1(t)|/P1,...,n−1(t)
is bounded for t � t∗ . By (1.2) and (H3), for t � t∗ ,

|y1(t)| � |y1(t0)|+ β2M
∫ t

t0
p1(s)P2,...,n−1(s)ds = |y1(t0)|+ β2MP1,...,n−1(t) ,

which completes the contrapositive argument for the first limit.
By the same process if |y3(t)|/P3,...,n−1(t) is bounded, then |y2(t)|/P2,...,n−1(t) is

bounded. Then recursively we obtain the desired results.
That limsupt→∞ y1 = ∞ follows from the fact that there is a sequence {tm} ap-

proaching infinity such that the fraction |y1(tm)|/P1,...,n−1(tm) approaches infinity. Since
the denominator approaches infinity, |y1(tm)| must approach infinity, as m → ∞ . This
completes the proof.

We remark that the converse of Lemma 2.1 is not necessarily true. For example, if
y2 is unbounded and integrable on [0,∞) , and p1 = 1, then limsup |y1|/P1 = 0.

LEMMA 2.2. Let (y1, . . . ,yn) be a solution of (1.2), and assume that (H1)–(H4)
hold, and that

∫ ∞

0
ω

(
s,MP1,...,n−1(h1(s))

)
ds < ∞ for each positive constant M . (2.1)

If

limsup
t→∞

|y1(t)|
P1,...,n−1(t)

< ∞ , (2.2)
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then yn has finite limit at infinity, with

lim
t→∞

yn(t) = αn, and yn(t) = αn −
∫ ∞

t
fn

(
s,y1(h1(s))

)
ds .

Proof. By (2.2), there exist constants M and t∗ > t0 such that |y1(t)|� MP1,...,n−1(t)
for all t � t∗ . From (H4) and (2.1),

∫ t

t∗
fn

(
s,y1(h1(s))

)
ds �

∫ ∞

t∗
ω

(
s,MP1,...,n−1(h1(s))

)
ds < ∞.

This allows as to define αn = yn(t0)+
∫ ∞
t0

fn
(
s,y1(h1(s))

)
ds . Then the conclusion fol-

lows.

LEMMA 2.3. Let (y1, . . . ,yn) be a solution of (1.2), and assume (H1)–(H4), (2.1)
and (2.2). If limt→∞ yn(t) = αn �= 0 , then

lim
t→∞

yn−1(t)
Pn−1(t)

= fn−1(αn) �= 0, lim
t→∞

|yn−2(t)|
Pn−2,n−1(t)

= fn−2
(
fn−1(αn)

) �= 0,

. . . , lim
t→∞

y1(t)
P1,...,n−1(t)

= f1
(
. . . fn−2

(
fn−1(αn)

)) �= 0.

Proof. Since αn �= 0, there exists t∗ such that |yn(t)| � |αn/2| > 0 for all t � t∗ .
By (H1) and (H3), there exist positive constants M and t∗∗ such that | fn−1(yn(hn(t)))|�
M for all t � t∗∗ . Then by (H2),

yn−1(t0)+ lim
t→∞

∫ t

t0
pn−1(s) fn−1(yn(hn(t)))ds = ±∞ .

Thus we can apply L’Hôpital Rule to obtain

lim
t→∞

yn−1(t)
Pn−1(t)

= lim
t→∞

yn−1(t0)
Pn−1(t)

+ lim
t→∞

∫ t
t0

pn−1(s) fn−1
(
yn(hn(s))

)
ds∫ t

t0
pn−1(s)ds

= 0+ lim
t→∞

fn−1
(
yn(hn(t))

)
= fn−1(αn) �= 0 .

Here we used (H2) and the continuity of fn−1 and yn .
Since the fraction yn−1(t)/Pn−1(t) approaches a non-zero number and the denom-

inator approaches infinity, the numerator must approach ±∞ . By (H1) and (H3), there
exist positive constants M and t∗ such that | fn−2(yn−1(hn−1(t)))| � M for all t � t∗ .
Then by (H2),

yn−2(t0)+ lim
t→∞

∫ t

t0
pn−2(s) fn−2(yn(hn(t)))ds = ±∞ .

Thus we can apply L’Hôpital Rule to obtain

lim
t→∞

yn−2(t)
Pn−2,n−1(t)

= fn−2
(
fn−1(αn)

) �= 0 .
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Reaping this process, we obtain the desired conclusions.
For the next proof we use repeatedly the following equality which is obtained by

integration by parts:
∫ t

t0
p(ξ )

∫ ∞

ξ
f (s)dsdξ =

∫ t

t0
P(s) f (s)ds+P(t)

∫ ∞

t
f (s)ds, (2.3)

where P(t) =
∫ t
t0

p(ξ )dξ . Also in the next theorem we use a condition more restrictive
that (2.1); in fact condition (2.5) implies (2.1).

THEOREM 2.1. Let (y1, . . . ,yn) be a solution of (1.2) with hi(t) = t for i =
2, . . . ,n−1 and hn(t) � t . Assume (H1)–(H4), (2.2), that

ω(t,x)
x

is non-decreasing with respect to x , (2.4)

and that
∫ ∞

t0
max

{
1,

Pn−1(s)
Pn−1(h1(s))

}
ω

(
s,MP1(h1(s)) · · ·Pn−1(h1(s))

)
ds < ∞ (2.5)

for each positive constant M . If limt→∞ yn(t) = 0 , then:

(1) limsupt→∞
|y1(t)|

P1(t),...,Pn−2(t)
< ∞ ,

(2) yn−1 has finite limit at infinity, with

lim
t→∞

yn−1(t) = αn−1, yn−1(t) = αn−1−
∫ ∞

t
pn−1(s) fn

(
yn(hn(s))

)
ds ,

(3) yn converges to zero at least at the rate given by limt→∞ Pn−1(t)yn(t) = 0 .

Proof. Since all limits are at infinity, through out this proof we restrict t to be
larger than a value t∗ > t0 such that h1(s) > t0 for all s � t∗ . This way we ensure that
Pi(h1(t) and Pi(t) are never zero and can be used in denominators.

Our first step is to find a bound for y1 . By (1.2), (H3), hn−1(t) = t , hn(t) � t , and
(2.3), we have

|yn−1(t)| � |yn−1(t0)|+
∫ t

t0
pn−1(ξ )| fn−1

(
yn(hn(ξ ))

)
dξ

� |yn−1(t0)|+ βn−1

∫ t

t0
pn−1(ξ )

∫ ∞

ξ
| fn|dsdξ

� |yn−1(t0)|+ βn−1

[∫ t

t0
Pn−1(s)| fn|ds+Pn−1(t)

∫ ∞

t
| fn|ds

]
.

Then

|yn−2(t)| � |yn−2(t0)|+ βn−2

∫ t

t0
pn−2(s)|yn−1(s)|ds
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� |yn−2(t0)|+ βn−2Pn−2(t)|yn−1(t0)|
+ βn−2βn−1Pn−2(t)

[∫ t

t0
Pn−1(s)| fn|ds+Pn−1(t)

∫ ∞

t
| fn|ds

]
.

Recursively, we obtain an inequality for |y1(t)| . Then dividing by
(
P1(t) · · · Pn−1(t)

)
,

we obtain

|y1(t)|
P1(t) · · ·Pn−1(t)

� |y1(t0)|
P1(t) · · ·Pn−1(t)

+
β1|y2(t0)|

P2(t) · · ·Pn−1(t)
+

β1β2|y3(t0)|
P3(t) · · ·Pn−1(t)

+ . . .

+
(β1 · · ·βn−2)|yn−1(t0)|

Pn−1(t)
+

(β1 · · ·βn−1)
Pn−1(t)

∫ t

t0
Pn−1(s)| fn|ds

+(β1 · · ·βn−1)
∫ ∞

t
| fn|ds .

(2.6)

Taking the derivative with respect to t , we observe that the right-hand side is non-
increasing; thus the right-hand side is an upper bound for the function

u(t) = sup
s�t

|y1(s)|
P1(s) · · · Pn−1(s)

.

Note that u(t) is a non-increasing function.
By (2.4), for values 0 < a � 1 and b > 0, we have

ω(s,ab) � aω(s,b) . (2.7)

By (2.2) and P1,...,n−1(t) � P1(t) · · ·Pn−1(t) , there exists a positive constant M such that

|y1(t)|
P1(t) · · ·Pn−1(t)

� M for all t � t∗ .

Then by (H4) and (2.7),

| fn(s,y1(h1(s)))| � ω(s,y1(h1(s)))

� |y1(h1)|
MP1(h1) · · · Pn−1(h1)

ω(s,MP1(h1(s)) · · · Pn−1(h1(s)))

=
1
M

u(h1(s))ω
(
s,MP1(h1(s)) · · · Pn−1(h1(s))

)
.

Using that the right-hand side of (2.6) is an upper bound for u(t) , and multiplying by
Pn−1(t) , we have

Pn−1(t)u(t)

� k+
(β1 · · ·βn−1)

M

∫ t

t0
Pn−1(s)u(h1(s))ω(s,MP1(h1(s)) · · ·Pn−1(h1(s)))ds

+
(β1 · · ·βn−1)

M
Pn−1(t)

∫ ∞

t
u(h1(s))ω

(
s,MP1(h1(s)) · · ·Pn−1(h1(s))

)
ds.

(2.8)
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Where k is a constant such that for t � t∗ ,

k � |y1(t0)|
P1(t) · · ·Pn−2(t)

+
β1|y2(t0)|

P2(t) · · ·Pn−2(t)
+ . . .+(β1 · · ·βn−2)|yn−1(t0)| .

By (2.5) there exists a value t1 � t∗ > t0 such that

(β1 · · ·βn−1)
M

∫ ∞

t1
max

{
1,

Pn−1(s)
Pn−1(h1(s))

}
ω

(
s,MP1(h1(s)) · · ·Pn−1(h1(s))

)
ds

<
1
3

.

(2.9)

To estimate the integrals in (2.8), as in [8], we split the interval [t1,∞) into two sets:

I = {s � t1 : h1(s) � t}, J = {s � t1 : h1(s) > t} .

On the set It = [t1, t]∩ I , we have [Pn−1(h(s))u(h(s))] � supt0�s�t [Pn−1(s)u(s)] and

∫
It
Pn−1(s)u(h1(s))ω(s, . . .)ds � sup

t0�s�t
[Pn−1(s)u(s)]

∫
It

Pn−1(s)
Pn−1(h1(s))

ω(s, . . .)ds .

(2.10)
On the set Jt = [t1, t]∩ J , using that u(h1(s)) � u(t) and that Pn−1(s) � Pn−1(t) , we
have

∫
Jt

Pn−1(s)u(h1(s))ω(s, . . .)ds � Pn−1(t)u(t)
∫

Jt
ω(s, . . .)ds

� sup
t0�s�t

[Pn−1(s)u(s)]
∫

Jt
ω(s, . . .)ds .

(2.11)

On the set It = (t,∞)∩ I , using that Pn−1(t) � Pn−1(s) , we have

∫
It

Pn−1(s)u(h1(s))ω(s, . . .)ds � sup
t0�s�t

[Pn−1(s)u(s)]
∫

It

Pn−1(s)
Pn−1(h1(s))

ω(s, . . .)ds .

(2.12)
On the set Jt = (t,∞)∩ J , using that u(h1(s)) � u(t) , we have

Pn−1(t)
∫

Jt
u(h1(s))ω(s, . . .)ds � Pn−1(t)u(t)

∫
Jt

ω(s, . . .)ds. (2.13)

Since It , Jt and It are disjoint subsets of [t1,∞) , (2.10)–(2.12) can be combined into
single integral inequality. From (2.8), (2.10)–(2.13), for t � t1 , we have

Pn−1(t)u(t)

� k1 + sup
t0�s�t

[Pn−1(s)u(s)]
(β1 · · · βn−1)

M

∫ ∞

t1
max{1,

Pn−1(s)
Pn−1(h1s)

}ω(s, . . .)ds

+Pn−1(t)u(t)
(β1 · · · βn−1)

M

∫ ∞

t1
ω(s, . . .)ds
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where

k1 = k+
(β1 · · · βn−1)

M

∫ t1

t0
Pn−1(s)u(h1(s))ω(s, . . .)ds .

Using (2.9), we have

2
3
Pn−1(t)u(t) � k1 + sup

t0�s�t
[Pn−1(s)u(s)]

1
3

and
|y1(t)|

P1(t) · · ·Pn−2(t)
� Pn−1(t)u(t) � 3k1 for all t � t∗ . (2.14)

This implies part (1) of the theorem.
To show part (2) of the theorem, note that by (H4), (2.3) and hn(s) � s , we have

∫ t

t0
pn−1(s)|yn(hn(s))|ds

�
∫ t

t0
pn−1(s)

∫ ∞

s
| fn(ξ ,y1(h1(ξ )))|dξ ds

�
∫ t

t0
Pn−1(s)ω

(
s,y1(h1(s))

)
ds+Pn−1(t)

∫ t

t0
ω

(
s,y1(h1(s))

)
ds .

Since limt→∞ Pn−1(t) = ∞ there exists t1 such that 1/Pn−1(h1(t)) � 1 for all t � t1 .
From (2.14) and (2.7), with a = 1/Pn−1(h1) , we have

ω
(
s,y1(h1(s))

)
� 1

Pn−1(h1(s))
ω

(
s,3k1P1(h1) · · ·Pn−1(h1)

)
. (2.15)

Then using (2.3) and that Pn−1 is non-decreasing,

∫ t

t0
pn−1(s)|yn(hn(s))|ds �

∫ t

t0

Pn−1(s)
Pn−1(h1)

ω(s,3k1P1(h1) · · ·Pn−1(h1))ds

+
∫ ∞

t

Pn−1(s)
Pn−1(h1(s))

ω(s,3k1P1(h1) · · ·Pn−1(h1))ds .

By assumption (2.5), the right-hand side is bounded. This allows us to define αn−1 =
yn−1(t0)+

∫ ∞
t0

pn−1(s) fn−1
(
yn(hn(s))

)
ds . Then part (2) of the theorem follows.

To proof part (3), note that by (2.15),

Pn−1(t)|yn(t)| � Pn−1(t)
∫ ∞

t
ω(s, |y1(h1)|)

�
∫ ∞

t

Pn−1(s)
Pn−1(h1)

ω(s,3k1P1(h1) · · · Pn−1(h1))ds .

By (2.5) the integral converges; thus limt→∞ Pn−1(t)|yn(t)| = 0, which completes the
proof.
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Kitamura [8], initially, assumed (2.4) (with n = 2), and later in a second approach
assumed that:

ω(t,x)/x is non-increasing,∫ ∞

0
max{1,P1(h1(s))}ω(s,c)ds < ∞

(2.16)

for all constant c . However, we do not gain any generality because (2.16) implies (2.4)
and (2.5) (with n = 2).

REMARK 2.1. If limt→∞ yn−1(t) = αn−1 �= 0, then by the same process as in
Lemma 2.3, we have

lim
t→∞

yn−2(t)
Pn−2(t)

= fn−2(αn−1) �= 0, . . . , lim
t→∞

y1(t)
P1,n−2(t)

= f1
( · · ·( fn−2(αn−1)

)) �= 0.

On the other hand if limt→∞ yn−1(t) = αn−1 = 0, we have the following results.

THEOREM 2.2. Let (y1, . . . ,yn) be a solution of (1.2) with hi(t) = t for i =
2, . . . ,n−1 and hn(t) � t . Assume (H1)–(H4), (2.2), (2.4), (2.5), and that

∫ ∞

t0
max

{
1,

Pn−2(s)Pn−1(s)
Pn−2(h1(s))Pn−1(h1(s))

}
ω

(
s,MP1(h1(s)) · · ·Pn−1(h1(s))

)
ds < ∞ (2.17)

for each positive constant M . If limt→∞ yn(t) = 0 and limt→∞ yn−1(t) = 0 then:

(1) limsupt→∞
|y1(t)|

P1(t),...,Pn−3(t)
< ∞ ,

(2) yn−2 has finite limit at infinity, with

lim
t→∞

yn−2(t) = αn−2, yn−2(t) = αn−2−
∫ ∞

t
pn−2(s) fn−1

(
yn−1(s)

)
ds ,

(3) yn−1 converges to zero at least at the rate given by limt→∞ Pn−2(t)yn−1(t) = 0 .

Proof. Using that the functions Pi(s) =
∫ s
t0

pi(s)ds are non-decreasing, we have

∫ s

t0
Pn−2(ξ )pn−1(ξ )dξ � Pn−2(s)

∫ s

t0
pn−1(ξ )dξ = Pn−2(s)Pn−1(s) .

Using this inequality and integrating by parts (three times), we have

∫ t

t0
pn−2(s)

∫ ∞

s
pn−1(ξ )

∫ ∞

ξ
| fn|dxdξ ds

=
∫ t

t0
Pn−2(s)pn−1(s)

∫ ∞

s
| fn|dxds+Pn−2(t)

∫ ∞

t
pn−1(s)

∫ ∞

s
| fn|dxds

� 2
∫ t

t0
Pn−2(s)Pn−1(s)| fn|ds+2Pn−2(t)Pn−1(t)

∫ ∞

t
| fn|ds.
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As in the proof of Theorem 2.1, we find a bound for y1 :

|y1(t)|
P1(t) · · ·Pn−1(t)

� |y1(t0)|
P1(t) · · ·Pn−1(t)

+
β1|y2(t0)|

P2(t) · · ·Pn−1(t)
+

β1β2|y3(t0)|
P3(t) · · ·Pn−1(t)

+ · · ·

+
(β1 · · ·βn−3)|yn−2(t0)|

Pn−2(t)Pn−1(t)
+2

(β1 · · ·βn−1)
Pn−2(t)Pn−1(t)

∫ t

t0
Pn−2(s)Pn−1(s)| fn|ds

+2(β1 · · ·βn−1)
∫ ∞

t
| fn|ds .

By (2.2), there exist M and t∗ > t0 , such that |y1(t)|� MP1(t) · · · Pn−1(t) for all t � t∗ .
Then by (2.17), we select t2 � t∗ such that

(β1 · · · βn−1)
M

∫ ∞

t1
max

{
1,

Pn−2(s)Pn−2(s)
Pn−2(h1(s))Pn−1(h1(s))

}

×ω
(
s,MP1(h1(s)) · · · Pn−1(h1(s))

)
ds <

1
6

proceed as in Theorem 2.1 to obtain

|y1(t)|
P1(t) · · ·Pn−3(t)

� Pn−2(t)Pn−1(t)u(t) � 3k2 for all t � t∗ . (2.18)

This implies part (1) of the theorem. The proof of parts (2) and (3) are similar to the
proof in Theorem 2.1, hence omitted.

The above process can be repeated for the two cases: αn−2 �= 0 obtaining results
similar to Remark 2.1, and αn−2 = 0 obtaining results similar to Theorem 2.2.

3. Result for a(t) � 0

In this section, we apply results from the previous section for the general equation
(1.1), with the following assumptions:

(H5) There exists a constant a0 such that 0 � a(t) � a0 , and limt→∞ g(t) = ∞ .

Also we assume that the component y1 is non-oscillatory, but no assumption is made
on the other components of the solution. Note that fn(t,y1(h1(t))) may be oscillatory,
even when y1 is non-oscillatory. Therefore, under our assumptions the component y1

can be non-oscillatory, while the other components are oscillatory.
For short notation, let

z1(t) = y1(t)+a(t)y1(g(t)).

THEOREM 3.1. Assume (H1)–(H3), (H5). Let (y1, . . . ,yn) be a solution (1.1) with
y1 non-oscillatory. If

limsup
t→∞

|z1(t)|
P1,...,n−1(t)

= ∞ ,
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then

limsup
t→∞

|y2(t)|
P2,...,n−1(t)

= ∞, . . . , limsup
t→∞

|yn−1(t)|
Pn−1(t)

= ∞, limsup
t→∞

|yn(t)| = ∞

and limsupt→∞ z1(t) = ∞ .

Proof. By contradiction assume that there are constants M and t∗ > t0 such that
|y2(t)|/P2,...,n−1(t) � M for all t � t∗ . By (1.1) and (H3), for t � t∗ ,

|z1(t)| � |y1(t0)|+ β2M
∫ t

z0
p1(s)P2,...,n−1(s)ds = |y1(t0)|+ β2MP1,...,n−1(t) ,

which contradicts the assumption on z1/P1,...,n−1 .
That |y2(t)|/P2,...,n−1(t) implies |y3(t)|/P3,...,n−1(t) is done as is in Lemma 2.1.

Then using the same proof as in Lemma 2.1, we obtain the desired results.

THEOREM 3.2. Let (y1, . . . ,yn) be a solution of (1.1) with y1 non-oscillatory.
Assume that (H1)–(H5) and (2.1) hold. If

limsup
t→∞

|z1(t)|
P1,...,n−1(t)

< ∞ , (3.1)

then yn has finite limit at infinity, with

lim
t→∞

yn(t) = αn, yn(t) = αn −
∫ ∞

t
fn

(
s,y1(h1(s))

)
ds .

Proof. Note that
|z1(t)|

P1,...,n−1(t)
� |y1(t)|

P1,...,n−1(t)
.

Taking the limit superior on both sides, we have limsupt→∞
|y1(t)|

P1,...,n−1(t)
< ∞ . Then using

the same technique as in the proof of Lemma 2.2, we obtain the desired results.

THEOREM 3.3. Let (y1, . . . ,yn) be a solution of (1.2) with y1 non-oscillatory.
Assume (H1)–(H5), (2.1) and (3.1). If limt→∞ yn(t) = αn �= 0 , then

lim
t→∞

yn−1(t)
Pn−1(t)

= fn−1(αn) �= 0, lim
t→∞

|yn−2(t)|
Pn−2,n−1(t)

= fn−2
(
fn−1(αn)

) �= 0,

. . . , lim
t→∞

z1(t)
P1,...,n−1(t)

= f1
(
. . . fn−2

(
fn−1(αn)

)) �= 0.

The proof of the above theorem follows the same steps in Lemma 2.3. Note that
limt→∞

y1(t)
P1,...,n−1(t)

may or may not exist; If the limit exists, then it is not equal to zero.
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THEOREM 3.4. Let hi(t)= t for i = 2, . . . ,n−1 and hn(t)� t , and let (y1, . . . ,yn)
be a solution of (1.2) with y1 non-oscillatory. Assume (H1)–(H4), (2.2), (2.4), and
(2.5). If limt→∞ yn(t) = 0 , then:

(1) limsupt→∞
|z1(t)|

P1(t),...,Pn−2(t)
< ∞ ,

(2) yn−1 has finite limit at infinity, with

lim
t→∞

yn−1(t) = αn−1, yn−1(t) = αn−1−
∫ ∞

t
pn−1(s) fn

(
yn(hn(s))

)
ds ,

(3) yn converges to zero at least at a rate given by limt→∞ Pn−1(t)yn(t) = 0 .

Proof. Note that because y1 does not change signs and 0 � a(t) � a0 , we have
|z1(t)| = |y1(t)|+ a(t)|y1(g(t))| ; also the bounds for |z1(t)| yield bounds for |y1(t)| ,
and viceversa. Then (2.8) still holds with a different constant k . This leads to bound
for y1 , which can be used for proving parts (2) and (3) as in Theorem 2.1.

The assumptions that y1 does not change signs and that 0 � a(t) � a0 allow us
to obtain bounds for |y1(t)| from the bounds of |z1(t)| . From this fact, we can prove
results similar to those in Remark 2.1 and Theorem 2.2 for the general equation (1.1).

EXAMPLE 3.1. As a simple example of functions satisfying the hypotheses (H1)–
(H5), we have the following functions: a(t) = 1+ cos(t) , fi(t) = t/2 (with βi = 1),
fn(t,x) = txsin(x) (with ω(t,x) = tx ), g(t) =

√
t , hi(t) = t + cos(t) , and pi(t) = (t +

cos(t))/t .

To conclude this article, we state that the cases a(t) � 0 and a(t) having sign
changes are possible extensions of our results.
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