
D ifferential
Equations

& Applications

Volume 7, Number 1 (2015), 15–26 doi:10.7153/dea-07-02

EVOLUTION EQUATIONS WITH CAUSAL OPERATORS

RAVI P. AGARWAL, SADIA ARSHAD, VASILE LUPULESCU AND DONAL O’REGAN

(Communicated by Eduardo M. Hernandez)

Abstract. In this paper we present an existence result for causal functional evolution equations.
The result is obtained under a condition with respect to the Hausdorff measure of noncompact-
ness. An application with partial differential equations is given to illustrate our main result.

1. Introduction

The study of functional equations with causal operators has recently been devel-
oped and some results on existence, stability and control are found in the monographs
[6], [12] and [20]. The term causal operators or Volterra abstract operator was intro-
duced by Tonelli [35] (see also Tikhonov [34]). The theory of these operators has the
advantage of unifying ordinary differential equations, integrodifferential equations, dif-
ferential equations with finite or infinite delay, Volterra integral equations, and neutral
functional equations, to name but a few. Many papers in the literature address vari-
ous aspects of the theory of causal operators. In [38] a new and general definition of
Volterra operators, including Volterra ones in the sense of Tonelli is given. Control
problems involving causal operators were studied in [4], [7], [14] and [32]. A a new
class of abstract integral equations has been introduced in [13]. We note that different
classes of differential equations with causal operators were studied by several authors,
see [1], [3], [8]-[11], [15], [22]-[28] and the references therein. Some properties of the
solutions of the differential equations with causal operators were studied in [2], [17],
[30], [31], [38].

Let E be a real separable Banach space endowed with the norm ‖·‖ . For x ∈ E
and r > 0 let Br(x) := {y ∈ E; ||y− x|| < r} be the open ball centered at x with radius
r , and let Br[x] be its closure. If σ � 0, we denote by C([−σ ,b],E) the Banach space
of continuous bounded functions from [−σ ,b] into E . If σ > 0, we denote by Cσ the
space C([−σ ,0],E) endowed with the norm ‖ϕ‖σ = sup−σ�s�0‖ϕ (s)‖ . The space of
all (classes of) strongly measurable functions u(·) : [0,b]→ E such that

‖u(·)‖p :=
(∫ b

0
‖u(t)‖p

)1/p

< ∞

Mathematics subject classification (2010): 34A07, 34A08.
Keywords and phrases: evolution equation, causal operator, initial value problem.

c© � � , Zagreb
Paper DEA-07-02

15

http://dx.doi.org/10.7153/dea-07-02


16 RAVI P. AGARWAL, SADIA ARSHAD, VASILE LUPULESCU AND DONAL O’REGAN

for 1 � p < ∞ and
‖u(·)‖∞ := esssup

t∈[0,b]
‖u(t)‖ < ∞,

will be denoted by Lp([0,b],E) . This is a Banach space with respect to the norm
‖u(·)‖p . Let σ � 0. The following definition of causal operator was given by Tonelli
[35].

DEFINITION 1. An operator Q : C ([−σ ,b],E) → Lp
loc([0,b],E) is a causal oper-

ator if, for each τ ∈ [0,b) and for all u(·),v(·) ∈ C ([−σ ,b],E) with u(t) = v(t) for
every t ∈ [0,τ] , we have Qu(t) = Qv(t) for a.e. t ∈ [0,τ] .

In this paper we consider the following evolution equation with causal operators
in a real separable Banach space E :⎧⎨

⎩
u′(t) = Au(t)+ (Qu)(t), for a.e. t ∈ [0,b],

u(·)|[−σ ,0] = ϕ(·) ∈ Cσ ,
(1.1)

where A : D(A) ⊂ E → E is the infinitesimal generator of a C0 -semigroup {S(t); t �
0} and Q : C ([−σ ,b],E) → Lp([0,b],E) is a causal operator. Now we provide some
examples of evolution equations that can be included in evolution equations with causal
operators of the form (1.1). The evolution problems

u′(t) = Au(t)+F(t,u(t)), u(0) = u0,

can be considered as a causal evolution equation by identifying F(t,u(t)) with (Qu)(t) .
Another example is the evolution equation with delay argument σ > 0⎧⎨

⎩
u′(t) = Au(t)+F(t,u(t),u(t−σ)), for a.e. t ∈ [0,b],

u(·)|[−σ ,0] = ϕ(·) ∈ Cσ ,
(1.2)

or more generally the functional evolution equation given by⎧⎨
⎩

u′(t) = Au(t)+F(t,u(t),ut), for a.e. t ∈ [0,b],

u(·)|[−σ ,0] = ϕ(·) ∈ Cσ ,
(1.3)

where xt(s)= x(t+s) , −σ < s < 0. The next example is the general integro-differential
evolution equation

⎧⎨
⎩

u′(t) = Au(t)+F

(
t,u(t),ut ,

∫ t

t−σ
K(t,s,u(s))ds

)
,

u(·)|[−σ ,0] = ϕ(·) ∈ Cσ .

(1.4)

All the equations (1.2)-(1.4) are examples of causal evolution equations. Also, the
evolution equation with “maxima”:

u′(t) = Au(t)+F
(
t,u(t), max

0�s�t
u(s)

)
, u(0) = u0, (1.5)
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is another example of a causal evolution equation. Finally, we remark that the Fredholm
operator, given by

(Qu)(t) =
∫ a

0
K(t,s,u(s))ds,

where a > 0 is a fixed real number, is a causal operator if and only if K(t,s,u) ≡ 0 for
t < s < a .

The rest of the paper is organized as follows. In Section 2, we recall some concepts
on C0 -semigroups and the measure of noncompactness. In Section 3, we establish an
existence result and Section 4 contains an illustrating example.

2. Preliminaries

We denote the space of all bounded linear operators acting on a Banach space E
by L (E) . We recall that a family {S(t);t � 0} ⊂ L (E) is called a C0 -semigroup if
the following three properties are satisfied:

(i) S(0) = I, the identity operator on E ;

(ii) S(t)S(s) = S(t + s) for all t,s � 0;

(iii) lim
t↓0

S(t)u = u for all u ∈ E .

The infinitesimal generator of the C0 -semigroup {S(t); t � 0} is the operator A :
D(A) ⊂ E → E , defined by

D(A) =
{

u ∈ E; lim
h↓0

S(h)u−u
h

exists
}

and

Au = lim
h↓0

S(h)u−u
h

, u ∈ D(A).

The generator is always a closed, densely defined operator. Also, we recall that a C0 -
semigroup {S(t); t � 0} is said to be equicontinuous if the function t 	→ S(t) is contin-
uous from [0,b] to L (E) endowed with the uniform operator norm ‖·‖L (E) . In partic-
ular, if A is the generator of an uniformly continuous semigroup, a compact semigroup,
a differentiable semigroup or an analytic semigroup {S(t); t � 0} , then {S(t); t � 0} is
an equicontinuous C0 -semigroup (see [37]).

THEOREM 1. Let {(S(t));t � 0} be a C0 -semigroup. Then there exist constants
ω � 0 and N � 1 such that

‖S(t)‖ � Neωt , for all t � 0.

For further details on the theory of the C0 -semigroups see [21], [29], [37]. We
denote by β (A) the Hausdorff measure of non-compactness of a nonempty bounded
set A ⊂ E , and it is defined by ([16], [19]):

β (A) = inf{ε > 0; A admits a finite cover by balls of radius � ε}.
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This is equivalent to the measure of non-compactness introduced by Kuratowski
(see [16], [19]).

If dim(A) = sup{||x− y||;x,y ∈ A} is the diameter of the bounded set A , then we
have that β (A) � dim(A) and β (A) � 2d if supx∈A ||x||� d . We recall some properties
of β (see [16], [19])). If A,B are bounded subsets of E and A denotes the closure of
A , then

(i) β (A) = 0 if and only if A is compact;

(ii) β (A) = β (A) = β (co(A)) ;
(iii) β (λA) = |λ |β (A) for every λ ∈ R ;

(iv) β (A) � β (B) if A ⊂ B ;

(v) β (A+B) = β (A)+ β (B) .

If for V ⊂C([0,b],E) we define

Ψ(V ) := sup
t∈[0,b]

β (V (t)),

where V (t) := {u(t) : u(·) ∈ V} , then Ψ satisfies all the usual properties of the Haus-
dorff measure of non-compactness except the regularity condition (i). Nevertheless if
the family of functions V ⊂C([0,b],E) is equicontinuous then Ψ(V ) = βc(V ) , where
βc is the Hausdorff measure of non-compactness in the space C([0,b],E) (see [16],
[19]).

We recall the following lemma due to Kisielewicz ([18, Lemma 2.2]).

LEMMA 1. Let {un(·);n � 1} be a subset in L1([0,b],E) for which there exists
m(·) ∈ L1([0,b],R+) such that ‖un(t)‖ � m(t) for each n � 1 and for a.e. t ∈ [0,b] .
Then the function t 	→ β (t) := β ({un(t);n � 1}) is integrable on [0,b] and, for each
t ∈ [0,b] , we have

β
({∫ t

0
un(t)dt;n � 1

})
�

∫ t

0
β (t)dt.

3. Existence Result

Consider the evolution equation
⎧⎨
⎩

u′(t) = Au(t)+ (Qu)(t), for a.e. t ∈ [0,b],

u(·)|[−σ ,0] = ϕ(·) ∈ Cσ ,
(3.1)

where A : D(A)⊂ E → E is the infinitesimal generator of a C0 -semigroup {S(t); t � 0}
and Q : C ([−σ ,b],E)→ Lp([0,b],E) is a causal operator; here 1 � p � ∞ . A function
u(·) : [−σ ,b]→ E , is a mild solution of (3.1) if u|[−σ ,0] = ϕ , ϕ(0) ∈ D(A) and

u(t) = S(t)ϕ(0)+
∫ t

0
S(t− s)(Qu)(s)ds, t ∈ [0,b].
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We consider the following assumptions:

(H1) Q is continuous;

(H2) For each r > 0 there exist ψ(·) ∈ Lp([0,b],R+) such that,

for each u(·) ∈ C ([−σ ,b],E) with sup
−σ�t�b

‖u(t)‖ � r,

we have
‖(Qu)(t)‖ � ψ(t) for a.e. t ∈ [0,b];

(H3) There exists a continuous function L(·) : [0,b] → R+ such that for each bounded

subset V ⊂C([0,b],E)

β (S(t)(QV )(s)) � L(t)β (V (s)), (3.2)

for all t ∈ [0,b] and for a.e. s ∈ [0,b] , where (QV )(s) := {(Qu)(s) : u(·) ∈V}.
We remark that (3.2) can be written as

βc(S(t)QV) � L(t)βc(V ),

for all t ∈ [0,b] , where QV := {(Qu)(·) : u(·) ∈ V} . Moreover, if {S(t); t � 0} is
compact or there exists L > 0 such that for each bounded subset V ⊂C([0,b],E)

β ((QV )(s)) � Lβ (V (s)),

for a.e. s∈ [0,b] , then (3.2) is automatically satisfied. For further details see [5, Remark
8.2.1].

THEOREM 2. Let Q : C ([−σ ,b],E) → Lp([0,b],E) be a causal operator such
that conditions (H1)-(H3) hold. If A is the generator of an equicontinuous C0 -semigroup
{S(t); t � 0} then, for every ϕ ∈ Cσ with ϕ(0) ∈ D(A) , the evolution equation (3.1)
has a mild solution u(·) : [−σ ,T ] → E on some interval [−σ ,T ] with T ∈ (0,b].

Proof. Let δ > 0 be any number. For a given ϕ ∈ Cσ with ϕ(0) ∈ D(A) , u0(·) ∈
C ([−σ ,b],E) denotes the function defined by

u0(t) =

⎧⎨
⎩

ϕ(t), for t ∈ [−σ ,0],

S(t)ϕ(0), for t ∈ [0,b].

From Theorem (1) there exists M � 1 such that ‖S(t)‖ � M for all t ∈ [0,b] . Then, if
we put r := ‖ϕ‖σ +δ , it follows that sup

t∈[0,b]
‖u0(t)‖ � r and therefore by (H2) we have

‖(Qu0)(t)‖ � ψ(t) for a.e. t ∈ [0,b] . Since t 	→ S(t)ϕ(0) continuous on [0,T ] (see
[29, Corollary 2.3]), S(0)ϕ(0) = ϕ(0) , and t 	→ ∫ t

0 ψ(t)dt is also continuous on [0,b] ,
then we may find a sufficiently small T ∈ (0,b] such that

sup
0�t�T

‖S(t)ϕ(0)−ϕ(0)‖+M
∫ T

0
ψ(t)dt < δ .
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Further, let Ω be the set defined by

Ω =
{

u(·) ∈ C ([−σ ,T ],E);u|[−σ ,0] = ϕ , sup
0�t�T

‖u(t)−u0(t)‖ � δ
}

.

If u(·) ∈ Ω , then it is easy to see that sup
−σ�t�T

‖u(t)‖ � r . Consider the operator P :

Ω → C ([−σ ,T ],E) given by

(Pu)(t) =

⎧⎨
⎩

ϕ(t), for t ∈ [−σ ,0],

S(t)ϕ(0)+
∫ t
0 S(t− s)(Qu)(s)ds, for t ∈ [0,T ].

For each u(·) ∈ Ω we have

sup
0�t�T

‖(Pu)(t)−u0(t)‖

= sup
0�t�T

∥∥∥∥S(t)ϕ(0)+
∫ t

0
S(t− s)(Qu)(s)ds−ϕ(0)

∥∥∥∥
� sup

0�t�T
‖S(t)ϕ(0)−ϕ(0)‖+M

∫ T

0
ψ(t)dt

< δ ,

and thus P(Ω) ⊂ Ω. Now let um(·) → u(·) in Ω . If 1 � p < ∞ and 1/p+ 1/q = 1,
then by Hölder’s inequality we have

sup
0�t�T

‖(Pum)(t)− (Pu)(t)‖

� sup
0�t�T

∫ t

0
‖S(t− s)[(Qum)(s)− (Qu)(s)]‖ds

� sup
0�t�T

∫ t

0
‖S(t− s)‖‖(Qum)(s)− (Qu)(s)‖ds

� M
∫ T

0
‖(Qum)(s)− (Qu)(s)‖ds

� MT 1/q
(∫ T

0
‖(Qum)(s)− (Qu)(s)‖pds

)1/p

and for p = ∞ we have

sup
0�t�T

‖(Pum)(t)− (Pu)(t)‖

� sup
0�t�T

∫ t

0
‖S(t− s)‖‖(Qum)(s)− (Qu)(s)‖ds

� M ess sup
0�t�T

‖(Qum)(t)− (Qu)(t)‖.
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Using (H1) it follows that for 1 � p � ∞ we have that

sup
0�t�T

‖(Pum)(t)− (Pu)(t)‖→ 0 as m → ∞ .

Since for all m ∈ N , we have um(·)|[−σ ,0] = ϕ , it follows that P : Ω → Ω is a continu-
ous operator. Further, we deduce that P(Ω) is uniformly bounded. Next we show that
P(Ω) is equicontinuous on [−σ ,T ] . Since P(Ω)|[−σ ,0] = {ϕ(·)} and it follows that
P(Ω) is equicontinuous on [−σ ,0] . Let ε > 0 and s, t ∈ (0,T ] with s < t . Then we
have that

‖(Pu)(t)− (Pu)(t)‖
� ‖S(t)ϕ(0)−S(s)ϕ(0)‖

+
∫ t

s
‖S(t− τ)(Qu)(τ)‖dτ +

∫ t

0
‖[S(t− τ)−S(s− τ)](Qu)(τ)‖dτ

� ‖S(t)ϕ(0)−S(s)ϕ(0)‖+M
∫ t

s
ψ(τ)dτ

+
∫ t

0
‖S(t− τ)−S(s− τ)‖ψ(τ)dτ.

The right hand side of previous inequality does not depend on u(·) ∈ Ω and tends
to zero as t − s → 0, since the equicontinuity of the C0 -semigroup {S(t); t > 0} im-
plies that the function t 	→ S(t) is continuous in the uniform operator norm ‖·‖L (E) .
Thus P(Ω) is uniformly equicontinuous on [−σ ,T ] . Next, we construct a sequence
{un(·)}n�1 of continuous functions un(·) : [−σ ,T ] → E as follows. Given n ∈ N , for
k = 1,2, ...,n , we define u1

n(t) = u0(t) , t ∈ [−σ ,T/n] and

uk
n(t) =

⎧⎨
⎩

uk−1
n (t), t ∈ [−σ ,(k−1)T/n],

S(t)ϕ(0)+
∫ t−T/n
0 S(t−T/n− s)(Quk−1

n )(s)ds,t ∈ [(k−1)T/n,kT/n],

for k > 1. It is easy to see that if k ∈ {1,2, ...,n− 1} and ||uk
n(t)|| � r for t ∈

[−σ ,kT/n] , then ||uk+1
n (t)|| � r for t ∈ [−σ ,kT/n] and, by (H2), ||(Quk

n)(t)|| � ψ(t)
for a.e. t ∈ [−σ ,kT/n] . It follows that

||uk+1
n (t)−ϕ(0)||

=
∥∥∥∥S(t)ϕ(0)+

∫ t−T/n

0
S(t−T/n− s)(Quk−1

n )(s)ds−ϕ(0)
∥∥∥∥

� sup
0�t�kT/n

‖S(t)ϕ(0)−ϕ(0)‖+
∫ t−T/n

0
‖S(t−T/n− s)(Quk−1

n )(s)‖ds

� sup
0�t�kT/n

‖S(t)ϕ(0)−ϕ(0)‖+M
∫ t−T/n

0
ψ(s)ds < δ ,

for all t ∈ [−σ ,(k + 1)T/n] . Since ||u1
n(t)|| � r for t ∈ [−σ ,T/n] , then by induction

on k we have that ||uk
n(t)|| � r for all k = 1,2, ...,n , t ∈ [−σ ,kT/n] . In the following,
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to simplify the notation, we put un(·) = un
n(·) , n ∈ N . Since un

n(s) = un−1
n (s) for all

s ∈ [0,(n−1)T/n] and Q is a causal operator, then

(Qun
n)(s) = (Qun−1

n )(s) for all s ∈ [0,(n−1)T/n].

If t ∈ [(n−1)T/n,T ] , then

t−T/n ∈ [(n−2)T/n,(n−1)T/n] and 0 � t −T/n− s � t−T/n

and consequently

∫ t−T/n

0
S(t−T/n− s)(Qun

n)(s)ds =
∫ t−T/n

0
S(t−T/n− s)(Qun−1

n )(s)ds

for t ∈ [(n−1)T/n,T ] . It follows that the sequence {un(·)}n�1 can be written as

un(t) =
{

u0(t), t ∈ [−σ ,T/n]
S(t)ϕ(0)+

∫ t−T/n
0 S(t−T/n− s)(Qun)(s)ds, t ∈ [T/n,T ],

(3.3)

for every n ∈ N . Moreover, it is easy to see that un(·) ∈ Ω for all n � 1. Further, if
0 � t � T/n , then we have

‖(Pun)(t)−un(t)‖

=
∥∥∥∥S(t)ϕ(0)+

∫ t

0
S(t− s)(Qun)(s)ds−ϕ(0)

∥∥∥∥
� sup

0�t�T/n
‖S(t)ϕ(0)−ϕ(0)‖+

∫ T/n

0
‖S(t− s)(Qun)(s)‖ds

� sup
0�t�T/n

‖S(t)ϕ(0)−ϕ(0)‖+M
∫ T/n

0
ψ(s)ds.

If T/n � t � T, then we have

‖(Pun)(t)−un(t)‖
�

∫ t

t−T/n
‖S(t−T/n− s)(Qun)(s)‖ds

+
∫ t−T/n

0
‖[S(t− s)−S(t−T/n− s)](Qun)(s)‖ds

� M
∫ t

t−T/n
ψ(s)ds+

∫ t−T/n

0
‖S(t− s)−S(t−T/n− s)‖ψ(s)ds.

Since the function t 	→ S(t) is continuous in the uniform operator norm ‖·‖L (E) , then
the last two inequalities imply

sup
0�t�T

‖(Pun)(t)−un(t)‖→ 0 as n → ∞. (3.4)
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Let V = {un(·);n � 1}. Consider the identity mapping I on Ω . By (3.4) we deduce that
(I −P)(V ) is an equicontinuous subset of Ω. As V ⊂ (I −P)(V)+P(V ) and the
set P(V ) is equicontinuous, then it follows that V is also equicontinuous on [−σ ,T ].
Define V (t) = {un(t);n � 1} for t ∈ [0,T ]. Then, by (3.3) and the properties (1), (3)
and (4) of the measure of non-compactness we have

β (V (t)) � β
(∫ t

0
S(t− s)(QV )(s)ds

)
+ β

(∫ t

t−T/n
S(t− s)(QV )(s)ds

)
.

Note that, given ε > 0, we can find n(ε) > 0 such that
∫ t
t−T/n ψ(s)ds < ε/2M for

t ∈ [0,T ] and n � n(ε) . Since

‖S(t− s)(Qun)(s)‖ � M ‖(Qun)(s)‖ � Mψ(s)

for a.e. s ∈ [0,T ] and n � 1, then we have that

β
(∫ t

t−T/n
S(t− s)(QV )(s)ds

)

= β
({∫ t

t−T/n
S(t− s)(Qun)(s)ds;n � n(ε)

})

� 2 sup
n�n(ε)

∫ t

t−T/n
ψ(s)ds < ε .

Using the last inequality, Lemma (1) and (H3), we obtain that

β (V (t)) � β
(∫ t

0
S(t− s)(QV )(s)ds

)
�

∫ t

0
β (S(t− s)(QV )(s))ds

�
∫ t

0
L(t − s)β (V (s))ds �

∫ t

0
sup

θ∈[0,T ]
L(θ )β (V (s))ds

� L
∫ t

0
β (V (s))ds,

where L := sup
θ∈[0,T ]

L(θ ) . Since β (V (0)) = 0, then by Gronwall’s lemma we must have

that β (V (t)) = 0 for every t ∈ [0,T ] . Moreover, since βc(V ) = sup
0�t�T

β (V (t)) and

V |[−σ ,0] = {ϕ} we deduce that βc(V ) = 0. Therefore, V is a relatively compact subset
of C ([−σ ,T ],E) . Then, by the Arzela-Ascoli theorem (see [19], Theorem 1.1.5), and
extracting a subsequence if necessary, we may assume that the sequence {un(·)}n�1

converges uniformly on [0,T ] to a continuous function u(·) ∈ Ω . Therefore, since

sup
0�t�T

‖(Pu)(t)−u(t)‖� sup
0�t�T

‖(Pu)(t)− (Pun)(t)‖

+ sup
0�t�T

‖(Pun)(t)−un(t)‖+ sup
0�t�T

‖un(t)−u(t)‖,
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then by the continuity of P and (3.4), we get sup
0�t�T

‖(Pu)(t)−u(t)‖ = 0. It follows

that
u(t) = (Pu)(t) for all t ∈ [0,T ].

Thus

u(t) =

⎧⎨
⎩

ϕ(t), for t ∈ [−σ ,0],

S(t)ϕ(0)+
∫ t
0 S(t− s)(Qu)(s)ds, for t ∈ [0,T ],

is a solution of the causal evolution equation (3.1). �

4. An Application

Consider the reaction-diffusion equation with delay
⎧⎨
⎩

∂w
∂ t (t,x) = ∂ 2w

∂x2 (t,x)+ f (t,wt(·,x)), 0 � x � π , 0 � t � b
w(t,0) = w(t,π) = 0, 0 � t � b,
w(s,x) = ϕ(s)(x), 0 � x � π , −σ � s � 0,

(4.1)

where ϕ(·) ∈ Cσ := C ([−σ ,0],E) , f : [0,b]×Cσ → R is a given continuous function,
wt(s,x) = w(t + s,x) for s ∈ [−σ ,0] and t ∈ [0,b] , and E = L2([0,π ]) .

Let A : E → E be defined by Ay = y′′ with the domain

D(A) = {y ∈ E : y, y′ are absolutely continuous, y′′ ∈ E and y(0) = y(π) = 0}.
Then the operator A is the infinitesimal generator of a compact C0 -semigroup

{
S(t), t �

0
}

(see [36, Example 5.2]). Moreover, the operator A can be written as

Ay = −
∞

∑
n=1

n2〈y,yn〉yn, y ∈ D(A),

where
{
yn(x) = (

√
2
π )sinnx; n = 1,2, ...

}
is the orthogonal set of the eigenvectors of

A and the C0 -semigroup {S(t), t � 0} is given by

S(t)y =
∞

∑
n=1

exp(−n2t)〈y,yn〉yn, y ∈ E.

Let us define u(·) : [0,b]→E , F : [0,b]×Cσ →E , and Q : C ([−σ ,b],E)→C ([0,b],E)
respectively by

u(t)(x) := w(x, t), F(t,ϕ(·))(x) = f (t,ϕ(·)(x)) and (Qu)(t) = F(t,ut(·)),
where ut(·) ∈ Cσ is given by ut(·)(x) = wt(·,x) for t ∈ [0,b] . Then the reaction-
diffusion equation (4.1) can be written in the abstract form{

u′(t) = Au(t)+ (Qu)(t) for a.e. t ∈ [0,b]
u(·)|[−σ ,0] = ϕ(·) ∈ Cσ .
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It is easy to check that Q is a causal operator and satisfies conditions (H1) and (H2).
Since {S(t), t � 0} is a compact C0 -semigroup, then condition (H3) is automatically
satisfied (see [5, Remark 8.2.1]). Therefore, there exists a mild solution of (4.1).
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