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ANALYSIS OF THE BOUNDARY VALUE PROBLEM ASSOCIATED WITH

THE NONRELATIVISTIC THOMAS–FERMI EQUATION

FOR HEAVY ATOMS IN INTENSE MAGNETIC FIELDS

CHRISTOPHER C. TISDELL AND MARK HOLZER

Abstract. This article presents a firm mathematical foundation for the boundary value problem
associated with the nonrelativistic Thomas-Fermi equation for heavy atoms in intense magnetic
fields. Our approach uses an application of differential inequalities and ideas from nonlinear
analysis, including: the technique of lower and upper solutions; and fixed-point theory. We
present new results that ensure existence, uniqueness, location and approximation of solutions.
We thus establish that the Thomas-Fermi model leads to a robust theory of heavy atoms in intense
magnetic fields in spite of the severe approximations that it employs.

A YouTube video from the first author that is designed to complement this paper can be
found here http://tinyurl.com/ThomasFermi .
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[5] PH. BÉNILAN, H. BRÉZIS, Nonlinear problems related to the Thomas-Fermi equation. Dedicated to
Philippe Bénilan, J. Evol. Equ., 3 (2003), no. 4, 673–770.
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