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Abstract. We prove a generalization of a measure theoretic fixed point theorem of Darbo in
Banach spaces which includes some well-known fixed point theorems of Dhage and Sadovskii
as special cases. A generalized nonlinear functional integral equation is studied via Dhage fixed
point theorem for attractivity of the solutions on unbounded intervals of real line. Finally the
validity of our hypotheses imposed on the functional integral equation is also discussed with a
numerical example.

1. Introduction

The concept of a measure of noncompactness plays a significant role in nonlinear
functional analysis, especially in the study of metric and topological fixed point theory.
It may be observed that several papers dealing with the existence and qualitative be-
haviour of solutions for different classes of nonlinear differential and integral equations
employ the measures of noncompactness and fixed point theorems as the key tools in
the work. In the present paper we prove some measure theoretic fixed point theorems
along the lines of Darbo [7] and Dhage [10, 11] and discuss the local attractivity of the
solutions for a wider class of nonlinear functional integral equations.

The first basic Kuratowski [19] measure of noncompactness is given by

α(X) = inf
{

δ > 0
∣∣X =

n⋃
i=1

Xi, diam (Xi) � δ
}

for bounded subsets X of a metric space E , where diam(X ) denotes the diameter of
a set X ⊂ E, i.e., diam (Xi ) := sup{d(x,y)|x,y ∈ Xi} and second important Hasudorff
(or ball) measure of noncompactness is given by

χ(X) = inf
{

ε > 0 : X has a finite ε -net in X
}
.
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The above two basic measures of noncompactness are very much useful in nonlin-
ear analysis and its applications. however, another axiomatic way of defining the mea-
sures of noncompactness is sometimes useful for applications to nonlinear problems of
analysis. See Akhmerov et al. [4], Banas and Goebel [6], Deimling [8] and Väth [21].
Assume that E is a given Banach space with the norm ‖ · ‖ . For any nonempty subset
X of E , by X and coX we denote the closure and the convex closure of X respectively.
We denote the standard algebraic operations on sets by the symbols λX for λ ∈ R and
X +Y .

Further, let Pp(E) denote the class of all nonempty subsets of E with a property
p . Here p may be p =closed (cl, in short), p =bounded (bd, in short), p = relatively
compact (rcp, in short) etc. Thus, Pcl(E),Pbd(E),Pcl,bd and Prcp(E) denote re-
spectively the classes of closed, bounded, closed and bounded and relatively compact
subsets of E .

The following axiomatic definition of a measure of noncompactness is adopted
from Dhage [10, 11].

DEFINITION 1.1. A mapping μ : Pbd(E)→R+ = [0,∞) is said to be a measure
of noncompactness in E if it satisfies the following conditions:

1o /0 �= μ−1({0})⊂ Prcp(E) ,

2o μ(X) = μ(X),

3o μ(coX) = μ(X),

4o X ⊂ Y ⇒ μ(X) � μ(Y ),

5o If {Xn} is a sequence of closed chains of Pbd(E) such that Xn+1 ⊂ Xn,
(n = 1,2, ...) and if lim

n→∞
μ(Xn) = 0, then the intersection set X∞ =

⋂∞
n=1 Xn is

nonempty.

The family μ−1({0}) described in 1o is called the kernel of the measure of non-
compactness μ and denoted by ker μ . Furthermore, we observe that the intersection
set X∞ from axiom 5o is a member of the kernel ker μ . As μ(X∞) � μ(Xn) for any n ,
we have that μ(X∞) = 0. This yields that X∞ ∈ ker μ . This simple observation will be
essential in our further investigations.

The measure μ of noncompactness is called sublinear if it satisfies

6o μ(X1 +X2) � μ(X1)+ μ(X2) for all X1,X2 ∈ Pbd(E) and

7o μ(λ X) = |λ |μ(X) for λ ∈ R .

The following well-known result of Schauder plays a key role in the topological
fixed point theory and applications (cf. [6, 18] and the references therein).

THEOREM 1.1. (Schauder) Let Ω be a nonempty, bounded, closed and convex
subset of a Banach space E . Then each continuous and compact map T : Ω → Ω has
at least one fixed point in the set Ω .
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A first generalization of Schauder’s fixed point is the following Darbo fixed point
theorem in the setting of a Banach space.

THEOREM 1.2. (Darbo) Let Ω be a nonempty, bounded, closed and convex sub-
set of a Banach space E and let T : Ω → Ω be a continuous mapping. Assume that
there exists a constant k ∈ [0,1) such that

μ(T X)) � k μ(X)

for any nonempty subset X of Ω , where μ is a measure of noncompactness defined in
E . Then T has a fixed point.

Next, a generalization of fixed point theorem of Darbo was proved by Dhage [10].
Before going to the main results we recall the following useful definition introduced by
Dhage [10].

DEFINITION 1.2. A mapping T : X → X is called D -set-Lipschitz if there exists
an upper semi-continuous nondecreasing function ϕ : R+ → R+ such that μ(T (A)) �
ϕ(μ(A)) for all A ∈ Pbd(X) with T (A) ∈ Pbd(X) , where ϕ(0) = 0. The function ϕ
is sometimes called a D -function of T on X . Especially when ϕ(r) = k r, k > 0, T
is called a k -set-Lipschitz mapping and if k < 1, then T is called a k -set-contraction
on X . Further, if ϕ(r) < r for r > 0, then T is called a nonlinear D -set-contraction
on X .

REMARK 1.1. (Dhage [11]) If φ ,ψ R+ → R+ are two D -functions, then i) φ +
ψ , ii) λ φ , λ > 0, and iii) φ ◦ψ are also D -functions on R+ and commonly used
D -functions are ψ(r) = k r , ψ(r) = Lr

K+r ,L > 0,K > 0, and ψ(r) = log(1+ r) etc. A
few details of D -functions appear in Dhage [11] and the references cited therein.

LEMMA 1.1. (Dhage [10]) If ϕ is a D -function on R+ into itself with ϕ(r) < r
for r > 0, then limn→∞ ϕn(t) = 0 for all t ∈ [0,∞) and vice-versa.

Using Lemma 1.1, Dhage [10] proved the following applicable measure theoretic
fixed point result.

THEOREM 1.3. (Dhage [10]) Let C be a closed, convex and bounded subset of a
Banach space X and let T : C →C be a continuous and nonlinear D -set-contraction.
Then T has a fixed point.

REMARK 1.2. Let us denote by Fix(T ) the set of all fixed points of the oper-
ator T which belong to C . It can be shown that the set Fix(T ) existing in Theo-
rem 2.1 belongs to the family ker μ . Indeed, if Fix(T ) �∈ ker μ , then μ(Fix(T )) >
0 and T (Fix(T )) = Fix(T ) . Now from nonlinear set-contractivity it follows that
μ(T (Fix(T ))) � φ(μ(Fix(T ))) which is a contradiction since φ(r) < r for r > 0.
Hence Fix(T ) ∈ ker μ . This particular property of the measures has been used in the
study of attrativity of solutions for the nonlinear funcional integral equation in question.
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Next, a slight generalization of above fixed point theorem of Dhage [10] recently
obtained by Aghajani et al.[3] is as follows:

THEOREM 1.4. (Aghajani et al.[3]) Let Ω be a nonempty, bounded, closed and
convex subset of a Banach space E and let T : Ω → Ω be a continuous operator
satisfying the inequality

μ(T X)) � ϕ(μ(X)) (1.1)

for every nonempty subset X of Ω , where μ is an arbitrarymeasure of noncompactness
and ϕ : R+ → R+ is a nondecreasing functions such that limn→∞ ϕn(t) = 0 for each
t > 0. Then T has at least one fixed point in Ω .

Note that as mentioned in Dhage et al. [17], the condition limn→∞ ϕn(t) = 0 for
each t > 0, is very difficult to verify in actual practice, but when ϕ is an upper semi-
continuous, it is equivalent to the condition ϕ(t) < t , t > 0. So in this case, Theorem
1.4 is equivalent to Theorem 1.3 of Dhage [10]. In view of above facts, Theorem 1.4
is not applicable to nonlinear problems of differential and integral equations and the
authors in [3] though not mentioned actually employed Theorem 1.3 and not Theorem
1.4 as a key tool in their study of nonlinear integral equations. Aghajani et al. [3]
further proved the following generalization of Darbo’s fixed point theorem using the
same method.

THEOREM 1.5. Let Ω be a nonempty, bounded, closed and convex subset of a
Banach space E and let T : Ω → Ω be a continuous operator such that

ψ(μ(T X)) � ψ(μ(X))−φ(μ(X)) (1.2)

for every nonempty subset X of Ω , where μ is an arbitrarymeasure of noncompactness
and φ ,ψ : R+ → R+ are given functions such that ψ is continuous and φ is lower
semicontinuous on R+ . Moreover, φ(0) = 0 and φ(t) > 0 for t > 0. Then T has at
least one fixed point in Ω .

After analyzing Theorem 1.5, one is convinced that the role of the function ψ in
the proof is superficial and Theorem 1.5 is not in line with the Darbo fixed point theo-
rem. Indeed, neither the function ψ has any role in the proof of the theorem nor it has
any application potential in solving the problem of existence of solutions of any non-
linear functional integral equations for which the theorem was sought to focus. In this
context, we prove in the following section some results related to useful generalizations
of Darbo’s fixed point and their interesting consequences.

2. Fixed Point Results

DEFINITION 2.1. Let R denote the class of those functions β : R+ → R+ which
satisfy the conditions (i) β is continuous, and (ii) β (tn) → 0 implies that tn → 0.

It is not difficult to verify that the following functions satisfy the conditions given
in Definition 2.1:
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(a) β (t) = ln(1+ t) for all t ∈ R+ ; and

(b) β (t) = t − ln(1+ t) for all t ∈ R+ .

Obviously, the identity mapping on R+ into itself also satisfies the requisite con-
ditions of Definition 2.1.

We now state and prove our main result which can be considered as a generaliza-
tion of Darbo’s fixed point theorem and Theorem 1.4 of Aghajani et. al.[3]:

THEOREM 2.1. Let Ω be a nonempty, bounded, closed and convex subset of a
Banach space E and let T : Ω → Ω be a continuous operator such that

μ(T X) � μ(X)−φ(β (μ(X))) (2.1)

for every nonempty subset X of Ω and each β ∈ R , where μ is an arbitrary measure
of noncompactness and φ : R+ → R+ is nondecreasing function such that φ is a lower
semicontinuous on R+ such that φ(0) = 0 and φ(t) > 0 for t > 0. Then T has at
least one fixed point in Ω .

Proof. Define a sequence {Ωn} as Ω0 = Ω and Ωn = coT Ωn−1 for n = 1,2, · · · .
If there exists a natural number n0 such that μ(Ωn0) = 0, then Ωn0 is compact. By
Theorem 1.2, T has a fixed point in Ω . Next, we assume that μ(Ωn0) > 0 for n =
1,2, · · · . Using (2.1), we get

μ(Ωn+1) = μ(coT Ωn) = μ(T Ωn) � μ(Ωn)−φ(β (μ(Ωn))). (2.2)

Now, taking into account that Ωn+1 ⊂ Ωn , on the basis of axiom 2o of Definition
1.1 the sequence {μ(Ωn)} is nonincreasing and nonnegative. From this we infer that
μ(Ωn) → r when n → ∞, where r � 0 is a nonnegative real number. Since β is
continuous, it follows that β (μ(Ωn)) → β (r) as n → ∞ . Now, in view of (2.2) we
obtain

limsup
n→∞

μ(Ωn+1) � limsup
n→∞

μ(Ωn)− liminf
n→∞

φ(β (μ(Ωn))).

This yields r � r − liminfn→∞ φ(β (μ(Ωn))). Since φ is nondecreasing, we obtain
φ(β (r)) � liminfn→∞ φ(β (μ(Ωn))) = 0. From this, in view of the fact that φ(0) = 0,
we deduce that β (μ(Ωn)) → 0 as n → ∞ . By the definition of β we infer that
μ(Ωn) → 0 as n → ∞ . Now, using axiom 6o of Definition 1.1 we derive that the
set Ω∞ =

⋂∞
n=1 Ωn is nonempty, closed, convex and Ω∞ ⊂ Ω . Notice that T (Ω∞)⊂ Ω

i.e., T maps Ω∞ into itself and Ω∞ ∈ ker μ . Now taking into account Schauder fixed
point principle (cf. Theorem 1.2) we infer that the operator T has a fixed point x in
the set Ω∞ . Since Ω∞ ⊂ Ω , it follows that x ∈ Ω . This completes the proof. �

Taking β : R+ → R+ to be an identity mapping on R+ , then we obtain the fol-
lowing new fixed point result as a corollary with interesting consequences.



62 BAPURAO C. DHAGE, SHYAM B. DHAGE AND HEMANT K. PATHAK

COROLLARY 2.1. Let Ω be a nonempty, bounded, closed and convex subset of a
Banach space E and let T : Ω → Ω be a continuous operator such that

μ(T X) � μ(X)−φ(μ(X)) (2.3)

for every nonempty subset X of Ω , where μ is an arbitrarymeasure of noncompactness
and φ : R+ → R+ is a lower semicontinuous on R+ such that φ(0) = 0 and φ(t) > 0
for t > 0. Then T has at least one fixed point in Ω .

When φ(r) = (1− k)r , 0 � k < 1, Corollary 2.1 reduces to Theorem 1.2 above
due to Darbo [7]. Again, when μ(X) > 0, then from condition (2.3), we obtain the
following Sadovskii’s fixed point theorem for condensing mappings characterized by
the inequality μ(T X) < μ(X) . The mappings satisfying this contractive inequality are
called condensing mappings on Banach spaces.

THEOREM 2.2. (Sadovskii [20]) Let Ω be a nonempty, bounded, closed and con-
vex subset of a Banach space E and let T : Ω → Ω be a continuous and condensing
mapping. Then T has at least one fixed point in Ω .

A slight variant of Theorem 2.1 can be formulated as given below.

THEOREM 2.3. Let Ω be a nonempty, bounded, closed and convex subset of a
Banach space E and let T : Ω → Ω be a continuous operator such that

μ(T X) � μ(X)−φ(μ(T X)) (2.4)

for every nonempty subset X of Ω , where μ is an arbitrarymeasure of noncompactness
and φ : R+ → R+ is a nonincreasing lower semi-continuous function on R+ such that
φ(0) = 0 and φ(t) > 0 for t > 0. Then T has at least one fixed point in Ω .

Proof. The proof is similar to Theorem 2.1 and hence we omit the details.

In order to introduce further concepts used in this paper, let us assume that E =
BC(R+,R) and let Ω be a subset of E . Let Q : E → E be an operator and consider
the operator equation in E ,

Qx(t) = x(t) for all t ∈ R+. (2.5)

Below we give different characterizations of the solutions for the operator equation
(2.5) on R+ .

DEFINITION 2.2. We say that solutions of the equation (2.5) are locally attractive
if there exists a closed ball B[x0,r0] in the space BC(R+,R) for some x0 ∈ BC(R+,R)
such that, for arbitrary solutions x = x(t) and y = y(t) of equation (2.5) belonging to
B[x0,r0]∩Ω , we have

lim
t→∞

(x(t)− y(t)) = 0. (2.6)
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In case the limit (2.6) is uniform with respect to the set B[x0,r0]∩Ω , i.e., for each ε > 0
there exists T > 0 such that

|x(t)− y(t)|� ε (2.7)

for all solutions x,y∈B[x0,r0]∩Ω of (2.5) and for t � T , we will then say that solutions
of equation (2.5) are uniformly locally attractive on R+ .

Let X = BC(R+,R) be the space of all continuous and bounded functions on R+
and define a norm ‖ · ‖ in X by

‖x‖ = sup{|x(t)| : t � 0}.
Clearly X is a Banach space with this supremum norm. Let us fix a bounded

subset A of X and a positive real number T . For any x ∈ A and ε � 0, denote by
ωT (x,ε) , the modulus of continuity of x on the interval [0,T ] defined by

ωT (x,ε) = sup{|x(t)− x(s)| : t,s ∈ [0,T ], |t − s|� ε} .

Moreover, let
ωT (A,ε) = sup{ωT (x,ε) : x ∈ A},

ωT
0 (A) = lim

ε−→0
ωT (A,ε),

ω0(A) = lim
T−→∞

ωT
0 (A).

By A(t) we mean a set in R defined by A(t) = {x(t) | x ∈ A} for t ∈ R+ . We
denote diam (A(t)) = sup{|x(t)− y(t)| : x,y ∈ A} . Finally we define a function μ on
Pbd(X) by the formula

μ(A) = ω0(A)+ limsup
t−→∞

diam(A(t)). (2.8)

It is known that μ is a sublinear and therefore, a useful handy tool of measure of
noncompactness in X for some practical applications.

3. Local Attractivity Result

In this section, as an application of our results in Section 2, we consider the fol-
lowing generalized nonlinear functional integral equation (in short GNFIE)

x(t) = F

(
t,x(θ (t)),u(t,x(α(t))),

β (t)∫
0

f (t,s,x(γ(s)))ds,

σ(t)∫
0

g(t,s,x(η(s)))ds

)
, (3.1)

for t ∈ R+ , where u : R+ ×R → R , f ,g : R+ ×R+×R → R , F : R+ ×R×R×R×
R → R and α,β ,γ,θ ,σ ,η : R+ → R+ are continuous functions.

The functional integral equation (3.1) is “general” in the sense that it includes
several classes of known integral equations discussed in the literature. See Dhage and
Lakshmikantham [14], Dhage et.al. [13], Dhage and Ntouyas [15], Krasnoselskii [18],
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Väth [21], Dhage [9, 10] and the references therein. We now intend to obtain the
solutions of GNFIE (3.1) in the space BC(R+,R) of all bounded and continuous real-
valued functions on R+ .

We consider the following set of assumptions in what follows.

(H0) The functions α,β ,γ,θ ,σ ,η : R+ → R+ are continuous and θ (t) � t and
α(t) � t for all t ∈ R+ .

(H1) There exists a D -function ϕ and the constants Li > 0, i = 1,2,3; such that

|F(t,x,x1,x2,x3)−F(t,y,y1,y2,y3)| � ϕ(|x− y|)+
3

∑
i=1

Li|xi − yi|

for all t ∈R+ and x,y,xi,yi ∈R , i = 1,2,3. Moreover, the map t →F(t,0,0,0,0)
is bounded with F0 = sup

t�0
|F(t,0,0,0,0)| .

(H2) There exist a D -function ϕ1 and a continuous function k1 ∈ BC(R+,R+) such
that

|u(t,x)−u(t,y)|� k1(t)ϕ1(|x− y|),
for all t ∈ R+ . Moreover, sup

t�0
k1(t) = K1.

(H3) The function t → u(t,0) = u0(t) is bounded and C0 = sup
t�0

|u(t,0)| .

(H4) The function f : R+ ×R+×R −→ R is continuous and there exist a continuous
function q : R+×R+ −→ R+ and a D -function ϕ2 such that

| f (t,s,x)− f (t,s,y)| � q(t,s))ϕ2(|x− y|)

for all t,s ∈ R+ and x,y ∈ R . Moreover, lim
t→∞

∫ β (t)

0
q(t,s)ds = 0.

(H5) The function f0 : R+ −→ R+ defined by f0(t) =
∫ β (t)

0
| f (t,s,0)|ds is bounded

with C1 = supt�0 f0(t) .

(H6) g : R+ ×R+×R → R is a continuous function and there exist continuous func-
tions a,b : R+ → R+ such that

|g(t,s,x)| � a(t)b(s)

for t,s ∈ R+ , t � s and x ∈ R . Moreover, lim
t→∞

a(t)
∫ σ(t)

0
b(s)ds = 0.
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REMARK 3.1. Since the hypotheses (H4) and (H6) are held, we have that the
functions

k2(t) =
∫ β (t)

0
q(t,s)ds and v(t) = a(t)

∫ σ(t)

0
b(s)ds

are bounded on R+ and the positive numbers

K2 = sup
t�0

∫ β (t)

0
q(t,s)ds and V = sup

t�0
v(t)

exist.

THEOREM 3.1. Assume that the hypotheses (H0) through (H6) hold. Suppose
that

ϕ(r)+L1K1ϕ1(r) < r, r > 0, (3.2)

and there exists a positive solution r0 of the inequality

ϕ(r)+L1K1ϕ1(r)+L2K2ϕ2(r)+q � r, (3.3)

where q is the constant defined by the equality

q = {L1C0 +L2C1 +L3V +F0}.
Then the functional nonlinear integral equation (3.1) has a solution and the solutions
are uniformly locally attractive on R+ .

Proof. Consider the operator Q defined on the space BC(R+,R) by the formula

Qx(t) = F

(
t,x(θ (t)),u(t,x(α(t))),

β (t)∫
0

f (t,s,x(γ(s)))ds,

σ(t)∫
0

g(t,s,x(η(s)))ds

)
,

(3.4)
for t ∈ R+ . We shall show that the map Q satisfies all the conditions of Theorem 1.3
on X .

Step I: First we show that Q defines a mapping Q : X −→ X . Since all the func-
tions involved in (3.1) are continuous, Qx is continuous on R+ for each x ∈ X . Hence
Qx is mapping from X into itself. As θ (R+) ⊆ R+ , we have maxt�0 |x(θ (t))| �
maxt�0 |x(t)| . On the other hand, hypotheses (H0)-(H5) imply that∣∣Qx(t)

∣∣
=
∣∣∣∣F
(

t,x(θ (t)),u(t,x(α(t))),
∫ β (t)

0
f (t,s,x(γ(s)))ds,

∫ σ(t)

0
g(t,s,x(η(s)))ds

)∣∣∣∣
�
∣∣∣∣F
(

t,x(θ (t)),u(t,x(α(t))),
∫ β (t)

0
f (t,s,x(γ(s)))ds,

∫ σ(t)

0
g(t,s,x(η(s)))ds

)

−F(t,0,0,0,0)
∣∣∣∣+ |F(t,0,0,0,0)|
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� ϕ(|x(θ (t))|)+L1|u(t,x(α(t)))|+L2

∣∣∣∫ β (t)

0
f (t,s,x(γ(s)))ds

∣∣∣
+L3

∣∣∣∫ σ(t)

0
g(t,s,x(η(s)))ds

∣∣∣+ |F(t,0,0,0,0)|

� ϕ(|x(θ (t))|)+L1|u(t,x(t))−u(t,0)|+L1|u(t,0)|

+L2

∫ β (t)

0
| f (t,s,x(θ (s)))− f (t,s,0)|ds+L2

∫ β (t)

0
| f (t,s,0)|ds

+L3

∣∣∣∫ σ(t)

0
g(t,s,x(η(s)))ds

∣∣∣+F0

� ϕ(|x(θ (t))|)+L1k1(t)ϕ1(|x(α(t))|)+L1|u(t,0)|

+L2

∫ β (t)

0
q(t,s)ϕ2(|x(γ(s))|)ds+L2C1 +L3a(t)

∫ σ(t)

0
b(s)ds+F0

� ϕ(‖x‖)+L1k1(t)ϕ1(‖x‖)+L1C0

+L2

∫ β (t)

0
q(t,s)ϕ2(‖x‖)ds+L2C1 +L3v(t)+F0

� ϕ(‖x‖)+L1K1ϕ1(‖x‖)+L2K2ϕ2(‖x‖)
+L1C0 +L2C1 +L3V +F0 (3.5)

for all t ∈ R+ . From (3.5), we deduce that Qx ∈ X .

Step II: From (3.5) it follows that

‖Qx‖ � ϕ(r)+L1K1ϕ1(r)+L2K2ϕ2(r)+q � r. (3.6)

Now consider the closed ball B[0,r0] ⊂ C[0,T ] in X centered at origin of radius r0 .
Then Q defines a mapping Q : B[0,r0] → B[0,r0] . We show that Q is continuous on
B[0,r0] . Let ε > 0 be given and let x,y ∈ B[0,r0] be such that ‖x− y‖ � ε . Then by
hypotheses (H0)-(H5) ,

|Qx(t)−Qy(t)|

�
∣∣∣∣F
(

t,x(θ (t)),u(t,x(α(t))),
∫ β (t)

0
f (t,s,x(γ(s)))ds,

∫ σ(t)

0
g(t,s,x(η(s)))ds

)

−F

(
t,y(θ (t)),u(t,y(α(t))),

∫ β (t)

0
f (t,s,y(γ(s)))ds,

∫ σ(t)

0
g(t,s,y(η(s)))ds

)∣∣∣∣
� ϕ(|x(θ (t))− y(θ (t))|)+L1k1(t)ϕ1(|x(α(t))− y(α(t))|)

+L2

∣∣∣∣
∫ β (t)

0
f (t,s,x(γ(s)))ds−

∫ β (t)

0
f (t,s,y(γ(s)))ds

∣∣∣∣
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+L3

∣∣∣∣
∫ σ(t)

0
g(t,s,x(η(s)))ds−

∫ σ(t)

0
g(t,s,y(η(s)))ds

∣∣∣∣
� ϕ(|x(θ (t))− y(θ (t))|)+L1k1(t)ϕ1(|x(α(t))− y(α(t))|)

+L2

∫ β (t)

0
| f (t,s,x(γ(s)))− f (t,s,y(γ(s)))|ds

+L3

∫ σ(t)

0
|g(t,s,x(η(s)))−g(t,s,y(η(s)))|ds

� ϕ(|x(θ (t))− y(θ (t))|)+L1k1(t)ϕ1(|x(α(t))− y(α(t))|)

+L2

∫ β (t)

0
q(t,s)ϕ2(|x(γ(s))− y(γ(s))|)ds+L3a(t)

∫ σ(t)

0
b(s)ds

� ϕ(‖x− y‖)+L1K1ϕ1(‖x− y‖)+L2K2ϕ2(‖x− y‖)ds+L3v(t)

� ϕ(ε)+L1K1ϕ1(ε)+L2K2ϕ2(ε)ds+L3v(t)

� (1+L1K1 +L2K2)ε +L3v(t). (3.7)

Since v(t) → 0 as t → ∞ , there exists T > 0 such that v(t) � ε , for all t > T .
Thus if t > T , then from (3.7) we have that

|Qx(t)−Qy(t)|� (1+L1K1 +L2K2 +L3)ε. (3.8)

If t < T , then define a function ω = ω(ε) by the formula

ω(ε) = sup{|g(t,s,x)−g(t,s,y)| : t,s ∈ [0,T ],x,y ∈ [−r0,r0], |x− y|� ε}. (3.9)

Now g(t,s,x) is a continuous and hence uniformly continuous on [0,T ]× [0,T ]×
[−r0,r0] . As a result we have ω(ε) → 0 as ε → 0. Therefore, from (3.7),

|Qx(t)−Qy(t)|� (1+L1K1 +L2K2)ε +L3ω(ε)

for all t ∈ R+ . Hence, it follows that

‖Qx−Qy‖ � max{(1+L1K1 +L2K2 +L3)ε,(1+L1K1 +L2K2)ε +L3ω(ε)}
→ 0 as ε → 0.

Hence Q is a continuous mapping from B[0,r0] into itself.

Step III: Here we show that Q is a nonlinear set-contraction on B[0,r0] in the
sense of inequality (2.5). This will be done in the following two cases:

Case I : Let A ⊂ B[0,r0] be non-empty. Further fix the number T > 0 and
ε > 0. Since the functions f and g are continuous on compact domain [0,T ] ×
[0,T ]× [−r0,r0] , there are constants D2 > 0 and D3 > 0 such that | f (t,s,x)| � D2
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and |g(t,s,x)| � D3 for all t,s ∈ [0,T ] and x ∈ [−r0,r0] . Then choosing t,τ ∈ [0,T ]
such that |t− τ| � ε and taking into account our hypotheses, we obtain

|Qx(t)−Qx(τ)|

�
∣∣∣∣F
(

t,x(θ (t)),u(t,x(α(t))),
∫ β (t)

0
f (t,s,x(γ(s)))ds,

∫ σ(t)

0
g(t,s,x(η(s)))ds

)

−F

(
τ,x(θ (τ)),u(τ,x(α(τ))),

∫ β (τ)

0
f (τ,s,x(γ(s)))ds,

∫ σ(τ)

0
g(t,s,x(η(s)))ds

)∣∣∣∣
� ϕ(|x(θ (t))− x(θ (τ))|)+L1|u(t,x(α(t)))−u(τ,x(α(τ)))|

+L2

∣∣∣∣
∫ β (t)

0
f (t,s,x(γ(s)))ds−

∫ β (τ)

0
f (τ,s,x(γ(s)))ds

∣∣∣∣
+L3

∣∣∣∣
∫ σ(t)

0
g(t,s,x(η(s)))ds−

∫ σ(τ)

0
g(τ,s,x(η(s)))ds

∣∣∣∣
� ϕ(|x(θ (t))− x(θ (τ))|)+L1|u(t,x(α(t)))−u(τ,x(α(τ)))|

+L2

∣∣∣∣
∫ β (t)

0
f (t,s,x(γ(s)))ds−

∫ β (t)

0
f (τ,s,x(γ(s)))ds

∣∣∣∣
+L2

∣∣∣∣
∫ β (t)

0
f (τ,s,x(γ(s)))ds−

∫ β (τ)

0
f (τ,s,x(γ(s)))ds

∣∣∣∣
+L3

∣∣∣∣
∫ σ(t)

0
g(t,s,x(η(s)))ds−

∫ σ(τ)

0
g(τ,s,x(η(s)))ds

∣∣∣∣
+L3

∣∣∣∣
∫ σ(t)

0
g(t,s,x(η(s)))ds−

∫ σ(τ)

0
g(τ,s,x(η(s)))ds

∣∣∣∣
� ϕ(|x(θ (t))− x(θ (τ))|)+L1|u(t,x(α(t)))−u(τ,x(α(τ)))|

+L2

∫ β (t)

0
| f (t,s,x(θ (s)))− f (τ,s,x(θ (s)))|ds+L2

∣∣∣∣
∫ β (t)

β (τ)
| f (τ,s,x(γ(s)))|ds

∣∣∣∣
+L3

∣∣∣∣
∫ σ(t)

σ(τ)
|g(τ,s,x(θ (s)))|ds

∣∣∣∣+L3

∫ σ(t)

0
|g(t,s,x(η(s)))−g(τ,s,x(η(s)))|ds

� ϕ(|x(θ (t))− x(θ (τ))|)+L1ωT (u,ε)+L2βT ωT ( f ,ε)+L2D2ωT (β ,ε)

+L3D3ωT (σ ,ε)+L3σT ωT (g,ε) (3.10)

where,

βT = sup{β (t) : t ∈ [0,T ]},
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σT = sup{σ(t) : t ∈ [0,T ]},
ωT (β ,ε) = sup{|β (t)−β (τ)| : t,τ ∈ [0,T ], |t − τ|� ε},
ωT (σ ,ε) = sup{|σ(t)−σ(τ)| : t,τ ∈ [0,T ], |t− τ| � ε},

and

ωT (u,ε) = sup{|u(t,x)−u(τ,x)| : t,τ ∈ [0,T ], |t − τ| � ε, |x| � r0}
ωT ( f ,ε) = sup{| f (t,s,x)− f (τ,s,x)| : t,τ ∈ [0,T ], |t− τ| � ε, |x| � r0},
ωT (g,ε) = sup{|g(t,s,x)−g(τ,s,x)| : t,τ ∈ [0,T ], |t− τ| � ε, |x| � r0}.

The above inequality further implies that

ωT (Qx,ε) � ϕ(ωT (x,ε))+L1ωT (u,ε)+L2βT ωT ( f ,ε)+L2D2ωT (β ,ε)

+L3D3ωT (σ ,ε)+L3σT ωT (g,ε). (3.11)

Since by hypotheses, the functions β ,σ ,ϕ ,u and f ,g are continuous respec-
tively on [0,T ] , [0,T ]× [−r0,r0] and [0,T ]× [0,T ]× [−r0,r0] , we infer that they
are uniformly continuous there. Hence we deduce that ϕ(ωT (x,ε)) → 0, ωT (u,ε) →
0, ωT (β ,ε) → 0, ωT (σ ,ε) → 0, ωT ( f ,ε) → 0, ωT (g,ε) → 0 as ε → 0. Hence from
the above estimate (3.11), we obtain

ωT
0 (Q(A)) = 0,

and consequently
ω0(Q(A)) = 0. (3.12)

Case II: Now for any x,y ∈ A , one has

|Qx(t)−Qy(t)|

�
∣∣∣∣F
(

t,x(θ (t)),u(t,x(α(t))),
∫ β (t)

0
f (t,s,x(γ(s)))ds,

∫ σ(t)

0
g(t,s,x(η(s)))ds

)

−F

(
t,y(θ (t)),u(t,y(α(t))),

∫ β (t)

0
f (t,s,y(γ(s)))ds,

∫ σ(t)

0
g(t,s,y(η(s)))ds

)∣∣∣∣
� ϕ(|x(θ (t))− y(θ (t))|)+L1k1(t)ϕ1(|x(α(t))− y(α(t))|)

+L2

∣∣∣∣
∫ β (t)

0
f (t,s,x(γ(s)))ds−

∫ β (t)

0
f (t,s,y(γ(s)))ds

∣∣∣∣
+L3

∣∣∣∣
∫ σ(t)

0
g(t,s,x(η(s)))ds−

∫ σ(t)

0
g(t,s,y(η(s)))ds

∣∣∣∣
� ϕ(|x(θ (t))− y(θ (t))|)+L1k1(t)ϕ1(|x(α(t))− y(α(t))|)

+L2

∫ β (t)

0
| f (t,s,x(γ(s)))− f (t,s,y(γ(s)))|ds
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+L3

∫ σ(t)

0
|g(t,s,x(η(s)))−g(t,s,y(η(s)))|ds

� ϕ(|x(θ (t))− y(θ (t))|)+L1k1(t)ϕ1(|x(α(t))− y(α(t))|)

+L2

∫ β (t)

0
q(t,s)ϕ2(|x(γ(s))− y(γ(s))|)ds+2L3a(t)

∫ σ(t)

0
b(s)ds

� ϕ(diam (A(θ (t))))+L1k1(t)ϕ1(diam (A(α(t))))

+L2

∫ β (t)

0
q(t,s)ϕ2(diam (A(γ(β (s)))))ds+2L3v(t)

� ϕ(diam (A(θ (t))))+L1k1(t)ϕ1(diam (A(α(t))))

+L2

∫ β (t)

0
q(t,s)ϕ2(diam (A))ds+2L3v(t).

for all t ∈ R+ . Further, we also notice that A ⊂ B[0,r0] implies diam (A) � 2r0 .
Again, since θ (t) � t and α(t) � t we have that diam (A(θ (t)) � diam (A(t)) and
diam (A(α(t)) � diam (A(t)) for all t ∈ R+ . Therefore, as a result of above inequality,
we obtain

diam (Q(A(t))) � ϕ(diam (A(t)))+L1k1(t)ϕ1(diam (A(t)))

+L2

∫ β (t)

0
q(t,s)ϕ2(2r0)ds+2L3v(t) (3.13)

for all t ∈ R+ . Taking the limit superior in the above inequality yields

limsup
t→∞

diam (Q(A(t)))

� limsup
t→∞

ϕ(diam (A(t)))+L1K1 limsup
t→∞

ϕ1 (diam (A(t)))

+L2ϕ2(2r0) limsup
t→∞

∫ β (t)

0
q(t,s)ds+2L3 limsup

t→∞
v(t)

� limsup
t→∞

ϕ(diam (A(t)))+L1K1 limsup
t→∞

ϕ1(diam (A(t))))

� ϕ
(

limsup
t→∞

diam (A(t))
)

+L1K1ϕ1

(
limsup

t→∞
diam (A(t))

)

� ψ
(

limsup
t→∞

diam (A(t))
)

(3.14)

where, ψ is again a D -function in view of Remark 1.1 defined by ψ(r) = φ(r) +
L1K1φ1(r) and ψ(r) < r for r > 0.

Now from the inequalities (3.12) and (3.14) it follows that

μ(Q(A)) = ω0(Q(A))+ limsup
t→∞

diam (Q(A(t)))
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� ψ
(

0+ limsup
t→∞

diam (A(t))
)

� ψ
(

ω0(A)+ limsup
t→∞

diam (A(t))
)

� ψ(μ((A))), (3.15)

where μ is the measure of noncompactness defined in the space BC(R+,R) . This
shows that Q is a nonlinear D -set-contraction on B[0,r0] in the sense of Definition
1.2. Thus, the map Q satisfies all the conditions of Theorem 1.3 with C = B[0,r0] and
an application of it yields that Q has a fixed point in B[0,r0]. This further by definition
of Q which implies that the GNFIE (3.1) has a solution in B[0,r0] . Moreover, taking
into account that the image of B[0,r0] under the operator Q which is again contained
in the ball B[0,r0] we infer that the set Fix(Q) of all fixed points of Q is contained
in B[0,r0] . If the set Fix(Q) contains all solutions of the equation (3.1), then we
conclude from Remark 1.2 that the set Fix(Q) belongs to the family ker μ . Now,
taking into account the description of sets belonging to ker μ (given in Section 2) we
deduce that all solutions of the equation (3.1) are uniformly locally attractive on R+ .
This completes the proof. �

4. Special Cases

As mentioned earlier, the GNIE (3.1) is more general in the literature on the theory
of nonlinear integral equations and includes other several classes of well-known non-
linear integral equations studied earlier by different authors. Below we list some of our
main observations in this direction.

1. If we define the function F as

F(t,x1,x2,x3,x4) = q(t)+ x3 + x4,

then the GNIE (3.1) reduces to the following nonolinear function integral equa-
tion (NFIE),

x(t) = q(t)+

β (t)∫
0

f (t,s,x(γ(s)))ds+

σ(t)∫
0

g(t,s,x(η(s)))ds, (4.1)

for all t ∈ R+ . The NFIE (4.1) has been studied in Dhage [10] and includes the
well-known Volterra, Fredholm as well as integral equations of mixed type as
special ases by choosing the functions β and σ appropriately.

2. On taking σ(t) = ∞ for all t ∈ R+ and

F(t,x1,x2,x3,x4) = f (t,x1,x3,x4),
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we obtain the following integral equation studied in Agarwal et.al. [1],

x(t) = f

(
t,x(θ (t)),

β (t)∫
0

f (t,s,x(γ(s)))ds,

∞∫
0

g(t,s,x(η(s)))ds

)
, (4.2)

which again includes other several classes of known integral equations as special
cases (cf. Agarwal et.al [2] and the references therein).

3. On taking F(t,x1,x2,x3,x4) = f (t,x2,x4) , we obtain the following nonlinear in-
tegral equation,

x(t) = f

(
t,u(t,x(α(t))),

σ(t)∫
0

g(t,s,x(η(s)))ds

)
, (4.3)

for all t ∈ R+ . The nonlinear integral equation (4.2) has been studied in Dhage
and Lakshmikantham [14] for the global existence and attractivity results for the
solutions defined on R+ .

4. When F(t,x1,x2,x3,x4) = p(t,x1)+ x2x4 , where p : R+ ×R → R is a continu-
ous function, then the GNIE (3.1) reduces to the following nonlinear quadratic
functional integral equation,

x(t) = p(t,x(θ (t))+
[
u(t,x(α(t)))

](∫ σ(t)

0
g(t,s,x(η(s)))ds

)
(4.4)

for all t ∈ R+ . The quadratic integral equation (4.2) again includes several other
classes of quadratic integral equations as the special cases given in Dhage et.al.
[13], Dhage and Ntouyas [16] and the references cited therein.

5. On taking F(t,x1,x2,x3,x4) = x1 + p(x3,x4) , where p : R×R → R is a con-
tinuous function, we obtain the following functional integral equation recently
studied in Dhage et.al. [17],

x(t) = u(t,x(α(t)))+ p

(∫ β (t)

0
f (t,s,x(γ(s)))ds,

∫ σ(t)

0
g(t,s,x(η(s)))ds

)
,

(4.5)
which further yields the integral equation

x(t) = u(t,x(α(t)))+

σ(t)∫
0

g(t,s,x(η(s)))ds, (4.6)

for all t ∈ R+ provided p(x3,x4) = x4. The integral equation (4.5) is discussed
in Banas and Dhage [5] and Aghajani et.al. [3] for existence and asymptotic
stability of the solutions.
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In a nutshell, the GNIE (3.1) is a wider class of nonlinear integral equations and
covers more than a dozen of well-known different classes of integral equations. There-
fore, our main existence result formulated in Theorem 3.1 automatically yields the exis-
tence as well as local uniform attractivity of the solutions defined on R+ for the integral
equations (4.1) through (4.6) and many others not mentioned here with the correspond-
ing hypotheses on the functions involved in the equations.

5. A Numerical Example

Consider the following nonlinear functional integral equation

x(t) =
15
16

ln
(
1+ |x(t2 +1)|

)
+

3
4

( 1+ t
6+7t2

)
ln
(
1+

1
2
|x(t +1)|

)

+
2
5

∫ t
t2+1

0

1
(1+ t)

1
1+ s

ln
(
1+

1
3
|x(s2 +1)|

)
ds

+
7
3

∫ t
t3+1

0
t3 exp(−t5)

1
(1+ s2)

|cosx(s2 +3)|
1+ |sinx(s2 +3)| ds (5.1)

for all t,s ∈ R+ .

Let

F(t,x,x1,x2,x3) =
15
16

ln(1+ |x|)+
3
4
x1 +

2
5
x2 +

7
3
x3,

ϕ(t) =
15
16

ln(1+ t),ϕ1(t) = ln
(
1+

1
2
t
)
,ϕ2(t) = ln

(
1+

1
3
t
)
,

θ (t) = t2 +1,α(t) = t +1,γ(s) = s2 +1,η(s) = s2 +3,β (t) =
t

t2 +1
,σ(t) =

t
t3 +1

u(t,x) =
1+ t

6+7t2
ln
(
1+

1
2
|x(t)|

)
,v(t) = t3 exp(−t5),b(s) =

1
(1+ s2)

for all t,s ∈ R+, and

f (t,s,x(γ(s))) =
1

(1+ t)(1+ s)
ln
(
1+

1
3
|x(s2 +1)|

)

g(t,s,x(η(s)) = t3 exp(−t5)
1

(1+ s2)
|cosx(s2 +3)|

1+ |sinx(s2 +3)|
for all t,s ∈ R+ and x ∈ R . Notice that:

(i) The functions α,β ,γ,θ ,σ and η are obviously continuous. We also observe
that θ (t) = t2 +1 � 1 � t for 0 � t � 1 and θ (t) = t2 +1 > t +1 > t for t > 1.
Thus, θ (t) � t for all t ∈ R+ . Similarly, α(t) = t +1 � t for all t ∈ R+ . Hence
(H0) is satisfied.
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(ii) (H1) is satisfied with ϕ(t) = 15
16 ln(1+ t) , L1 = 3

4 ,L2 = 2
5 ,L3 = 7

3 . Moreover, the
map t �→ F(t,0,0,0,0) is bounded with the following estimate:

F0 = sup
t�0

|F(t,0,0,0,0)|

= sup
t�0

t3 exp(−t5)
∫ t

t3+1

0

1
1+ s2 ds

= sup
t�0

arctan

(
t

t3 +1

)
t3 exp(−t5)

≈ 0.0337.

(iii) Since u(t,x) = 1+t
6+7t2

ln
(
1+ 1

2 |x(t)|
)

, we have that

|u(t,x)−u(t,y)|= 1+ t
6+7t2

ln
1+ 1

2 |x|
1+ 1

2 |y|
=

1+ t
6+7t2

ln
(
1+

|x|/2−|y|/2
1+ |y|/2

)

� 1+ t
6+7t2

ln
(
1+

1
2
|x− y|

)
= k1(t)ϕ1(|x(t)− y(t)|),

where k1(t) = 1+t
6+7t2

, i.e., (H2) is satisfied with ϕ1(r) = ln(1+ 1
2 r) , we see that

ϕ1(r) < r for r > 0. Obviously the function ϕ is nondecreasing and continuous
on R+ . Moreover,

lim
n→∞

k1(t) = lim
n→∞

1+ t
6+7t2

= 0 and K1 = sup
t�0

1+ t
6+7t2

=
1
6
.

(iv) (H3) is satisfied, since the function t �→ u(t,0) = u0(t) is bounded with C0 =
sup
t�0

|u(t,0)| = 0.

(v) For arbitrary but fixed x,y ∈ R such that |x| � |y| and for t > 0 we obtain

| f (t,s,x)− f (t,s,y)| = 1
(1+ t)(1+ s)

ln
1+ 1

3 |x|
1+ 1

3 |y|

� 1
(1+ t)(1+ s)

ln
(
1+

|x|/3−|y|/3
1+ |y|/3

)

� 1
(1+ t)(1+ s)

ln
(
1+

1
3
|x− y|

)

=
1

(1+ t)(1+ s)
ϕ2(|x− y|)

= q(t,s) ϕ2(|x− y|),
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where q(t,s) = 1
(1+t)(1+s) . The case is similar when |y| � |x| . Furthermore, we

obtain

K2 = sup
t�0

∫ t
t2+1

0
q(t,s)ds

= sup
t�0

1
(1+ t)

∫ t
t2+1

0

1
1+ s

ds

= sup
t�0

1
(1+ t)

ln
(
1+

t
t2 +1

)
≈ 0.153.

Clearly, (H4) is satisfied since

lim
t→∞

k2(t) = lim
t→∞

∫ t
t2+1

0
q(t,s)ds = lim

t→∞

1
(1+ t)

ln

(
1+

t
t2 +1

)
= 0.

(vi) The function f0 : R+ −→ R defined by

f0(t) =
∫ t

t2+1

0
| f (t,s,0)|ds

is bounded with C1 = supt�0 f0(t) = 0 and so, (H5) is satisfied.

(vi) (H6) is satisfied since the function g acts continuously from the set R+×R+×R

into R . Moreover, we have

|g(t,s,x)| � t3 exp(−t5)
1

1+ s2 = a(t)b(s)

for all t,s ∈ R+ and x ∈ R , then hypotheses (H6) is satisfied. Indeed, we have

lim
t→∞

a(t)
∫ t

t3+1

0
b(s)ds = lim

t→∞
t3 exp(−t5)

∫ t
t3+1

0

1
1+ s2 ds

= lim
t→∞

arctan

(
t

t3 +1

)
t3 exp(−t5) = 0.

Also we find that

V = sup
t�0

v(t) = sup
t�0

arctan

(
t

t3 +1

)
t3 exp(−t5) ≈ 0.0337.

(vii) We now compute the value of q given by

q = L1C0 +L2C1 +L3V +F0.

Now,
q = L1C0 +L2C1 +L3V +F0

=
3
4
×0+

2
5
×0+

7
3
× (0.0337)+0.0337

= 0.1123.
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(viii) Next, we consider the inequality

15
16

ϕ(r)+L1K1ϕ1(r)+L2K2ϕ2(r)+q � r.

Here,

15
16

ln(1+ r)+
3
4
× 1

6
ln
(
1+

1
2
r
)

+
2
5
× (0.153) ln

(
1+

1
3
r
)

+0.1123 � r,

or, equivalently,

15
16

ln(1+ r)+ (0.125) ln

(
1+

1
2
r

)
+(0.0612) ln

(
1+

1
3
r
)

+0.1123 � r.

It is easily seen that each number r � 0.7 satisfies the above inequality. Thus,
as the number r0 we can take r0 = 0.7. Note that this estimate of r0 can be
improved.

Thus, the functions α,β ,γ,θ ,σ ,η ,ϕ ,ϕ1,ϕ2,u, f and g involved in (3.1) satisfy
all the conditions of Theorem 3.1 and hence the GNFIE (3.1) has at least one solution
in the space BC(R+,R) and the solutions are locally uniformly ultimately attractive on
R+ located in the ball B[0,0.7] .
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