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EXISTENCE AND ASYMPTOTIC BEHAVIOR OF STRONGLY MONOTONE
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Abstract. Two types of nonlinear differential systems

(A) x′ + p(t)yα = 0, y′ +q(t)xβ = 0 ; (B) x′ − p(t)yα = 0, y′ −q(t)xβ = 0

are considered under the assumption that α and β are positive constants such that αβ < 1
and p(t) and q(t) are continuous regularly varying functions on a neighborhood of infinity.
An attempt is made to obtain precise information on the existence and asymptotic behavior of
strongly monotone regularly varying solutions (x(t),y(t)) of (A) and (B) whose x -components
or y -components are slowly varying. It is shown that the results thus obtained are applied to
the generalized Thomas-Fermi equations of the form (p(t)|x′ |α−1x′)′ = q(t)|x|β−1x to provide
new useful knowledge of their strongly monotone solutions. The present paper is designed to
supplement the pioneering results on the asymptotic analysis of (A) and (B) by means of regular
variation developed in the paper [4].

1. Introduction

In a recent paper by Jaroš and Kusano [4] the authors considered two-dimensional
cyclic systems of first order nonlinear differential equations of the forms

x′ + p(t)yα = 0, y′ +q(t)xβ = 0, (A)

x′ − p(t)yα = 0, y′ −q(t)xβ = 0, (B)

under the assumption that α and β are positive constants such that αβ < 1 and p(t)
and q(t) are continuous regularly varying functions on [a,∞) , and established sharp
results on the existence and asymptotic behavior of some particular classes of strongly
monotone solutions which are regularly varying for systems (A) and (B). Moreover
they showed that their results can be effectively applied to acquire new information
on strongly monotone regularly varying solutions of second order Thomas-Fermi type
nonlinear differential equations of the type

(p(t)|x′|α−1x′)′ = q(t)|x|β−1x, (C)

Mathematics subject classification (2010): 34C11, 26A12.
Keywords and phrases: systems of differential equations, asymptotic behavior, regularly varying func-

tions.
The research is supported by Grant-in-Aid for Scientific Research (C) (No. 23540218), the Ministry of Education,

Culture, Sports, Science and Technology, Japan.

c© � � , Zagreb
Paper DEA-07-06

79

http://dx.doi.org/10.7153/dea-07-06


80 TOMOYUKI TANIGAWA

where α and β are positive constants such that α > β and p(t) and q(t) are continu-
ous regularly varying functions on [a,∞) . The prototype of (C) is the equation

x′′ = t−
1
2 x

3
2

which arises in nuclear physics as a dimensionless form of the radially symmetric
Poisson equation describing the potential of electrons considered as a degenerated gas
around the nucleus of an atom of large atomic number. The study of this equation under
the singular boundary conditions x(0) = 1 and x(∞) = 0 by Thomas [7] and Fermi [2]
(see also [3]) has motivated intensive investigations of asymptotic behavior of solutions
of nonlinear differential equations including (C) from various viewpoints.

By a positive solution of (A) or (B) we mean a vector function (x(t),y(t)) both
components of which are positive and satisfy the system (A) or (B) in a neighbor-
hood of infinity. A positive solution (x(t),y(t)) of (A) (resp. of (B)) is said to be
strongly decreasing (resp. strongly increasing) if limt→∞ x(t) = limt→∞ y(t) = 0 (resp.
limt→∞ x(t) = limt→∞ y(t) = ∞). In this paper we are concerned exclusively with posi-
tive solutions of (A) and (B) both components of which are regularly varying functions
(in the sense of Karamata). Such a solution (x(t),y(t)) is called regularly varying of
index (ρ ,σ) if x(t) and y(t) are regularly varying of indices ρ(∈ R) and σ(∈ R) ,
respectively, and is denoted by (x,y) ∈ RV(ρ ,σ ). (For the definition and some basic
properties of regularly varying functions the reader is referred to Section 2 of the paper
[4].)

The paper [4] is devoted to the analysis of strongly decreasing regularly varying
solutions (x,y) ∈ RV(ρ ,σ) with non-zero ρ and σ (more precisely, ρ < 0 and σ < 0
for system (A), and ρ > 0 and σ > 0 for system (B)). As is easily observed, however,
one cannot exclude the possibility that (A) and (B) have strongly monotone regularly
varying solutions (x,y) ∈ RV(ρ ,σ ) with either or both of ρ and σ zero. The aim of
this paper is to supplement the results developed in the paper [2] by providing neces-
sary and sufficient conditions for the existence of strongly monotone regularly varying
solutions (x,y)∈ RV(ρ ,σ ) of (A) and (B) with either ρ = 0 or σ = 0, in which case ei-
ther x(t) or y(t) is slowly varying, and then by applying the results thus obtained to the
generalized Thomas-Fermi equation (C) to show that it may possess strongly monotone
solutions with the asymptotic behavior distinctly different from the ones constructed in
[4].

2. Strongly decreasing solutions with slowly varying component

With regard to systems (A) and (B) we assume throughout the paper that α and β
are positive constants such that αβ < 1 and that p ∈ RV(λ ) and q ∈ RV(μ ) and they
are expressed as

p(t) = tλ l(t), q(t) = tμm(t), l, m ∈ RV(0). (2.1)

And we always seek strongly monotone solutions (x(t),y(t)) of (A) and (B) which are
regularly varying of index (ρ ,σ) and are represented in the form

x(t) = tρξ (t), y(t) = tσ η(t), ξ , η ∈ RV(0). (2.2)
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This section concerns strongly decreasing regularly varying solutions of indices
(ρ ,σ) with (ρ = 0, σ < 0) and (ρ < 0, σ = 0), and shows that the existence of
these types of solutions can be fully characterized and moreover that their asymptotic
behavior as t → ∞ can be determined accurately.

THEOREM 2.1. System (A) possesses strongly decreasing regularly varying solu-
tions (x,y) ∈ RV(ρ ,σ ) with ρ = 0 and σ < 0 if and only if

μ +1 < 0, λ +1+ α(μ +1) = 0, (2.3)

and ∫ ∞

a
p(t)(tq(t))αdt < ∞, (2.4)

in which case σ = μ +1 and any such solution (x(t),y(t)) of (A) has one and the same
asymptotic behavior

x(t) ∼
[
(1−αβ )

∫ ∞

t
p(s)

(
sq(s)
−σ

)α
ds

] 1
1−αβ

,

(2.5)

y(t) ∼ tq(t)
−σ

[
(1−αβ )

∫ ∞

t
p(s)

(
sq(s)
−σ

)α
ds

] β
1−αβ

, t → ∞.

THEOREM 2.2. System (A) possesses strongly decreasing regularly varying solu-
tions (x,y) ∈ RV(ρ ,σ ) with ρ < 0 and σ = 0 if and only if

λ +1 < 0, β (λ +1)+ μ +1 = 0, (2.6)

and ∫ ∞

a
(t p(t))β q(t)dt < ∞, (2.7)

in which case ρ = λ +1 and any such solution (x(t),y(t)) of (A) has one and the same
asymptotic behavior

x(t) ∼ t p(t)
−ρ

[
(1−αβ )

∫ ∞

t

(
sp(s)
−ρ

)β
q(s)ds

] α
1−αβ

,

(2.8)

y(t) ∼
[
(1−αβ )

∫ ∞

t

(
sp(s)
−ρ

)β
q(s)ds

] 1
1−αβ

, t → ∞.

Since Theorem 2.1 implies Theorem 2.2 and vice versa, we need only to prove
Theorem 2.1.

Proof of Theorem 2.1. Suppose that (A) has a strongly decreasing solution (x,y) ∈
RV(ρ ,σ ) with ρ = 0 and σ < 0. Note that (x(t),y(t)) satisfies the integral equations

x(t) =
∫ ∞

t
p(s)y(s)αds, y(t) =

∫ ∞

t
q(s)x(s)β ds, t � 1. (2.9)
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Using (2.1) and (2.2), we rewrite (2.9) as

x(t) =
∫ ∞

t
sλ+ασ l(s)η(s)α ds, y(t) =

∫ ∞

t
sμ+β ρm(s)ξ (s)β ds, (2.10)

and applying Karamata’s integration theorem (cf. [4, Proposition 2.5]) to (2.10), we
see that ρ = 0 and σ < 0 if and only if λ + ασ = −1 and μ + β ρ = μ < −1, which
implies (2.3) and σ = μ +1, so that (2.10) is converted into

x(t) =
∫ ∞

t
s−1l(s)η(s)αds, (2.11)

and

y(t) ∼ tμ+1m(t)
−(μ +1)

ξ (t)β =⇒ η(t) ∼ m(t)
−σ

ξ (t)β (2.12)

as t → ∞ . Combining (2.11) with (2.12) gives

x(t) = ξ (t) ∼
∫ ∞

t
s−1l(s)

(
m(s)
−σ

)α
ξ (s)αβ ds, t → ∞. (2.13)

Let u(t) denote the integral in (2.13). Then, (2.13) is transformed into the following
asymptotic relation

−u(t)−αβu′(t) ∼ t−1l(t)
(

m(t)
−σ

)α
= p(t)

(
tq(t)
−σ

)α
, t → ∞,

and so integrating the above over [t,∞) , we obtain

x(t) = ξ (t) ∼ u(t) ∼
[
(1−αβ )

∫ ∞

t
p(s)

(
sq(s)
−σ

)α
ds

] 1
1−αβ

, t → ∞,

which, combined with (2.12), establishes the asymptotic formulas (2.5) for (x(t),y(t)) .
Naturally the convergence condition (2.4) has been confirmed.

Conversely, assume that (2.3) and (2.4) hold. Put σ = μ +1 and define the vector
function (X ,Y ) ∈ RV(0,σ ) by

X(t) =
[
(1−αβ )

∫ ∞

t
p(s)

(
sq(s)
−σ

)α
ds

] 1
1−αβ

,

(2.14)

Y (t) =
tq(t)
−σ

[
(1−αβ )

∫ ∞

t
p(s)

(
sq(s)
−σ

)α
ds

] β
1−αβ

=
tq(t)
−σ

X(t)β

for t � a . It can be checked that (X(t),Y (t)) satisfies the system of asymptotic relations
∫ ∞

t
p(s)Y (s)αds ∼ X(t),

∫ ∞

t
q(s)X(s)β ds ∼ Y (t), t → ∞. (2.15)
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In fact, we see that

∫ ∞

t
p(s)Y (s)αds =

∫ ∞

t
p(s)

(
sq(s)
−σ

)α
X(s)αβ ds =

∫ ∞

t
(−X ′(s))ds = X(t)

and
∫ ∞

t
q(s)X(s)β ds =

∫ ∞

t
sμm(s)X(s)β ds ∼ tμ+1m(t)

−(μ +1)
X(t)β =

tq(t)
−σ

X(t)β = Y (t)

as t → ∞ .
Because of (2.15) there exists T > a such that

1
2
X(t) �

∫ ∞

t
p(s)Y (s)αds � 2X(t),

1
2
Y (t) �

∫ ∞

t
q(s)X(s)β ds � 2Y (t) (2.16)

for t � T . Clearly, X(t) is a decreasing function. We may assume that Y (t) is also
decreasing on [T,∞) because a regularly varying function of negative index is asymp-
totically equivalent to a decreasing regularly varying function of the same index. (cf.
Theorem 1.5.3 of [1]). Denote by V the set of vector functions (x(t),y(t)) satisfying

hX(t) � x(t) � HX(t), kY (t) � y(t) � KY (t), for t � T, (2.17)

where h,H,k,K are positive constants satisfying

H � 2Kα , K � 2Hβ , h � 1
2
kα , k � 1

2
hβ . (2.18)

It suffices, for example, to choose

H = 2
α+1

1−αβ , K = 2
β+1

1−αβ , h = 2−
α+1

1−αβ , k = 2−
β+1

1−αβ .

It is clear that V is a closed convex subset of the locally convex space C[T,∞)×C[T,∞) .
We define the map Φ : V →C[T,∞)×C[T,∞) by

Φ(x,y)(t) = (Fy(t),Gx(t)), t � T, (2.19)

where F and G denote the integral operators

Fy(t) =
∫ ∞

t
p(s)y(s)αds, Gx(t) =

∫ ∞

t
q(s)x(s)β ds, t � T. (2.20)

Using (2.16) – (2.20) it is easy to verify that (x,y) ∈ V implies

hX(t) � Fy(t) � HX(t), kY (t) � Gx(t) � KY (t), for t � T,

so that Φ maps V into itself. Furthermore, as in the proof of [4, Theorem 3.1] one
can prove that Φ is a continuous map and that Φ(V ) is a relatively compact subset
of C[T,∞)×C[T,∞) . Therefore, by the Schauder-Tychonoff fixed point theorem, there
exists (x,y) ∈ V such that (x,y) = Φ(x,y) = (Fy,Gx) , which means that (x(t),y(t))
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satisfies the system of integral equations (2.9), and hence gives a strongly decreasing
solution of system (A) on [T,∞) . At this point it is only known that this solution
is nearly regularly varying (cf. [4, Definition 2.2]), and so we have to show that the
solution is really regularly varying of index (0,σ) . But this can be done with the help of
the generalized L’Hospital’s rule by following exactly the same procedure as described
in the proof of Theorem 3.2 of [4]. The details may be omitted. This completes the
proof. �

EXAMPLE 2.3. Consider the system (A) in which p(t) and q(t) are given by

p(t) =
tα−1

2
√

logt
exp

(
− (α +1)

√
logt

)
, q(t) = t−2 exp

(√
logt

)
.

This is a special case of (A) with λ = α − 1 and μ = −2. Since μ + 1 = −1 < 0,
λ +1+ α(μ +1) = 0, and

∫ ∞

t
p(s)(sq(s))α ds = exp

(
−

√
logt

)
,

we conclude from Theorem 2.1 that this system possesses strongly decreasing regularly
varying solutions (x(t),y(t)) of index (0,−1) all of which enjoy one and the same
asymptotic behavior

x(t) ∼ (1−αβ )
1

1−αβ exp

(
−

√
log t

1−αβ

)
,

y(t) ∼ (1−αβ )
β

1−αβ t−1 exp

(
− 1− (α +1)β

1−αβ
√

log t

)

as t → ∞ .

3. Strongly increasing solutions with slowly varying component

In this section our attention is focused on strongly increasing solutions of sys-
tem (B) whose x -components or y-components are slowly varying. As the following
theorems assert the existence of such solutions can be completely characterized and
the formulas governing the asymptotic growth of all such solutions can be determined
precisely and explicitly.

THEOREM 3.1. System (B) possesses strongly increasing regularly varying solu-
tions (x,y) ∈ RV(ρ ,σ ) with ρ = 0 and σ > 0 if and only if

μ +1 > 0, λ +1+ α(μ +1) = 0, (3.1)

and ∫ ∞

a
p(t)(tq(t))αdt = ∞, (3.2)
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in which case σ = μ +1 and any such solution (x(t),y(t)) of (B) has one and the same
asymptotic behavior

x(t) ∼
[
(1−αβ )

∫ t

a
p(s)

(
sq(s)

σ

)α
ds

] 1
1−αβ

,

(3.3)

y(t) ∼ tq(t)
σ

[
(1−αβ )

∫ t

a
p(s)

(
sq(s)

σ

)α
ds

] β
1−αβ

, t → ∞.

THEOREM 3.2. System (B) possesses strongly increasing regularly varying solu-
tions (x,y) ∈ RV(ρ ,σ ) with ρ > 0 and σ = 0 if and only if

λ +1 > 0, β (λ +1)+ μ +1 = 0, (3.4)

and ∫ ∞

a
(t p(t))β q(t)dt = ∞, (3.5)

in which case ρ = λ +1 and any such solution (x(t),y(t)) of (B) has one and the same
asymptotic behavior

x(t) ∼ t p(t)
ρ

[
(1−αβ )

∫ t

a

(
sp(s)

ρ

)β
q(s)ds

] α
1−αβ

,

(3.6)

y(t) ∼
[
(1−αβ )

∫ t

a

(
sp(s)

ρ

)β
q(s)ds

] 1
1−αβ

, t → ∞.

Proof of Theorem 3.2. We only give a proof of Theorem 3.2. Suppose that (B) has
a strongly increasing regularly varying solution (x(t),y(t)) of index (ρ ,0) with ρ > 0.
From the integral equations

x(t) = x0 +
∫ t

T
p(s)y(s)α ds, y(t) = y0 +

∫ t

T
q(s)x(s)β ds, t � T, (3.7)

T > a , x0 > 0 and y0 > 0 being some constants, we obtain the system of asymptotic
relations

x(t) ∼
∫ t

T
p(s)y(s)αds, y(t) ∼

∫ t

T
q(s)x(s)β ds, t → ∞. (3.8)

Using (2.1), (2.2) we rewrite (3.8) as

x(t) ∼
∫ t

T
sλ l(s)η(s)α ds, y(t) ∼

∫ t

T
sμ+β ρm(s)ξ (s)β ds, t → ∞, (3.9)

and applying Karamata’s integration theorem we see that ρ > 0 if and only if λ +1 > 0
and μ + β ρ +1 = 0, in which case (3.9) reduces to

x(t) ∼ tλ+1l(t)η(t)α

λ +1
, y(t) ∼

∫ t

T
s−1m(s)ξ (s)β ds, t → ∞. (3.10)
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This means that ρ = λ +1 and so β (λ +1)+ μ +1 = 0, and moreover that

y(t) = η(t) ∼
∫ t

T
s−1

(
l(s)
ρ

)β
m(s)η(s)αβ ds, t → ∞. (3.11)

Letting v(t) denote the right-hand side of (3.11), transform (3.11) into the asymptotic
relation

v(t)−αβ v′(t) ∼ t−1
(

l(t)
ρ

)β
m(t) =

(
t p(t)

ρ

)β
q(t), t → ∞, (3.12)

and integrate the above relation on [T,t] . We then obtain

y(t) = η(t) ∼ v(t) ∼
[
(1−αβ )

∫ t

T

(
sp(s)

ρ

)β
q(s)ds

] 1
1−αβ

, t → ∞,

which, combined with the first relation of (3.10), gives

x(t) ∼ t p(t)
ρ

[
(1−αβ )

∫ t

T

(
sp(s)

ρ

)β
q(s)ds

] α
1−αβ

, t → ∞.

Since v(t) → ∞ as t → ∞ , (3.12) implies that
∫ ∞
T (t p(t))β q(t)dt = ∞ , which is equiva-

lent to (3.5).
Conversely, assume that (3.4) and (3.5) hold, put ρ = λ + 1 and define the func-

tions X(t) and Y (t) by

Y (t) =
[
(1−αβ )

∫ t

a

(
sp(s)

ρ

)β
q(s)ds

] 1
1−αβ ∈ RV(0),

(3.13)

X(t) =
t p(t)

ρ
Y (t)α ∈ RV(ρ).

As is easily seen, (X(t),Y (t)) satisfies the system of asymptotic relations

∫ t

b
p(s)Y (s)αds ∼ X(t),

∫ t

b
q(s)X(s)β ds ∼ Y (t), t → ∞ (3.14)

for any b � a . From (3.14) it follows that there exists T0 > a such that

∫ t

T0

p(s)Y (s)αds � 2X(t),
∫ t

T0

q(s)X(s)β ds � 2Y (t), t � T0. (3.15)

Note that Y (t) is an increasing function. Without loss of generality X(t) may be as-
sumed to be increasing on [T0,∞) because a regularly varying function of positive index
is asymptotically equivalent to an increasing regularly varying function of the same in-
dex (cf. [1, Theorem 1.5.3]).
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Furthermore since (3.14) holds for b = T0 , there exists T1 > T0 such that
∫ t

T0

p(s)Y (s)αds � 1
2
X(t),

∫ t

T0

q(s)X(s)β ds � 1
2
Y (t), t � T1. (3.16)

Let h,H,k,K denote the constants defined by

H = (4Γ)
1+α

1−αβ , K = (4Γ)
1+β

1−αβ , h =
(

γ
2

) 1+α
1−αβ

, k =
(

γ
2

) 1+β
1−αβ

, (3.17)

where the constants γ and Γ , 0 < γ < 1 < Γ , are chosen so that

2hX(T1) � HX(T0), 2kY (T1) � KY (T0). (3.18)

Consider the set W consisting of continuous vector functions (x(t),y(t)) on [T0,∞)
satisfying

hX(t) � x(t) � HX(t), kY (t) � y(t) � KY (t), t � T0, (3.19)

and define the map Ψ : W →C[T0,∞)×C[T0,∞) by

Ψ(x,y)(t) = (Fy(t),G x(t)), t � T0, (3.20)

where

Fy(t) = x0 +
∫ t

T0

p(s)y(s)αds, G x(t) = y0 +
∫ t

T0

q(s)x(s)β ds, t � T0, (3.21)

and x0 and y0 are positive constants such that

hX(T1) � x0 � 1
2
HX(T0), kY (T1) � y0 � 1

2
KY (T0). (3.22)

Using (3.15) – (3.21), we see that if (x,y) ∈ W , then

Fy(t) � x0 + Γ
∫ t

T0

p(s)(KY (s))αds � 1
2
HX(T0)+2ΓKαX(t)

=
1
2
HX(T0)+

1
2
HX(t) � 1

2
HX(t)+

1
2
HX(t) = HX(t), t � T0,

Fy(t) � x0 � hX(T1) � hX(t), T0 � t � T1,

and

Fy(t) � γ
∫ t

T0

p(s)(kY (s))αds � γ
2
kαX(t) = hX(t), t � T1,

implying that hX(t) � Fy(t) � HX(t) for t � T0 . Similarly, it can be shown that
kY (t) � G x(t) � KY (t) for t � T0 . It follows therefore that Ψ maps W into it-
self. From this point on, proceeding as in the proof of Theorem 4.1 in [4] one can
prove that Ψ is a continuous map and sends W into a relatively compact subset of
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C[T0,∞)×C[T0,∞) . Consequently, the Schauder-Tychonofffixed point theorem ensures
the existence of strongly increasing solutions of (B) which are nearly regularly varying
of index (ρ ,0) . It remains to verify the regularity of the nearly regularly varying solu-
tions of (B) thus constructed. But to do so it suffices to repeat the proof of Theorem 4.2
of [4] based on an effective application of the generalized L’Hospital’s rule. The details
may be omitted. This completes the proof of Theorem 3.2. �

EXAMPLE 3.3. Consider system (B) in which p(t) and q(t) are given by

p(t) = tα−1
(

logt
log logt

)α
, q(t) = (t logt)−1−αβ .

Here λ = α −1 and μ = −1−αβ satisfy λ +1 = α > 0 and β (λ +1)+ μ +1 = 0,
and furthermore p(t) and q(t) satisfy

∫ t

a
(sp(s))β q(s)ds ∼ (log logt)1−αβ

1−αβ
→ ∞, t → ∞,

where a = exp(e) . Therefore, by Theorem 3.2 this system possesses strongly increas-
ing regularly varying solutions (x(t),y(t)) of index (ρ ,0) with ρ = α , and all such
solutions enjoy one and the same asymptotic behavior

x(t) ∼ (αβ )−1tα(log t)α , y(t) ∼ loglogt, t → ∞.

4. Application to the Thomas –Fermi type differential equations

We consider the Thomas – Fermi type differential equation

(p(t)|x′|α−1x′)′ = q(t)|x|β−1x, (C)

under the assumptions:

(a) α and β are positive constants such that α > β ;

(b) p(t) and q(t) are positive continuous functions on [a,∞) which are regularly vary-
ing of indices λ and μ , respectively, and are represented in the form (2.1).

We are interested in positive solutions of (C) which exist in a neighborhood of infinity.
The following two cases will be discussed separately:

Case (I):
∫ ∞

a
p(t)−

1
α dt = ∞ ; Case (II):

∫ ∞

a
p(t)−

1
α dt < ∞ .

A positive solution x(t) of (C) is called strongly increasing if

lim
t→∞

x(t) = lim
t→∞

p(t)x′(t)α = ∞,
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which is equivalent to

lim
t→∞

x(t)
P(t)

= ∞ in Case (I), lim
t→∞

x(t) = ∞ in Case (II),

and strongly decreasing if limt→∞ x(t) = limt→∞ p(t)(−x′(t))α = 0, which is equivalent
to

lim
t→∞

x(t) = 0 in Case (I), lim
t→∞

x(t)
π(t)

= 0 in Case (II),

where

P(t) =
∫ t

a
p(s)−

1
α ds, π(t) =

∫ ∞

t
p(s)−

1
α ds.

We assume that the regularity index λ of p(t) is different from α , excluding the
border case λ = α which seems to be difficult to analyze from our consideration. It is
easy to see that if λ < α (resp. λ > α ), then Case (I) (resp. Case (II)) occurs and the
function P(t) (resp. π(t)) has the asymptotic behavior

P(t) ∼ α
α −λ

t
α−λ

α l(t)−
1
α

(
resp. π(t) ∼ α

λ −α
t

α−λ
α l(t)−

1
α

)
as t → ∞.

Let x(t) be a strongly increasing (resp. strongly decreasing) solution of (C). Then,
it is clear that x′(t) > 0 (resp. x′(t) < 0) for all large t and satisfies limt→∞ p(t)x′(t)α =
∞ (resp. limt→∞ p(t)(−x′(t))α = 0), so that by putting y(t) = p(t)x′(t)α (resp. y(t) =
p(t)(−x′(t))α ) we see that the vector function (x(t),y(t)) is a strongly increasing so-
lution of the system of differential equations

x′ − p(t)−
1
α y

1
α = 0, y′ −q(t)xβ = 0, (4.1)(

resp. x′ + p(t)−
1
α y

1
α = 0, y′ +q(t)xβ = 0.

)
(4.2)

Conversely, if (x(t),y(t)) is a strongly increasing (resp. strongly decreasing) solution
of system (4.1) (resp. (4.2)), then its first component x(t) gives a strongly increasing
(strongly decreasing) solution of equation (C). On the basis of this observation, apply-
ing Theorems 3.1 and 3.2 to system (4.1) we obtain the following Theorems 4.1 and
4.2, respectively, supplementing Theorem 5.2 of [2].

THEOREM 4.1. Let λ > α . Equation (C) possesses strongly increasing slowly
varying solution if and only if

μ = λ −α −1 and
∫ ∞

a

(
1

p(t)

∫ t

a
q(s)ds

) 1
α
dt = ∞,

in which case the asymptotic behavior of any such solution x(t) obeys the unique
growth law

x(t) ∼
[

α −β
α

∫ t

a

(
1

p(s)

∫ s

a
q(r)dr

) 1
α
ds

] α
α−β

, t → ∞.



90 TOMOYUKI TANIGAWA

THEOREM 4.2. Let λ < α . Equation (C) possesses strongly increasing regularly
varying solutions of index α−λ

α if and only if

μ =
β
α

λ −β −1 and
∫ ∞

a
P(t)β q(t)dt = ∞,

in which case the asymptotic behavior of any such solution x(t) obeys the unique
growth law

x(t) ∼ P(t)
[

α −β
α

∫ t

a
P(s)β q(s)ds

] 1
α−β

, t → ∞.

On the other hand, from Theorems 2.1 and 2.2 applied to (4.2) there follow Theo-
rems 4.3 and 4.4, respectively, which supplement Theorem 5.1 of [4].

THEOREM 4.3. Let λ < α . Equation (C) possesses strongly decreasing slowly
varying solutions if and only if

μ = λ −α −1 and
∫ ∞

a

(
1

p(t)

∫ ∞

t
q(s)ds

) 1
α
ds < ∞,

in which case the asymptotic behavior of any such solution x(t) obeys the unqique
decay law

x(t) ∼
[

α −β
α

∫ ∞

t

(
1

p(s)

∫ ∞

s
q(r)dr

) 1
α
ds

] α
α−β

, t → ∞.

THEOREM 4.4. Let λ > α . Equation (C) possesses strongly decreasing regularly
varying solution of index α−λ

α if and only if

μ =
β
α

λ −β −1 and
∫ ∞

a
π(t)β q(t)dt < ∞,

in which case the asymptotic behavior of any such solution x(t) obeys the unique decay
law

x(t) ∼ π(t)
[

α −β
α

∫ ∞

t
π(s)β q(s)ds

] 1
α−β

, t → ∞.

5. Concluding remarks

(1) We have excluded from our consideration strongly monotone solutions (x(t),y(t))
of index (0,0) of (A) and (B), that is, those solutions both components of which are
slowly varying. Such solutions exist only if p(t) and q(t) are regularly varying func-
tions of index −1, and as observed in the paper [5] this fact seems to cause the difficulty
in characterizing the existence of slowly varying solutions for systems (A) and (B).

(2) The study of Thomas-Fermi equations of the form (C) in the framework of regular
variation was first attempted in the paper [6] for the special case where p(t) ≡ 1. It
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would be of interest to observe from the papers [4, 5] that almost complete information
on possible regularly varying solutions of the general case of (C) is provided through the
analysis of simple two-dimensional cyclic systems (A) and (B) of first order differential
equations.

(3) Systems (A) and (B) are studied under the assumption that αβ < 1, so that the
consideration of equation (C) is restricted to the case where α > β . It is natural to ask
whether systems (A) and (B) with αβ > 1, and hence equation (C) with α < β , can
possibly be investigated by means of regularly varying functions.
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