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THE RICCATI EQUATION METHOD WITH

VARIABLE EXPANSION COEFFICIENTS. III.

SOLVING THE NEWELL–WHITEHEAD EQUATION

SOLOMON M. ANTONIOU

(Communicated by Hiroyuki Usami)

Abstract. The Riccati equation method with variable expansion coefficients, introduced in pre-
vious papers, is used to find traveling wave solutions to the Newell-Whitehead (NW) equa-
tion ut = uxx + au − bu3 . The ξ -dependent coefficients A and B of the Riccati equation
Y ′ = A+BY 2 are either proportional each other or their product is equals to an exponential func-
tion. They are determined as solutions of ODEs they satisfy and their solutions are expressed
either in terms of Bessel’s functions or in terms of functions already found in Paper I. The same
situation occurs for the expansion coefficients as well. The function Y which is a solution of
Riccati’s equation, is expressed in terms of Bessel functions or it is a constant quantity.

1. Introduction

Nonlinear partial differential equations arise in a number of areas of Mathematics
and Physics in an attempt to model physical processes, like Chemical Kinetics (Gray
and Scott [36]), Fluid Mechanics (Whitham [94]), or biological processes like Popula-
tion Dynamics (Murray [64]). In the recent past there are a number of new methods
which have been invented in solving these equations. Among the new methods are the
inverse scattering method (AKNS [11], Ablowitz and Clarkson [12], Ablowitz and Se-
gur [13], Novikov, Manakov, Pitaevskii and Zakharov [69]), Hirota’s bilinear method
(Hirota [42] and [43]), the algebro-geometric approach (Belokolos et al [20]), the tanh-
coth method (Malfliet [58] and [59], Malfliet and Hereman [60] and [61], El-Wakil and
Abdou [27], Fan [31], Griffiths and Sciesser [37], Fan and Hon [32], Parkes and Duffy
[73], Parkes, Zhou, Duffy and Huang [75], Wazwaz [90] ), the sn-cn method (Bald-
win et al [18]), the F -expansion method (Abdou [4] and [7], Wang and Li [87]), the
Jacobi elliptic function method (Abbott, Parkes and Duffy [1], Abdou and Elhanbaly
[10], Chen and Zhang [23], Chen and Wang [24], Fan and Zhang [33], Inc and Ergüt
[45], Liu, Fu, Liu and Zhao [54], [55], Lu and Shi [56], Parkes, Duffy and Abbott
[74]), the Riccati equation method (Zhang and Zhang [101], Abdou [3], Antoniou [15]
and [16]), the Weierstrass elliptic function method (Kudryashov [50], [52]), the exp-
function method (He and Wu [40], Abdou [8], Aslan [17], Bekir and Boz [19], Ebaid
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[25], El-Wakil, Abdou and Hendi [28], He and Abdou [39], Naher, Abdullah and Akbar
[65] and [66]), the Bäcklund transformation method (Rogers and Shadwick [77]), the
(G′/G)- expansion method (Borhanibar and Moghanlu [22], Feng, Li and Wan [34],
Jabbari, Kheiri and Bekir [46], Naher, Abdullah and Akbar [67], Ozis and Aslan [72],
Wang, Li and Zhang [88], Zayed [97], Zayed and Gepreel [99], Antoniou [15] and [16]),
the homogeneous balance method (Fan [30], Wang, Zhou and Li [86], El-Wakil, Ab-
ulwafa, Elhanbaly and Abdou [26]), the direct algebraic method (Soliman and Abdou
[82]), the basic equation method (Kudryashov [51]) and its variants, like the simplest
equation method (Abdou [6], Jawad, Petkovich and Biswas [47], Vitanov [85], Yefi-
mova [96], Zayed [98]), the first integral method (Feng [35], Raslan [76]), the integral
bifurcation method (Rui, Xie, Long and He [79]), the reduced differential transform
method (Keskin and Oturanc [48]), the Cole-Hopf transformation method (Salas and
Gomez [80]), the Adomian decomposition method (Adomian [14], Abdou [2], Wazwaz
[89] and [91]), the Painlevé truncated method (Weiss, Tabor and Carnevale [92] and
[93]), the homotopy perturbation method (Taghizadeh, Akbari and Ghelichzadeh [84],
Yahya et al [95], Liao [53], El-Wakil and Abdou [29]), the Lie symmetry method (Lie
point symmetries, potential symmetries, nonclassical symmetries, the direct method)
(Bluman and Kumei [21], Hydon [44], Olver [70], Ovsiannikov [71], Stephani [83]),
the variational iteration method (He [38], Abdou [5], Abdou and Soliman [9], Wazwaz
[91]). A more detailed, although not complete set of references of the above methods,
appears in Antoniou [15].

The implementation of most of these methods was made possible only using Sym-
bolic Languages like Mathematica, Macsyma, Maple, etc.

In this paper we implement the Riccati equation method with variable expansion
coefficients introduced previously (Antoniou [15]) and we find traveling wave solutions
of the Newell-Whitehead equation.

The paper is organized as follows: In Section 2 we introduce the basic ingredients
of the method used. In Section 3 we consider Newell-Whitehead equation and Riccati’s
equation method of solution, where the expansion coefficients depend on the variable
ξ . We find that the ξ -dependent coefficients A and B of the Riccati equation Y ′ =
A+BY2 are either proportional each other or their product is an exponential function
and satisfy their own ODEs. Their solutions are expressed either in terms of Bessel’s
functions or in terms of functions already found in Paper I (Antoniou [15]). The same
situation occurs for the expansion coefficients as well. The solution Y which satisfies
Riccati’s equation is expressed either in terms of the proportionality factor of A and B
or in terms of Bessel’s functions.

The traveling wave solutions of the Newell-Whitehead equation are expressed by
Theorems I, II, III and IV cited at the end of Sections 3.I, 3.II, 3.III and 3.IV respec-
tively.

2. The Method

We consider an evolution equation of the general form

ut = G(u,ux,uxx, ...) or utt = G(u,ux,uxx, ...), (2.1)
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where u is a smooth function. We introduce a new variable ξ given by

ξ = k(x−ωt), (2.2)

where k and ω are constants. Changing variables and introducing a new function U(ξ )
by u(x, t) = U(k(x−ωt))≡U(ξ ) since

ut = (−ωk)U ′(ξ ),ux = kU ′(ξ ), uxx = k2U ′′(ξ ), . . . (2.3)

equation (2.1) becomes an ordinary differential equation

(−ωk)
dU
dξ

= G
(
u,k

dU
dξ

,k2 d2U
dξ 2 , . . .

)
(2.4)

or

ω2k2 dU
dξ

= G
(
u,k

dU
dξ

,k2 d2U
dξ 2 , . . .

)
. (2.5)

Equations (2.4) or (2.5) will be solved considering expansions of the form

U(ξ ) =
n

∑
k=0

akY
k (2.6)

or

U(ξ ) =
n

∑
k=0

akY
k +

n

∑
k=0

bk

Yk , (2.7)

where all the expansion coefficients depend on the variable ξ ,

ak ≡ ak(ξ ), bk ≡ bk(ξ ), for every k = 0,1,2, . . .n

contrary to the previously considered cases, where the expansion coefficients were con-
sidered as constants. The function Y (ξ ) satisfies Riccati’s equation

Y ′(ξ ) = A+BY2, (2.8)

where again the coefficients A and B depend on the variable ξ .
In solving equations (2.4) or (2.5), we consider the expansions (2.6) or (2.7) and

then we balance the nonlinear term with the highest derivative of the function U(ξ )
which determines n (the number of the expansion terms). Equating similar powers of
the function Y (ξ ) we can determine the various coefficients and thus find the solution
of the equation considered.

In our two previous papers we have applied successfully this method into two no-
table equations, the Burgers equation and the KdV equation. We have also considered
the accompanied (G′/G)- method with variable expansion coefficients which can only
be applied once the Riccati equation method has applied before. A remarkable feature
of the method is that we obtain quite new solutions and apart of that, we get a pro-
liferation of solutions, once we continue to apply the method in all the intermediate
equations, leading to the final solution of the original equation.
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3. The NW equation and its solutions

The NW equation was introduced by Newell and Whitehead [68] (see also Segel
[81]) and belongs to the general class of reaction-diffusion equations. This equation
describes in particular the Rayleigh-Benard convection. The NW equation has also
been considered and solved through a variety of methods by Kheiri et al [49], Lu et al
[57], Malik et al [62], Malomed [63], and by Zhang [100]. The reader can also consult
the very interesting review by Rojas, Elias and Clerc [78] about the many application
aspects of the NW equation. In this paper we consider the NW equation in the form
(a > 0,b > 0) ,

ut = uxx +au−bu3 (3.1)

and try to find traveling wave solutions of this equation. We introduce a new variable
ξ given by

ξ = x−ωt, (3.2)

where ω is a non-zero constant, ω �= 0. Changing variables and introducing a new
function U(ξ ) by u(x,t) = U(k(x−ωt)) ≡U(ξ ) since

ut = (−ωk)U ′(ξ ),ux = kU ′(ξ ), uxx = k2U ′′(ξ ), . . . (3.3)

equation (3.1) becomes an ordinary differential equation

U ′′(ξ )+ ωU ′(ξ )+aU(ξ )−bU3(ξ ) = 0. (3.4)

We consider the extended Riccati equation method in solving equation (3.4), since the
Riccati equation method leads to trivial results.

We thus consider the expansion

U(ξ ) =
n

∑
k=0

akY
k +

n

∑
k=0

bk

Y k

and balance the second order derivative term with the third order of (3.4). We then find
that n = 1. The proof might go as follows: The first derivative U ′(ξ ) contains the
highest order term Yn−1Y ′ and upon the substitution Y ′→A + BY 2 the highest order
term becomes Yn+1 . The second derivative term U ′′(ξ ) contains the highest order term
YnY ′ and upon the substitution Y ′→A+BY2 the highest order term becomes Yn+2 . The
nonlinear term U3 contains the highest order term U3n . Therefore balancing the second
derivative term U ′′(ξ ) with the nonlinear term U3(ξ ) leads to the equation n+2 = 3n
from which we obtain n = 1. We thus have

U(ξ ) = a0 +a1Y +
b1

Y
, (3.5)

where again all the coefficients a0 , a1 and b1 depend on ξ , and Y satisfies Riccati’s
equation Y ′ = A + BY 2 . From equation (3.5) we obtain (taking into account Y ′ =
A+BY2 )

U ′(ξ ) = (a′0−b1B+a1A)+a1BY 2 +
b′1
Y

− b1A
Y 2 , (3.6)
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U ′′(ξ ) = (a′′0 +2a′1A+a1A
′ −b1B

′ −2b′1B)

+ (a′′1 +2a1AB)Y +(a1B
′ +2a′1B)Y 2 +(2a1B

2)Y 3

+
b′′1 +2b1AB

Y
− 2b′1A+b1A′

Y 2 +
2b1A2

Y 3 . (3.7)

Therefore equation (3.4), under the substitution (3.5), (3.6) and (3.7), becomes

(a′′0 +2a′1A+a1A
′ −b1B

′ −2b′1B)

+ (a′′1 +2a1AB)Y +(a1B
′ +2a′1B)Y 2 +(2a1B

2)Y 3

+
b′′1 +2b1AB

Y
− 2b′1A+b1A′

Y 2 +
2b1A2

Y 3

+ ω
(
(a′0−b1B+a1A)+a′1Y +a1BY 2 +

b′1
Y

− b1A
Y 2

)
+a

(
a0 +a1Y +

b1

Y

)
−b

(
a0 +a1Y +

b1

Y

)3
= 0. (3.8)

Upon expanding and equating the coefficients of Y to zero, we obtain a system of
differential equations from which we can determine the various expansion coefficients
and the coefficients A and B of Riccati’s equation. We obtain

coefficient of Y 3 :
−ba3

1 +2a1B
2 = 0, (3.9)

coeffficient of Y 2 :
2a′1B−3ba0a

2
1 +a1B

′ + ωa1B = 0, (3.10)

coefficient of Y :

a′′1 +aa1 + ωa′1−3b(b1a
2
1 +a1a

2
0)+2a1AB = 0, (3.11)

coefficient of Y 0 :

a′′0 +aa0 +2a′1A−b1B
′ +a1A

′ −2b′1B+ ω(a′0 +a1A−b1B)

−b(a3
0 +6a0a1b1) = 0, (3.12)

coefficient of Y−1 :

b′′1 +ab1 +2b1AB+ ωb′1−3b(a2
0b1 +a1b

2
1) = 0, (3.13)

coefficient of Y−2 :
−3ba0b

2
1−ωAb1−b1A

′ −2b′1A = 0, (3.14)

coefficient of Y−3 :
2b1A

2−bb3
1 = 0. (3.15)

We now have to solve the system of equations (3.9)-(3.15) supplemented by the Riccati
equation Y ′ = A+BY2 .
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From equations (3.9) and (3.15), ignoring the trivial solutions, we obtain

a1 = ±
√

2
b
B and b1 = ±

√
2
b
A (3.16)

respectively. We thus consider the following four cases.

3.I. Case I. For a1 =
√

2
bB and b1 =

√
2
bA , we obtain

from (3.14),

6a0 = −
√

2
b

(
ω +3

A′

A

)
, (3.17)

from (3.10)

6a0 =

√
2
b

(
ω +3

B′

B

)
, (3.18)

from (3.11)
B′′

B
+ ω

B′

B
−4AB+a−3ba2

0 = 0, (3.19)

from (3.13)
A′′

A
+ ω

A′

A
−4AB+a−3ba2

0 = 0, (3.20)

from (3.12)

a′′0 + ωa′0 +aa0−12a0AB−ba3
0 +

√
2
b
(AB′ −A′B) = 0. (3.21)

Equating the two different expressions of a0 , equations (3.17) and (3.18), we obtain the

equation 3
(

A′
A + B′

B

)
= −2ω , which by integration gives

AB = Kexp
(
−2ω

3
ξ
)
, (3.22)

where K is a positive constant, K > 0. Using (3.18) and (3.22), we obtain from (3.19)
the equation

B′′

B
− 3

2

(B′

B

)2

−4Kexp
(
−2ω

3
ξ
)

+a− ω2

6
= 0. (3.23)

The previous equation, under the substitution

F =
B′

B
(3.24)

transforms into the equation

F ′ =
1
2
F2 +4Kexp

(
−2ω

3
ξ
)
−a+

ω2

6
(3.25)
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which is a Riccati differential equation. Under the standard transformation

F = −2
w′

w
(3.26)

equation (3.25) takes on the form of a second order linear differential equation

w′′ +
(
2Kexp

(
−2ω

3
ξ
)
− a

2
+

ω2

12

)
w = 0. (3.27)

The substitution z = eμξ transforms (3.27) into

z2 d2w
dz2 + z

dw
dz

+
1

μ2

(
2Kz−

2ω
3μ − a

2
+

ω2

12

)
w = 0. (3.28)

The choice μ = −ω
3 converts z−

2ω
3μ into z2 and thus equation (3.28) takes on the form

z2 d2w
dz2 + z

dw
dz

+
(18K

ω2 z2 +
3
4
− 9a

2ω2

)
w = 0. (3.29)

The substitution

ρ2 =
18K
ω2 and −ν2 =

3
4
− 9a

2ω2 (3.30)

converts (3.29) into

z2 d2w
dz2 + z

dw
dz

+(ρ2z2 −ν2)w = 0 (3.31)

which is Bessel’s differential equation with general solution

w = C1Jν(ρz)+C2Yν(ρz). (3.32)

Going back to the original variables, we have

w(ξ ) = C1Jν

(3
√

2K
ω

e−
ω
3 ξ

)
+C2Yν

(3
√

2K
ω

e−
ω
3 ξ

)
, (3.33)

where

ν =

√
18a−3ω2

2ω
(6a > ω2). (3.34)

Bessel’s functions are known to be defined by

Jν(z) =
(1

2
z
)ν ∞

∑
k=0

(
− 1

4z2
)k

Γ(ν + k+1)k!
and Yν =

Jν(z)cos(νπ)− J−ν(z)
sin(νπ)

respectively. The constants C1 and C2 in (3.33) are chosen such that w(ξ ) �= 0, ∀ξ . It
is not trivial to ensure that since the Bessel functions are oscillating at infinity. However
if the constant ω > 0, then we have not such a problem in (3.33) w(ξ ) �= 0,∀ξ because
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3
√

2
ω e−

ω
3 ξ → 0 as ξ → ∞ . Combining (3.24) and (3.26), we derive the equation B′

B +
2w′

w = 0, from which by integration we obtain

B(ξ ) =
C

w2(ξ )
(3.35)

with w given by (3.33). Using equations (3.22) and (3.35), we determine the coefficient
A:

A(ξ ) =
K
C

w2(ξ )exp(−2ω
3

ξ ). (3.36)

We thus get

a1 = C

√
2
b

1
w2(ξ )

and b1 = C

√
2
b
w2(ξ )exp

(
−2ω

3
ξ
)

(3.37)

and from (3.18), since B′
B +2w′

w = 0,

a0(ξ ) =
1
6

√
2
b

(
ω −6

w′(ξ )
w(ξ )

)
. (3.38)

Equation (3.21), using (3.18) and (3.22), can be expressed in terms of F = B′
B as

F ′′ − 1
2
F3 + ω

(
F ′ − 1

2
F2

)
+

(
a− ω2

6

)
F −8KFe−

2ω
3 ξ

− 8K
3

ωe−
2ω
3 ξ +

ω
54

(18a−ω2) = 0. (3.39)

The above equation should be compatible to (3.25) (i.e. the solution (3.33) should
satisfy (3.39) given that F is connected to w(ξ ) through (3.26)). According to the
results of Appendix A, we have the constraints

ν2 =
1
4
, ω2 =

9a
2

and

Jν

(3
√

2K
ω

)
×Yν+1

(3
√

2K
ω

)
− Jν+1

(3
√

2K
ω

)
×Yν

(3
√

2K
ω

)
= 0.

We turn now to the determination of the function Y which satisfies Riccati’s equation.
Under the substitution

Y = − 1
B

u′

u
, (3.40)

Riccati’s equation Y ′ = A+BY2 becomes

u′′ −
(B′

B

)
u′ +ABu = 0. (3.41)

The substitution
u =

√
By (3.42)
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converts (3.41) into

y′′ +
1
2

[B′′

B
− 3

2

(B′

B

)2]
y+Kexp

(
−2ω

3
ξ
)
y = 0 (3.43)

taking also into account (3.22). Since B = C
w2(ξ ) , we have B′′

B − 3
2

(
B′
B

)2
= −2w′′

w and

using (3.32), we obtain, using the various formulas for the derivatives and recurrence
relations of Bessel’s functions, that

−2
w′′

w
=

2
9

(
ρ2exp

(
−2ω

3
ξ
)
−ν2

)
ω2.

Therefore equation (3.43) takes on the form

y′′ +
[
λ 2exp

(
−2ω

3
ξ
)
−

(ων
3

)2]
y = 0, (3.44)

where

λ 2 =
1
9

ρ2ω2 +K = 3K. (3.45)

Equation (3.44) can be solved by converting it to Bessel’s equation, along the lines
of reasoning in transforming (3.27) into (3.31). We thus get the following solution of
equation (3.44):

y = C̃1Jν

(3
√

3K
ω

e−
ω
3 ξ

)
+ C̃2Yν

(3
√

3K
ω

e−
ω
3 ξ

)
. (3.46)

The same index ν appears in both expressions of the Bessel’s function (3.46) and
(3.33), and is given by (3.34). We then obtain from (3.40), using (3.42) and (3.35)

Y = − 1
C

w2(ξ )
(y′(ξ )

y(ξ )
− w′(ξ )

w(ξ )

)
. (3.47)

Therefore we arrive at the following

Solution I. The solution of equation (3.4)

U ′′(ξ )+ ωU ′(ξ )+aU(ξ )−bU3(ξ ) = 0

is given by (3.5), U(ξ ) = a0 +a1Y + b1
Y , where

a0(ξ ) =
1
6

√
2
b

(
ω −6

w′(ξ )
w(xi)

)
, a1 = C

√
2
b

1
w2(ξ )

,

b1 =
K
C

√
2
b
w2(ξ )exp

(
−2ω

3
ξ
)

and Y = − 1
C

w2(ξ )
(y′(ξ )

y(ξ )
− w′(ξ )

w(ξ )

)
,
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with w(ξ ) and y(ξ ) being expressed in terms of Bessel’s functions by (3.33) and (3.46)
respectively. Therefore

U(ξ ) =
1
6

√
2
b

[
ω −6

y′(ξ )
y(ξ )

−6K
exp

(
− 2ω

3 ξ
)

(
y′(ξ )
y(ξ ) − w′(ξ )

w(ξ )

)]
.

In the above solution we have to take into account the condition w′(ξ )
w(ξ ) = ω

6 , according
to (4.8) of Appendix A. We thus have the following solution expressed by Theorem I:

THEOREM I. The traveling wave solutions of the Newell-Whitehead equation ut =
uxx + au− bu3 , derived under the substitution ξ = x−ωt , i.e. the solutions of the
equation U ′′(ξ )+ ωU ′(ξ )+aU(ξ )−bU3(ξ ) = 0, are given by

U(ξ ) =
1
6

√
2
b

[
ω −6

y′(ξ )
y(ξ )

−6K
(y′(ξ )

y(ξ )
− ω

6

)−1

× exp
(
−2ω

3
ξ
)]

. (3.48)

The above solution is subject to the constraints

ν2 =
1
4
, ω2 =

9a
2

(3.49)

and

Jν

(3
√

2K
ω

)
×Yν+1

(3
√

2K
ω

)
− Jν+1

(3
√

2K
ω

)
×Yν

(3
√

2K
ω

)
= 0. (3.50)

3.II. Case II. For a1 =
√

2
bB and b1 = −

√
2
bA , we obtain

from (3.14),

6a0 =

√
2
b

(
ω +3

A′

A

)
, (3.51)

from (3.10)

6a0 =

√
2
b

(
ω +3

B′

B

)
, (3.52)

from (3.11)
B′′

B
+ ω

B′

B
+8AB−3ba2

0+a = 0, (3.53)

from (3.13)
A′′

A
+ ω

A′

A
+8AB−3ba2

0+a = 0, (3.54)

from (3.12)

a′′0 + ωa′0 +aa0 +12a0AB−ba3
0 +3

√
2
b
(AB)′ +2ω

√
2
b
AB = 0. (3.55)
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Equating the two different expressions for a0 ,equations (3.51) and (3.52), we find that
A′
A = B′

B and by integration
B = −s2A, (3.56)

where s is real. Equation (3.54) then, using (3.51) and (3.56), becomes

AA′′ − 3
2
(A′)2 +2m2A2−8s2A4 = 0, (3.57)

where

2m2 = a− ω2

6
, m ∈ R. (3.58)

Equation (3.57) has been solved by a variety of methods in Paper I (Antoniou [15],
Appendices A, B and C). In Appendix C of this paper we list all the solution methods
and the corresponding solutions we have already found in Paper I.

Equation (3.55) expressed in terms of G = A′
A gives, taking into account (3.51)

G′′ − 1
2
G3 + ω

(
G′ − 1

2
G2

)
+

(
a− ω2

6

)
G

−24s2AA′ −8ωs2A2 +
ω
54

(18a−ω2) = 0. (3.59)

All the solutions which satisfy (3.57) should be substituted in the above equation. The
resulting expressions will provide compatibility conditions between the various param-
eters and constants. According to the results of Appendix B, we find that (3.57) (ex-
pressed in terms of G , see (5.2)) is compatible to (3.59) if

ω2 =
9a
2

. (3.60)

We now turn to the determination of the function Y which satisfies Riccati’s equation.
Under the substitution

Y = − 1
B

v′

v
(3.61)

Riccati’s equation Y ′ = A+BY2 becomes

v′′ −
(B′

B

)
v′ +ABv = 0 (3.62)

and because of (3.56),

v′′ −
(A′

A

)
v′ − s2A2v = 0. (3.63)

From the above equation we obtain v′
v = ±sA and then (see eqs (3.53)-(3.60) of paper

I, Antoniou [15])

Y (ξ ) = ±1
s
. (3.64)

Collecting the results of this Section, we arrive at
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Solution II. The solution of equation (3.4)

U ′′(ξ )+ ωU ′(ξ )+aU(ξ )−bU3(ξ ) = 0

is given by (3.5), U(ξ ) = a0 +a1Y + b1
Y , where

a0 =
1
6

√
2
b

(
ω +3

A′

A

)
, a1 = −s2

√
2
b
A, b1 = −

√
2
b
A and Y = ±1

s

and A is any solution of the equation (3.57). We thus have the following solution
expressed by Theorem II:

THEOREM II. The traveling wave solutions of the Newell-Whitehead equation
ut = uxx +au−bu3 , derived under the substitution ξ = x−ωt , i.e. the solutions of the
equation U ′′(ξ )+ ωU ′(ξ )+aU(ξ )−bU3(ξ ) = 0, are given by

U(ξ ) =
1
6

√
2
b

(
ω +3

A′(ξ )
A(ξ )

)
−2s

√
2
b
A(ξ ), Y =

1
s
, (3.65)

U(ξ ) =
1
6

√
2
b

(
ω +3

A′(ξ )
A(ξ )

)
+2s

√
2
b
A(ξ ), Y = −1

s
, (3.66)

with ω2 = 9a
2 while the various functions A(ξ ) which are solutions of (3.57) are given

in Appendix C.

3.III. Case III. For a1 = −
√

2
bB and b1 =

√
2
bA , we obtain

from (3.14),

6a0 = −
√

2
b

(
ω +3

A′

A

)
, (3.67)

from (3.10)

6a0 = −
√

2
b

(
ω +3

B′

B

)
, (3.68)

from (3.11)
B′′

B
+ ω

B′

B
+8AB−3ba2

0+a = 0, (3.69)

from (3.13)
A′′

A
+ ω

A′

A
+8AB−3ba2

0+a = 0, (3.70)

from (3.12)

a′′0 + ωa′0 +aa0 +12a0AB−ba3
0−3

√
2
b
(AB)′ −2ω

√
2
b
AB = 0. (3.71)

Equating the two different expressions for a0 ,equations (3.67) and (3.68), we conclude
that B = −s2A , which is (3.56). We thus obtain again Y = ± 1

s . Equation (3.70) gives,
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because of (3.67), equation (3.57). Equation (3.71) also gives, taking into account
(3.67) and (3.56)

G′′ − 1
2
G3 + ω

(
G′ − 1

2
G2

)
+

(
a− ω2

6

)
G

−24s2AA′ −8ωs2A2− ω
54

(18a−ω2) = 0. (3.72)

All the solutions which satisfy (3.70) (i.e.(3.57)) should be substituted in the above
equation. The resulting expressions will provide compatibility conditions between the
various parameters and constants. According to the results of Appendix B, we find
ω2 = 9a

2 . We thus obtain the following

Solution III.. The solution of equation (3.4)

U ′′(ξ )+ ωU ′(ξ )+aU(ξ )−bU3(ξ ) = 0

is given by (3.5), U(ξ ) = a0 +a1Y + b1
Y , where

a0 = −1
6

√
2
b

(
ω +3

A′

A

)
, a1 = s2

√
2
b
A, b1 =

√
2
b
A and Y = ±1

s

and A is any solution of the equation (3.57). We thus have the following solution
expressed by Theorem III:

THEOREM III. The traveling wave solutions of the Newell-Whitehead equation
ut = uxx +au−bu3 , derived under the substitution ξ = x−ωt , i.e. the solutions of the
equation U ′′(ξ )+ ωU ′(ξ )+aU(ξ )−bU3(ξ ) = 0, are given by

U(ξ ) = −1
6

√
2
b

(
ω +3

A′(ξ )
A(ξ )

)
+2s

√
2
b
A(ξ ), Y =

1
s
, (3.73)

U(ξ ) = −1
6

√
2
b

(
ω +3

A′(ξ )
A(ξ )

)
−2s

√
2
b
A(ξ ), Y = −1

s
, (3.74)

with ω2 = 9a
2 while the various functions A(ξ ) which are solutions of (3.57) are given

in Appendix C.

3.IV. Case IV. For a1 = −
√

2
bB and b1 = −

√
2
bA , we obtain

from (3.14),

6a0 =

√
2
b

(
ω +3

A′

A

)
, (3.75)

from (3.10)

6a0 = −
√

2
b

(
ω +3

B′

B

)
, (3.76)

from (3.11)
B′′

B
+ ω

B′

B
−4AB+a−3ba2

0 = 0, (3.77)
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from (3.13)
A′′

A
+ ω

A′

A
−4AB+a−3ba2

0 = 0, (3.78)

from (3.12)

a′′0 + ωa′0 +aa0−12a0AB−ba3
0−

√
2
b
(AB′ −A′B) = 0. (3.79)

Equating the two different expressions of a0 , equations (3.75) and (3.76), we obtain the

equation 3
(

A′
A + B′

B

)
= −2ω , which by integration gives (3.22). We then obtain from

(3.77), using (3.76) and (3.22), the equation (3.23), which can be converted to equation
(3.31) with solution given by (3.33). We also obtain again (3.47) as the solution of
Riccati’s equation. Equation (3.79) can be expressed in terms of F = B′

B as

F ′′ − 1
2
F3 + ω

(
F ′ − 1

2
F2

)
+

(
a− ω2

6

)
F −8KFe−

2ω
3 ξ

− 8K
3

ωe−
2ω
3 ξ − ω

54
(18a−ω2) = 0.

The solution (3.33) is to be substituted in the above equation to get a compatibility
condition between the parameters and the constants. We obtain as in Case I, the same
set of compatibility conditions. Therefore we arrive at the following

Solution IV. The solution of equation (3.4),

U ′′(ξ )+ ωU ′(ξ )+aU(ξ )−bU3(ξ ) = 0

is given by (3.5), U(ξ ) = a0 +a1Y + b1
Y , where

a0(ξ ) = −1
6

√
2
b

(
ω −6

w′(ξ )
w(xi)

)
, a1 = −C

√
2
b

1
w2(ξ )

,

b1 = −K
C

√
2
b
w2(ξ )exp

(
−2ω

3
ξ
)

and Y = − 1
C

w2(ξ )
(y′(ξ )

y(ξ )
− w′(ξ )

w(ξ )

)
with w(ξ ) and y(ξ ) being expressed in terms of Bessel’s functions by (3.33) and (3.46)
respectively. Therefore

U(ξ ) =
1
6

√
2
b

[
−ω +6

y′(ξ )
y(ξ )

+6K
(y′(ξ )

y(ξ )
− w′(ξ )

w(ξ )

)−1

× exp
(
−2ω

3
ξ
)]

.

In the above solution we have to take into account the condition w′(ξ )
w(ξ ) = ω

6 , according
to (4.8) of Appendix A. We thus have the following solution expressed by Theorem IV:

THEOREM IV. The traveling wave solutions of the Newell-Whitehead equation
ut = uxx +au−bu3 , derived under the substitution ξ = x−ωt , i.e. the solutions of the
equation U ′′(ξ )+ ωU ′(ξ )+aU(ξ )−bU3(ξ ) = 0, are given by

U(ξ ) =
1
6

√
2
b

[
−ω +6

y′(ξ )
y(ξ )

+6K
(y′(ξ )

y(ξ )
− ω

6

)−1

× exp
(
−2ω

3
ξ
)]

. (3.80)
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The above solution is subject to the constraints

ν2 =
1
4
, ω2 =

9a
2

(3.81)

and

Jν

(3
√

2K
ω

)
×Yν+1

(3
√

2K
ω

)
− Jν+1

(3
√

2K
ω

)
×Yν

(3
√

2K
ω

)
= 0. (3.82)

We list below the derivative of the function y(ξ ) which appears in Solutions I and IV.
Using the general formulas for the derivatives of Bessel’s functions, we obtain

y′(ξ ) =
√

3Ke−
ω
3 ξ

[
C̃1Jν

(3
√

3K
ω

e−
ω
3 ξ

)
+ C̃2Yν

(3
√

3K
ω

e−
ω
3 ξ

)]

− 1
3

ων
[
C̃1Jν

(3
√

3K
ω

e−
ω
3 ξ

)
+ C̃2Yν

(3
√

3K
ω

e−
ω
3 ξ

)]
. (3.83)

4. Appendix A

In this Appendix we consider the issue of expressing the compatibility condition
(3.39) in terms of the constants and the various parameters. We first consider (3.39),

F ′′ − 1
2
F3 + ω

(
F ′ − 1

2
F2

)
+

(
a− 1

6
ω2

)
F −8Ke−

2ω
3 ξ F

− 8
3
Kωe−

2ω
3 ξ +

ω
54

(18a−ω2) = 0. (4.1)

We consider the above equation with (3.25):

F ′ − 1
2
F2 = 4Ke−

2ω
3 ξ −

(
a− ω2

6

)
. (4.2)

Substituting F ′ − 1
2F2 in (4.1) by the expression given in (4.2), we obtain

F ′′ − 1
2
F3 +

(
a− 1

6
ω2

)
F +

4
3
Kωe−

2ω
3 ξ −8Ke−

2ω
3 ξ F

+
2
3

ω
(2

9
ω2−a

)
= 0. (4.3)

We multiply by F equation (4.2),

− 1
2
F3 = −FF ′ +4Ke−

2ω
3 ξ F +

(ω2

6
−a

)
F (4.4)

and we substitute − 1
2F3 given by (4.4) into (4.3) and we obtain the equation

F ′′ −FF ′ +
4
3
Kωe−

2ω
3 ξ −4Ke−

2ω
3 ξ F +

2
3

ω
(2

9
ω2 −a

)
= 0. (4.5)
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Upon differentiation of (4.2) with respect to ξ , we find

F ′′ −FF ′ = −8
3
Kωe−

2ω
3 ξ . (4.6)

Equation (4.5), because of (4.6), takes on the form

−4K
(ω

3
+F

)
e−

2ω
3 ξ +

2
3

ω
(2

9
ω2−a

)
= 0. (4.7)

The above equation should hold for every ξ . We thus have ω
3 +F = 0 and 2

9 ω2−a= 0,
i.e.

ωw(ξ )−6w′(ξ ) = 0 (4.8)

and

ω2 =
9a
2

(4.9)

respectively, where w(ξ ) is given by (3.33). Combining (4.9) with the second of (3.30),
we obtain

ν2 =
1
4
. (4.10)

Upon expanding (4.8) in a series around ξ = 0 (this is best facilitated using any of the
known Computer Algebra Systems) we find that (4.8) is true to every order, provided
that

C1Jν

(3
√

2K
ω

)
+C2Yν

(3
√

2K
ω

)
= 0 (4.11)

and

C1Jν+1

(3
√

2K
ω

)
+C2Yν+1

(3
√

2K
ω

)
= 0. (4.12)

We thus have

C1

C2
= −

Yν

(
3
√

2K
ω

)
Jν

(
3
√

2K
ω

) = −
Yν+1

(
3
√

2K
ω

)
Jν+1

(
3
√

2K
ω

) . (4.13)

From the above relations we find that

Jν

(3
√

2K
ω

)
×Yν+1

(3
√

2K
ω

)
− Jν+1

(3
√

2K
ω

)
×Yν

(3
√

2K
ω

)
= 0. (4.14)

The above equation provides essentially a relation which determines the constant K in
terms of a (since ω is expressed through a by (4.9)).

Considering Case IV, we find the same compatibility conditions as in Case I.
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5. Appendix B

In this Appendix we consider the issue of expressing the compatibility condition
(3.59) in terms of the constants and the various parameters. We first consider (3.59),

G′′ − 1
2
G3 + ω

(
G′ − 1

2
G2

)
+

(
a− ω2

6

)
G−24s2AA′ −8ωs2A2

+
ω
54

(18a−ω2) = 0. (5.1)

We similarly express (3.57) in terms of G :

G′ − 1
2
G2 = 8s2A2−

(
a− ω2

6

)
. (5.2)

Upon substituting G′ − 1
2G2 given by (5.2) into (5.1), we obtain

G′′ − 1
2
G3 +

(
a− ω2

6

)
G−24s2AA′ +

2ω
3

(2ω2

9
−a

)
= 0. (5.3)

From (5.2), multiplying by G , we find

− 1
2
G3 +

(
a− ω2

6

)
G = −GG′ +8s2A2G. (5.4)

Equation (5.3) then gives, because of (5.4),

G′′ −GG′+8s2A2G−24s2AA′ +
2ω
3

(2ω2

9
−a

)
= 0. (5.5)

Differentiating (5.2) with respect to ξ , we derive

G′′ −GG′ = 16s2AA′. (5.6)

Therefore, because of (5.6), equation (5.5) becomes

16s2AA′ +8s2A2G−24s2AA′ +
2ω
3

(2ω2

9
−a

)
= 0

which, because of G = A′
A , gives us the relation 2ω

3

(
2ω2

9 − a
)

= 0 from which we

obtain

ω2 =
9a
2

. (5.7)

Considering Case III, we find that (3.70) and (3.71) are compatible if equation (5.7)
holds true as well.
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6. Appendix C

In this Appendix we list the solution methods and the corresponding solutions of
the equation (3.57),

A(ξ )A′′(ξ )− 3
2
(A′(ξ ))2 +2m2A2(ξ )−8s2A4(ξ ) = 0. (6.1)

A.I. First Method. We consider an expansion of the form

A(ξ ) = a0 +a1ϕ(ξ ), (6.2)

where ϕ(ξ ) satisfies Jacobi’s differential equation

d
dξ

ϕ(ξ ) =
√

λ + μϕ2 + ρ2ϕ4, (6.3)

where λ , μ and ρ are constant real parameters. Upon substituting (6.2) into (6.1),
taking into account (6.3) and equating to zero the coefficients of the different powers of
ϕ , we can determine the coefficients a0 , a1 and the function ϕ(ξ ) . We find that the
coefficients a0 and a1 are given by the relations

a2
1 =

ρ2

16s2 , a2
0 =

m2

16s2 (6.4)

and the function ϕ(ξ ) by

ϕ(ξ ) = −m
ρ
· C tanh(mξ )+1

C+ tanh(mξ )
, (6.5)

where C is an arbitrary constant. We thus have, using (6.2), the four values (6.4) and
equation (6.5), the following expressions for A(ξ ) :

A(ξ ) =
ρ
4s

+
m
4s

(
−m

ρ
· C tanh(mξ )+1

C+ tanh(mξ )

)
,

A(ξ ) =
ρ
4s

− m
4s

(
−m

ρ
· C tanh(mξ )+1

C+ tanh(mξ )

)
,

A(ξ ) = − ρ
4s

+
m
4s

(
−m

ρ
· C tanh(mξ )+1

C+ tanh(mξ )

)
,

A(ξ ) = − ρ
4s

− m
4s

(
−m

ρ
· C tanh(mξ )+1

C+ tanh(mξ )

)
.

(6.6)

A.II. Second Method.. We consider the (G′/G)− expansion of the form

A(ξ ) = a0 +aa

(G′

G

)
(6.7)
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with a0 and a1 constants and G a function depending on ξ : G = G(ξ ) . Upon substi-
tuting (6.7) into (6.1) and equating to zero the coefficients of the different powers of G ,
and solving the resulting system, we get a2

1 = 1
16s2

, a2
0 = m2

4s2
and

G = C1 +C2ξ +C3exp
(
−4m2 a1

a0
ξ
)
. (6.8)

Therefore

G′

G
=

D1−4m2a1exp
(
−4m2 a1

a0
ξ
)

D2 +D1ξ +a0exp
(
−4m2 a1

a0
ξ
)

with D1 and D2 constants. We thus have

A(ξ ) = a0 +a1

(G′

G

)
= a0 +a1

[ D1−4m2a1exp
(
−4m2 a1

a0
ξ
)

D2 +D1ξ +a0exp
(
−4m2 a1

a0
ξ
)]

.

The above expression gives us the following four expressions (corresponding to the
four combinations of signs for the coefficients a0 and a1 ):

A(ξ ) =
m
2s

+
1
4s

[ D1− m2

s exp(−2mξ )
D2 +D1ξ + m

2sexp(−2mξ )

]
,

A(ξ ) =
m
2s

− 1
4s

[ D1 + m2

s exp(2mξ )
D2 +D1ξ + m

2sexp(2mξ )

]
,

A(ξ ) = −m
2s

+
1
4s

[ D1− m2

s exp(2mξ )
D2 +D1ξ − m

2sexp(2mξ )

]
,

A(ξ ) = −m
2s

− 1
4s

[ D1 + m2

s exp(−2mξ )
D2 +D1ξ − m

2sexp(−2mξ )

]
.

(6.9)

A.III. Third Method. Using the transformation

A(ξ ) =
1

w2(ξ )
(6.10)

equation (6.1) transforms into the Ermakov equation

w′′(ξ )−m2w(ξ ) = −4s2w−3(ξ ). (6.11)

The solution of Ermakov’s equation is given by

w(ξ )2 =
(2mC2±C1e2mξ )2 −16m2s2

4m2C1
×e−2mξ .

We thus obtain, using the above expression and (6.10), that A(ξ ) is given by

A(ξ ) =
4m2C1·e2mξ

(2mC2±C1e2mξ )2−16m2s2
. (6.12)
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The above expression can also be written in terms of tanh(mξ ) as

A(ξ ) =
4m2C1[1− tanh2(mξ )]

[(2mC2±C1)− (2mC2∓C1)tanh(mξ )]2−16m2s2[1− tanh(mξ )]2
.

A.IV. Fourth Method. In this case we use the projective Riccati equation method.
We consider the expansion

A(ξ ) = a0 +a1 f (ξ )+b1g(ξ ), (6.13)

where the functions f (ξ ) and g(ξ ) satisfy the system

f ′(ξ ) = p f (ξ )g(ξ ), (6.14)

g′(ξ ) = q+ pg2(ξ )− r f (ξ ), (6.15)

g2(ξ ) = − 1
p

[
q−2r f (ξ )+

r2 + δ
q

f 2(ξ )
]
. (6.16)

The system of equations (6.14) and (6.15) admit five families of solutions depending
on the values of the parameters δ , p , q and r .

(I) If δ = λ 2 − μ2 and pq < 0 then

f (ξ ) =
q

r+ λ ·sinh
√−pqξ + μ ·cosh

√−pqξ
, (6.17)

g(ξ ) =
√−pq

p
· λ ·cosh

√
−pqξ + μ ·sinh

√
−pqξ

r+ λ ·sinh
√
−pqξ + μ ·cosh

√
−pqξ

(6.18)

with

g2(ξ ) = − 1
p

[
q−2r f (ξ )+

r2 + λ 2− μ2

q
f 2(ξ )

]
. (6.19)

(II) If If δ = −λ 2− μ2 and pq > 0 then

f (ξ ) =
q

r+ λ ·sin
√

pqξ + μ ·cos
√

pqξ
, (6.20)

g(ξ ) =
√

pq

p
· λ ·cos

√
pqξ + μ ·sin

√
pqξ

r+ λ ·sin
√

pqξ + μ ·cos
√

pqξ
(6.21)

with

g2(ξ ) = − 1
p

[
q−2r f (ξ )+

r2−λ 2− μ2

q
f 2(ξ )

]
. (6.22)

(III) If q = 0, then

f (ξ ) =
1

pr
2 ξ 2 + σξ + ζ

, (6.23)

g(ξ ) = − 1
p
· prξ + σ

pr
2 ξ 2 + σξ + ζ

(6.24)
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with

g2(ξ ) =
2r
p

f (ξ )+
[σ2

p2 − 2rζ
p

]
f 2(ξ ), (6.25)

where σ and ζ are free parameters.

(IV) If p = ±1 and δ = −r2 then

f (ξ ) =
q
6r

+
2
pr

ψ(ξ ), (6.26)

g(ξ ) =
12ψ ′(ξ )

q+12ψ ′(ξ )
, (6.27)

where ψ(ξ ) satisfies the Weierstrass equation

(ψ ′(ξ ))2 = 4ψ3(ξ )− q2

12
ψ(ξ )− pq3

216
(6.28)

with solution ψ(ξ ) =℘(ξ ) .
The relation between f and g is given by

g2(ξ ) =
2r
p

f (ξ )− p
q
. (6.29)

(V) If p = ±1 and δ = − r2
25 then

f (ξ ) =
5q
6r

+
5pq2

72ψ(ξ )
, (6.30)

g(ξ ) = − qψ ′(ξ )
[pq+12ψ(ξ )]ψ(ξ )

(6.31)

with ψ(ξ ) =℘(ξ ) and

g2(ξ ) = − 1
p

(
q−2r f (ξ )+

24r2

25q
f 2(ξ )

)
. (6.32)

Upon substituting (6.13) into (6.1) and equating to zero the coefficients of f i (i =
0,1,2,3,4) , g and f ig (i = 1,2,3) , we find eight solutions, where to every solution
correspond two or three sub-families of solutions.

Family I. This family corresponds to the Solution I

a0 = ± m
4s2 , a1 =

ρb1

2m
, b1 = b1, p = 8s2b1, q = − m2

2s2b1
,

where ρ is any root of the equation ρ2 = δ +r2 . From (6.13) and Solution I, we obtain

A(ξ ) = ± m
4s2 +

ρb1

2m
f (ξ )+b1g(ξ ) (6.33)
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with p = 8s2b1 , q = − m2

2s2b1
with ρ satisfying the equation ρ2 = δ + r2 .

Sub-family Ia. Since pq = −4m2 < 0, we consider the choice δ = λ 2−μ2 . The
functions f (ξ ) and g(ξ ) in (6.33) are given by (6.17) and (6.18) respectively:

f (ξ ) = − m2

2s2b1
· 1
U(ξ )

and g(ξ ) = − m2

2s2b1
· 2

√
ξU ′(ξ )

U(ξ )
,

where
U(ξ ) = r+ λ ·sinh(2|m|

√
ξ )+ μ ·cosh(2|m|

√
ξ ). (6.34)

We thus obtain

A(ξ ) = ± m
4s2 −

1
4s2 · ρm−√

ξ ·U ′(ξ )
U(ξ )

, (6.35)

where ρ is any root of the equation ρ2 = λ 2− μ2 + r2 .

Sub-family Ib. If p = ±1 and δ = −r2 , we have ρ = 0 and then a1 = 0. In this
case we have A(ξ ) = ± m

4s2
+b1g(ξ ) , where g(ξ ) is given by (6.27).

(Ib.a) For p = 1, we have b1 = 1
8s2

and q = −4m2 . Therefore

g(ξ ) =
12℘′(ξ )

12℘′(ξ )−4m2

and thus

A(ξ ) = ± m
4s2 +

3
2s2 ·

℘′(ξ )
12℘′(ξ )−4m2 , (6.36)

where ℘(ξ ) is the Weierstrass function, satisfying the equation

(℘(ξ ))2 = 4℘3(ξ )− 4m4

3
℘(ξ )+

8m6

27
(6.37)

(Ib.b) For p = −1, we have b1 = − 1
8s2

and q = 4m2 . Therefore

g(ξ ) =
12℘′(ξ )

12℘′(ξ )+4m2

and thus

A(ξ ) = ± m
4s2 −

3
2s2 ·

℘′(ξ )
12℘′(ξ )+4m2 . (6.38)

Sub-family Ic. If p = ±1 and δ =− r2
25 , ρ satisfies the equation ρ2 = 24r2

25 while
f (ξ ) and g(ξ ) are given by (6.30) and (6.31) respectively.

(Ic.a) For p = 1, we have a1 = ρ
2m · 1

8s2
, b1 = 1

8s2
and q = −4m2 . Therefore

f (ξ ) = −10m2

3r
+

10m4

9℘(ξ )
and g(ξ ) =

4m2℘′(ξ )
[12℘(ξ )−4m2]℘(ξ )

.
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We thus have the following expression for A(ξ ) :

A(ξ ) = ± m
4s2 +

5ρm
24s2

( m2

3℘(ξ )
− 1

r

)
+

m2

2s2 ·
℘′(ξ )

℘(ξ )[12℘(ξ )−4m2]
, (6.39)

where ℘(ξ ) is the Weierstrass function, satisfying the equation

(℘′(ξ ))2 = 4℘3(ξ )− 4m4

3
℘(ξ )+

8m6

27
. (6.40)

(Ic.b) For p = −1, we have a1 = − ρ
2m · 1

8s2
, b1 = − 1

8s2
and q = 4m2 . Therefore

f (ξ ) =
10m2

3r
− 10m4

9℘(ξ )
and g(ξ ) = − 4m2℘′(ξ )

[12℘(ξ )−4m2]℘(ξ )
.

We thus have the following expression for A(ξ ) :

A(ξ ) = ± m
4s2 +

5ρm
24s2

( m2

3℘(ξ )
− 1

r

)
+

m2

2s2 ·
℘′(ξ )

℘(ξ )[12℘(ξ )−4m2]
. (6.41)

Note. If δ = −λ 2 − μ2 and pq > 0 leads to m2 < 0. The case q = 0 cannot
be considered either, since it leads to m = 0 and then the coefficient of f (ξ ) in (6.33)
becomes infinite.

Family II. This family corresponds to the Solution II,

a0 = ± m
4s2 , a1 =

ρb1

2m
, b1 = b1, p = −8s2b1, q = − m2

2s2b1
,

where ρ is any root of the equation ρ2 = δ + r2 . From (6.13) and Solution II, we
obtain

A(ξ ) = ± m
4s2 +

ρb1

2m
f (ξ )+b1g(ξ ) (6.42)

with p = −8s2b1 , q = − m2

2s2b1
and ρ satisfies the equation ρ2 = δ + r2 .

Sub-family IIa. Since pq = 4m2 > 0, we first consider the case δ = −λ 2− μ2 .
The functions f (ξ ) and g(ξ ) are given by (6.20) and (6.21) respectively:

f (ξ ) = − m2

2s2b1
· 1
V (ξ )

and g(ξ ) = − 2|m|
4s2b1

· Z(ξ )
V (ξ )

,

where
Z(ξ ) = λ ·cos(2|m|

√
ξ )+ μ ·sin(2|m|

√
ξ ), (6.43)

V (ξ ) = r+ λ ·sin(2|m|
√

ξ )+ μ ·cos(2|m|
√

ξ ). (6.44)

We thus obtain

A(ξ ) = ± m
4s2 −

1
4s2 · ρm+ |m|Z(ξ )

V (ξ )
, (6.45)
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where ρ is any root of the equation ρ2 = r2 −λ 2− μ2 .

Sub-family IIb. If p =±1 and δ =−r2 then ρ = 0 and thus a1 = 0. In this case
we have A(ξ ) = ± m

4s2
+b1g(ξ ) , where g(ξ ) is given by (6.27).

(IIb.a) For p = 1, we have b1 = − 1
8s2

and q = 4m2 . Therefore

g(ξ ) =
12℘′(ξ )

12℘′(ξ )+4m2

and thus

A(ξ ) = ± m
4s2 −

3
2s2 ·

℘′(ξ )
12℘′(ξ )+4m2 , (6.46)

where ℘(ξ ) is the Weierstrass function, satisfying the equation

(℘′(ξ ))2 = 4℘3(ξ )− 4m4

3
℘(ξ )− 8m6

27
. (6.47)

(IIb.b) For p = −1, we have b1 = 1
8s2

and q = −4m2 . Therefore

g(ξ ) =
12℘′(ξ )

12℘′(ξ )−4m2

and thus

A(ξ ) = ± m
4s2 +

3
2s2 ·

℘′(ξ )
12℘′(ξ )−4m2 . (6.48)

Sub-family IIc. If p =±1 and δ = − r2
25 then ρ satisfies the equation ρ2 = 24r2

25 .
The functions f (ξ ) and g(ξ ) are given by (6.30) and (6.31) respectively.

(IIc.a) For p = 1, we have we have b1 = − 1
8s2

, a1 = − ρ
2m · 1

8s2
and q = 4m2 . We

then have the following expressions for f (ξ ) and g(ξ ) ,

f (ξ ) =
10m2

3r
+

10m4

9℘(ξ )
and g(ξ ) = − 4m2℘′(ξ )

[4m2 +12℘(ξ )]℘(ξ )
.

Therefore

A(ξ ) = ± m
4s2 −

5ρm
24s2

[1
r

+
m2

3℘(ξ )

]
+

m2

2s2 · ℘′(ξ )
℘(ξ )[4m2 +12℘(ξ )]

, (6.49)

where ℘(ξ ) is the Weierstrass function, satisfying the equation

(℘′(ξ ))2 = 4℘3(ξ )− 4m4

3
℘(ξ )− 8m6

27
. (6.50)

(IIc.b) For p = −1, we have we have b1 = 1
8s2

, a1 = ρ
2m · 1

8s2
and q = −4m2 . We

then have the following expressions for f (ξ ) and g(ξ )

f (ξ ) = −10m2

3r
− 10m4

9℘(ξ )
and g(ξ ) =

4m2℘′(ξ )
[4m2 +12℘(ξ )]℘(ξ )

.
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Therefore

A(ξ ) = ± m
4s2 −

5ρm
24s2

[1
r

+
m2

3℘(ξ )

]
+

m2

2s2 · ℘′(ξ )
℘(ξ )[4m2 +12℘(ξ )]

. (6.51)

Note. If δ = λ 2 − μ2 and pq < 0 leads to m2 < 0. The case q = 0 cannot be
considered either, since it leads to m = 0 and then the coefficient of f (ξ ) in (6.42)
becomes infinite.

Family III. This family corresponds to the Solution III

a0 = ± m
4s2 , a1 = a1, b1 = b1, δ =

4m2a2
1− r2b2

1

b2
1

, p = 8s2b1, q = − m2

2s2b1
.

From (6.13) and Solution III, we obtain

A(ξ ) = ± m
4s2 +a1 f (ξ )+b1g(ξ ), (6.52)

where δ = 4m2a2
1−r2b2

1
b2
1

, p = 8s2b1 , q = − m2

2s2b1
.

Sub-family IIIa. Since pq = −4m2 < 0 for δ = λ 2− μ2 , i.e.

λ 2− μ2 =
4m2a2

1− r2b2
1

b2
1

,

the functions f (ξ ) and g(ξ ) are given by (6.17) and (6.18) respectively:

f (ξ ) = − m2

2b1s2 · 1
U(ξ )

, g(ξ ) =
1

4s2 ·
√

ξU ′(ξ )
U(ξ )

,

where
U(ξ ) = r+ λ ·sinh(2|m|

√
ξ )+ μ ·cosh(2|m|

√
ξ ). (6.53)

Therefore

A(ξ ) = ± m
4s2 −

2m2a1

4b1s2 · 1
U(ξ )

+
1

4s2 ·
√

ξU ′(ξ )
U(ξ )

, (6.54)

where the following relation holds 4m2a2
1 = (λ 2− μ2 + r2)b2

1 .

Sub-family IIIb. If p = ±1 and δ = −r2 , i.e. −r2 = 4m2a2
1−r2b2

1
b2
1

, then a1 = 0

and g(ξ ) is given by (6.27).

(IIIb.a) If p = 1, then b1 = 1
8s2

, q = −4m2 and g(ξ ) = 12℘′(ξ )
12℘′(ξ )−4m2 . Therefore

A(ξ ) = ± m
4s2 +

3
8s2 ·

℘′(ξ )
12℘′(ξ )−4m2 , (6.55)
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where ℘(ξ ) is the Weierstrass function, satisfying the equation

(℘′(ξ ))2 = 4℘3(ξ )− 4m4

3
℘(ξ )+

8m6

27
(6.56)

(IIIb.b) If p = −1, then b1 = − 1
8s2

, q = 4m2 and g(ξ ) = 12℘′(ξ )
12℘′(ξ )+4m2 . Therefore

A(ξ ) = ± m
4s2 −

3
8s2 ·

℘′(ξ )
3℘′(ξ )+m2 (6.57)

Sub-family IIIc. If p = ±1 and δ = − r2
25 , i.e. − r2

25 = 4m2a2
1−r2b2

1
b2
1

then f (ξ ) and g(ξ )
are given by (6.30) and (6.31) respectively.

(IIIc.a) For p = 1, we have b1 = 1
8s2

and q = −4m2 and thus

f (ξ ) = −10m2

3r
+

10m4

9℘(ξ )
and g(ξ ) =

4m2℘′(ξ )
[12℘(ξ )−4m2]℘(ξ )

.

Therefore

A(ξ ) = ± m
4s2 +

10a1m2

3

(
−1

r
+

m2

3℘(ξ )

)
+

m2

8s2 ·
℘′(ξ )

℘(ξ )[3℘(ξ )−m2]
, (6.58)

where ℘(ξ ) is the Weierstrass function, satisfying the equation

(℘′(ξ ))2 = 4℘3(ξ )− 4m4

3
℘(ξ )+

8m6

27
(6.59)

with 100m2a2
1 = 24r2b2

1 .

(IIIc.b) For p = −1, we have b1 = − 1
8s2

and q = 4m2 and thus

f (ξ ) =
10m2

3r
− 10m4

9℘(ξ )
and g(ξ ) = − 4m2℘′(ξ )

[12℘(ξ )+4m2]℘(ξ )
.

Therefore

A(ξ ) = ± m
4s2 +

10a1m2

3

(1
r
− m2

3℘(ξ )

)
+

m2

8s2 · ℘′(ξ )
℘(ξ )[3℘(ξ )+m2]

. (6.60)

Note. If δ = −λ 2 − μ2 and pq > 0 leads to m2 < 0. The choice q = 0 leads to
m = 0.

Family IV. This family corresponds to the Solution IV,

a0 = ± m
4s2 , a1 = a1, b1 = b1, δ =

4m2a2
1− r2b2

1

b2
1

, p = −8s2b1, q =
m2

2s2b1
.
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From (6.13) and Solution IV, we obtain

A(ξ ) = ± m
4s2 +a1 f (ξ )+b1g(ξ ), (6.61)

where δ = 4m2a2
1−r2b2

1
b2
1

, p = −8s2b1 , q = m2

2s2b1
.

Sub-family IVa. Since pq = −4m2 < 0 for δ = λ 2− μ2 , i.e.

λ 2− μ2 =
4m2a2

1− r2b2
1

b2
1

,

then f (ξ ) and g(ξ ) are given by (6.17) and (6.18) respectively:

f (ξ ) =
m2

2s2b1
· 1
U(ξ )

, g(ξ ) = − 1
4s2 ·

√
ξU ′(ξ )
U(ξ )

,

where
U(ξ ) = r+ λ ·sinh(2|m|

√
ξ )+ μ ·cosh(2|m|

√
ξ ). (6.62)

Therefore

A(ξ ) = ± m
4s2 +

m2a1

2s2b1
· 1
U(ξ )

− 1
4s2 ·

√
ξU ′(ξ )
U(ξ )

(6.63)

with 4m2a2
1 = (λ 2− μ2 + r2)b2

1 .

Sub-family IVb. If p =±1 and δ =−r2 , i.e. −r2 = 4m2a2
1−r2b2

1
b2
1

, we have a1 = 0.

(IVb.a) For p = 1, we have b1 = − 1
8s2

, q = −4m2 and thus from (6.27) we get

g(ξ ) = 12℘′(ξ )
12℘′(ξ )−4m2 and then

A(ξ ) = ± m
4s2 −

3
8s2 ·

℘′(ξ )
3℘′(ξ )−m2 , (6.64)

where ℘(ξ ) is the Weierstrass function, satisfying the equation

(℘′(ξ ))2 = 4℘3(ξ )− 4m4

3
℘(ξ )+

8m6

27
. (6.65)

(IVb.b) For p = −1, we have b1 = 1
8s2

, q = 4m2 and thus form (6.27) we get

g(ξ ) = 12℘′(ξ )
12℘′(ξ )+4m2 and then

A(ξ ) = ± m
4s2 +

3
8s2 ·

℘′(ξ )
3℘′(ξ )+m2 . (6.66)

Sub-family IVc. If p = ±1 and δ = − r2
25 , i.e. − r2

25 = 4m2a2
1−r2b2

1
b2
1

then f (ξ ) and

g(ξ ) are given by (6.30) and (6.31) respectively.
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(IVc.a) For p = 1, we have b1 = − 1
8s2

, q = −4m2 and then

f (ξ ) = −10m2

3r
+

10m4

9℘(ξ )
and g(ξ ) =

4m2℘′(ξ )
[12℘(ξ )−4m2]℘(ξ )

.

Therefore

A(ξ ) = ± m
4s2 +

10a1m2

3

(
−1

r
+

m2

3℘(ξ )

)
− m2

8s2 ·
℘′(ξ )

℘(ξ )[3℘(ξ )−m2]
, (6.67)

where ℘(ξ ) is the Weierstrass function, satisfying the equation

(℘′(ξ ))2 = 4℘3(ξ )− 4m4

3
℘(ξ )+

8m6

27
(6.68)

with a2
1 = 3r2

800m2s4
. This last equation comes from equating the two different expressions

of δ and using the value of b1 .

(IVc.b) For p = −1, we have b1 = 1
8s2

, q = 4m2 and then

f (ξ ) =
10m2

3r
− 10m4

9℘(ξ )
and g(ξ ) = − 4m2℘′(ξ )

[12℘(ξ )+4m2]℘(ξ )
.

Therefore

A(ξ ) = ± m
4s2 +

10a1m2

3

(1
r
− m2

3℘(ξ )

)
− m2

8s2 · ℘′(ξ )
℘(ξ )[3℘(ξ )+m2]

. (6.69)

Note. The case δ = −λ 2 − μ2 and pq > 0 leads to m2 < 0. The choice q = 0
leads to m = 0.

Family V. This family corresponds to the Solution V

a0 = ± m
4s2 ,a1 = 0,b1 = b1, p = 4s2b1,q = − m2

4s2b1
.

From (6.13)and Solution V, we obtain

A(ξ ) = ± m
4s2 +b1g(ξ ), (6.70)

where p = 4s2b1 , q = − m2

4s2b1
.

Sub-family Va. Since pq = −4m2 < 0, the choice δ = λ 2 − μ2 , the function
g(ξ ) is given by (6.18):

g(ξ ) =
m

4s2b1
· 2

√
ξ ·X ′ξ )

X(ξ )
,

where
X(ξ ) = r+ λ ·sinh(|m|

√
ξ )+ μ ·cosh(|m|

√
ξ ). (6.71)
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Therefore

A(ξ ) = ± m
4s2 +

m
2s2 ·

√
ξX ′(ξ )
X(ξ )

. (6.72)

Sub-family Vb. If p = ±1 and δ = −r2 , then g(ξ ) is given by (6.27).

(Vb.a) For p = 1, we have b1 = 1
4s2

, q = −m2 and then

g(ξ ) =
12℘′(ξ )

12℘′(ξ )−m2 .

Therefore

A(ξ ) = ± m
4s2 +

3
s2 ·

℘′(ξ )
12℘′(ξ )−m2 , (6.73)

where ℘(ξ ) is the Weierstrass function, satisfying the equation

(℘′(ξ ))2 = 4℘3(ξ )− m4

12
℘(ξ )+

m6

216
. (6.74)

(Vb.b) For p = −1, we have b1 = − 1
4s2

, q = m2 and then

g(ξ ) =
12℘′(ξ )

12℘′(ξ )+m2 .

Therefore

A(ξ ) = ± m
4s2 −

3
s2 ·

℘′(ξ )
12℘′(ξ )−m2 . (6.75)

Sub-family Vc. If p = ±1 and δ = − r2
25 then g(ξ ) is given by (6.31).

(Vc.a) For p = 1, we get b1 = 1
4s2

, q = −m2 and then

g(ξ ) =
m2℘′(ξ )

℘(ξ )[12℘′(ξ )−m2]
.

Therefore

A(ξ ) = ± m
4s2 +

m2

4s2 ·
℘′(ξ )

℘(ξ )[12℘(ξ )−m2]
. (6.76)

(Vc.b) For p = −1, we get b1 = − 1
4s2

, q = m2 and then

g(ξ ) =
m2℘′(ξ )

℘(ξ )[12℘(ξ )+m2]
.

Therefore

A(ξ ) = ± m
4s2 +

m2

4s2 ·
℘′(ξ )

℘(ξ )[12℘(ξ )+m2]
. (6.77)

Note. The case δ =−λ 2−μ2 and pq > 0 leads to m2 < 0. The case q = 0 leads
to m = 0.
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Family VI. This family corresponds to Solution VI

a0 = ± m
4s2 ,a1 = 0,b1 = b1, p = 8s2b1,q = − m2

2s2b1

and r is any root of r2 + δ = 0. From (6.13)and Solution VI, we obtain

A(ξ ) = ± m
4s2 +b1g(ξ ), (6.78)

where p = 8s2b1 , q = − m2

2s2b1
and r is any root of r2 + δ = 0.

Sub-family VIa. Since pq = −4m2 < 0, the choice δ = λ 2− μ2 , i.e. r2 + λ 2 −
μ2 = 0 and g(ξ ) is given by (6.18): g(ξ ) = 1

4s2b1
·
√

ξ ·U ′(ξ )
U(ξ ) , where

U(ξ ) = r+ λ ·sinh(2|m|
√

ξ )+ μ ·cosh(2|m|
√

ξ ). (6.79)

Therefore

A(ξ ) = ± m
4s2 +

m
4s2 ·

√
ξU ′(ξ )
U(ξ )

, (6.80)

where r satisfies the equation r2 + λ 2− μ2 = 0.

Sub-family VIb. If p = ±1 and δ = −r2 (i.e. r is any real) then g(ξ ) is given
by (6.27).

(VIb.a) For p = 1, we get b1 = 1
8s2

, q = −4m2 and thus g(ξ ) = 12℘′(ξ )
12℘′(ξ )−4m2 .

Therefore

A(ξ ) = ± m
4s2 +

3
8s2 ·

℘′(ξ )
3℘′(ξ )−m2 , (6.81)

where ℘(ξ ) is the Weierstrass function, satisfying the equation

(℘′(ξ ))2 = 4℘3(ξ )− 4m4

3
℘(ξ )+

8m6

27
. (6.82)

(VIb.b) For p = −1, we get b1 = − 1
8s2

, q = 4m2 and thus g(ξ ) = 12℘′(ξ )
12℘′(ξ )+4m2 .

Therefore

A(ξ ) = ± m
4s2 −

3
8s2 ·

℘′(ξ )
3℘′(ξ )+m2 . (6.83)

Sub-family VIc. If p = ±1 and δ = − r2
25 , i.e. r2− r2

25 = 0 then g(ξ ) is given by
(6.31).

(VIc.a) For p = 1, we get b1 = 1
8s2

, q = −4m2 and then

g(ξ ) =
4m2℘′(ξ )

℘(ξ )[12℘′(ξ )−4m2]
.
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Therefore

A(ξ ) = ± m
4s2 +

m2

8s2 ·
℘′(ξ )

℘(ξ )[3℘(ξ )−m2]
. (6.84)

(VIc.b) For p = −1, we get b1 = − 1
8s2

, q = 4m2 and then

g(ξ ) = − 4m2℘′(ξ )
℘(ξ )[12℘(ξ )+4m2]

.

Therefore

A(ξ ) = ± m
4s2 +

m2

8s2 ·
℘′(ξ )

℘(ξ )[3℘(ξ )+m2]
. (6.85)

Note. The case δ =−λ 2−μ2 and pq > 0 leads to m2 < 0. The case q = 0 leads
to m = 0.

Family VII. This family corresponds to the Solution VII

a0 = ± m
4s2 ,a1 = 0,b1 = b1, p = −8s2b1,q =

m2

2s2b1

and r is any root of r2 + δ = 0. From (6.13)and Solution VII, we obtain

A(ξ ) = ± m
4s2 +b1g(ξ ), (6.86)

where p = −8s2b1 , q = m2

4s2b1
and r is any root of r2 + δ = 0.

Sub-family VIIa. Since pq = −4m2 < 0, the choice δ = λ 2−μ2 , i.e. r2 +λ 2−
μ2 = 0, then g(ξ ) is given by (6.18):

g(ξ ) = − 1
4s2b1

·
√

ξ ·U ′(ξ )
U(ξ )

,

where
U(ξ ) = r+ λ ·sinh(2|m|

√
ξ )+ μ ·cosh(2|m|

√
ξ ).

Therefore

A(ξ ) = ± m
4s2 −

1
4s2 ·

√
ξU ′(ξ )
U(ξ )

, (6.87)

where r satisfies the equation r2 + λ 2− μ2 = 0.

Sub-family VIIb. If p = ±1 and δ = −r2 (i.e. r is any real) then g(ξ ) is given
by (6.27).

(VIIb.a) For p = 1, we have b1 = − 1
8s2

, q = −4m2 and thus g(ξ ) = 12℘′(ξ )
12℘′(ξ )−4m2 .

Therefore

A(ξ ) = ± m
4s2 −

3
8s2 ·

℘′(ξ )
3℘′(ξ )−m2 , (6.88)
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where ℘(ξ ) is the Weierstrass function, satisfying the equation

(℘′(ξ ))2 = 4℘3(ξ )− 4m4

3
℘(ξ )+

8m6

27
. (6.89)

(VIIb.b) For p = −1, we have b1 = 1
8s2

, q = 4m2 and thus g(ξ ) = 12℘′(ξ )
12℘′(ξ )+4m2 .

Therefore

A(ξ ) = ± m
4s2 +

3
8s2 ·

℘′(ξ )
3℘′(ξ )+m2 . (6.90)

Sub-family VIIc. If p = ±1 and δ = − r2
25 , i.e. r2 − r2

25 = 0 then g(ξ ) is given
by (6.31).

(VIIc.a) For p = 1, we get b1 = − 1
8s2

, q = −4m2 and then

g(ξ ) =
4m2℘′(ξ )

℘(ξ )[12℘(ξ )−4m2]
.

Therefore

A(ξ ) = ± m
4s2 −

m2

8s2 ·
℘′(ξ )

℘(ξ )[3℘(ξ )−m2]
. (6.91)

(VIIc.b) For p = −1, we get b1 = 1
8s2

, q = 4m2 and then

g(ξ ) = − 4m2℘′(ξ )
℘(ξ )[12℘(ξ )+4m2]

.

Therefore

A(ξ ) = ± m
4s2 −

m2

8s2 ·
℘′(ξ )

℘(ξ )[3℘(ξ )+m2]
. (6.92)

Note. The case δ =−λ 2−μ2 and pq > 0 leads to m2 < 0. The case q = 0 leads
to m = 0.

Family VIII. This family corresponds to the Solution VIII

a0 = 0,a1 =
ρ p

8s2m
,b1 = 0, p = p,q = −4m2

p

and ρ is any root of ρ2 = δ + r2 . From (6.13) and Solution VIII, we obtain

A(ξ ) =
ρ p

8s2m
f (ξ ), (6.93)

where p = p , q = − 4m2

p and ρ is any root of the equation ρ2 = δ + r2 .

Sub-family VIIIa. Since pq = −4m2 < 0, the choice δ = λ 2 − μ2 , i.e. ρ2 =
λ 2− μ2 + r2 , then f (ξ ) is given by (6.17): f (ξ ) = − 4m2

p · 1
U(ξ ) , where

U(ξ ) = r+ λ ·sinh(2|m|
√

ξ )+ μ ·cosh(2|m|
√

ξ ). (6.94)



Differ. Equ. Appl. 7, No. 1 (2015), 93–132. 125

Therefore

A(ξ ) = −ρm
2s2 · 1

U(ξ )
, (6.95)

where ρ satisfies the equation ρ2 = λ 2− μ2 + r2 .

Sub-family VIIIb. If p = ±1 and δ = − r2
25 , leads to ρ2 = 24

25 r2 and then f (ξ )
is given by (6.30).

(VIIIb.a) For p = 1, we have q = −4m2 and thus

f (ξ ) = −10m2

3r
+

10m4

9℘(ξ )
,

where ℘(ξ ) is the Weierstrass function, satisfying the equation

(℘′(ξ ))2 = 4℘3(ξ )− 4m4

3
℘(ξ )+

8m6

27
. (6.96)

Therefore

A(ξ ) =
5ρm
12s2

(
−1

r
+

m2

3℘(ξ )

)
(6.97)

and ρ is any root of the equation ρ2 = 24r2
25 .

(VIIIb.b) For p = −1, we have q = 4m2 and thus

f (ξ ) =
10m2

3r
− 10m4

9℘(ξ )
.

Therefore

A(ξ ) = −5ρm
12s2

(1
r
− m2

3℘(ξ )

)
. (6.98)

Note. The case δ =−λ 2−μ2 and pq > 0 leads to m2 < 0. The case q = 0 leads
to m = 0. The case δ = −r2 cannot be considered since in this case ρ = 0 and then
a1 = 0 (i.e. A(ξ ) = 0).

A.V. Fifth Method. We consider now an expression for A(ξ ) of the form

A(ξ ) =
a1emξ +a0 +b1e−mξ

c1emξ + c0 +d1e−mξ (6.99)

and substitute back into (6.1). We then derive the following set of solutions:

A(ξ ) =
emξ

C1emξ +C2e−mξ , (6.100)

A(ξ ) =
me−mξ

mC1emξ −2se−mξ , (6.101)
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A(ξ ) =
me−mξ

mC1emξ +2se−mξ , (6.102)

A(ξ ) =
m2C1emξ +2msC2e−mξ +2ms

2msC1emξ +4s2C2e−mξ +4s2
. (6.103)

A.VI. Sixth Method. We consider an expansion of the form

A(ξ ) = a0 +a1ϕ(ξ ), (6.104)

where ϕ(ξ ) satisfies Jacobi’s differential equation

d
dξ

ϕ(ξ ) =
√

n0 +n1ϕ +n2ϕ2 +n3ϕ3 +n4ϕ4. (6.105)

Upon substituting (6.104) into (6.1), taking into account (6.105) and equating to zero
the coefficients of the different powers of ϕ to zero, we find eleven solutions. For the
first three solutions, we use the following Lemma:

LEMMA. If (6.105) is expressed as

d
dξ

ϕ(ξ ) = r(ϕ +n)
√

(ϕ − p+q
√

D)(ϕ − p−q
√

D), (6.106)

then its solution is given by

ϕ = −ne−2rKξ +4(q2D− pn− p2)e−rKξ +4nq2D

e−2rKξ +4(n+ p)e−rKξ +4q2D
, (6.107)

where

K =
√

(n+ p)2−q2D. (6.108)

For the Solution 1, we have

n0 +n1ϕ +n2ϕ2 +n3ϕ3 +n4ϕ4 = 16s2a2
1

(
ϕ +

a0

a1

)2×
(

ϕ − 32a0a1s2−n3

32s2a2
1

+
√

D

32s2a2
1

)(
ϕ − 32a0a1s2 −n3

32s2a2
1

−
√

D

32s2a2
1

)
,

where
D = (64a0a1s

2−n3)2− (16msa1)2.

Equation (6.105) then gives by integration the relation (6.107), where

p =
32a0a1s2−n3

32s2a2
1

and q =
1

32s2a2
1

. (6.109)

For the Solution 2, we have

n0 +n1ϕ +n2ϕ2 +n3ϕ3 +n4ϕ4
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=
144s2a2

0n
2
3

(96s2a2
0−4m2 +n2)2

×
(

ϕ +
96s2a2

0−4m2 +n2

3n3

)2

×
(

ϕ − (96s2a2
0−4m2 +n2)(4m2−n2)

288s2a2
0n3

+
(96s2a2

0−4m2 +n2)
√

D

288s2a2
0n3

)

×
(

ϕ − (96s2a2
0−4m2 +n2)(4m2−n2)

288s2a2
0n3

− (96s2a2
0−4m2 +n2)

√
D

288s2a2
0n3

)
,

where
D = (96s2a2

0 +4m2−n2)2 − (48msa0)2

(6.105) then gives by integration the relation (6.107), where

p =
(96s2a2

0−4m2 +n2)(4m2−n2)
288s2a2

0n3
, q =

96s2a2
0−4m2 +n2

288s2a2
0n3

. (6.110)

For the Solution 3, we have

n0 +n1ϕ +n2ϕ2 +n3ϕ3 +n4ϕ4

=
16s2a2

0(32s2a2
0−4m2−n2)2

n2
1

×
(

ϕ +
n1

4m2 +n2−32s2a2
0

)2

×
(

ϕ − n1(n2−4m2)
96s2a2

0(32s2a2
0−4m2−n2)

+
n1
√

D

96s2a2
0(32s2a2

0−4m2−n2

)

×
(

ϕ − n1(n2−4m2)
96s2a2

0(32s2a2
0−4m2−n2)

− n1
√

D

96s2a2
0(32s2a2

0−4m2−n2

)
,

where
D = (96s2a2

0 +4m2−n2)2− (48msa0)2.

Then (6.105) gives by integration the relation (6.107), where

p =
n1(n2−4m2)

96s2a2
0(32s2a2

0−4m2−n2)
, q =

n1

96s2a2
0(32s2a2

0−4m2−n2)
. (6.111)

The other eight solutions are not considered here, since they lead to very complicated
expressions. They will be published elsewhere in electronic form.

A.VII. Seventh Method. We substitute

A(ξ ) = a0 +a1

(G′

G

)
, (6.112)
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where a0 and a1 are ξ− dependent quantities, a0 = a0(ξ ) and a1 = a1(ξ ) , while
G = G(ξ ) . Upon substituting (6.112) into (6.101) and equating to zero the coefficients
of the different powers of G , we obtain a system of ordinary differential equations,
from which we find a1 = ± 1

s and that a0(ξ ) satisfies the equation

a0a
′′
0 −

3
2
(a′0)

2 +2m2a2
0−8s2a4

0 = 0. (6.113)

We also find that the ratio G′′′/G′′ is given by

G′′′

G′′ = F(m,s), (6.114)

where

F(m,s) =
3
(

a′0
a0

)2−9
(

a′0
a1

)
−4m2 +32s2a2

0± a′0
a0a1

√
D(

a′0
a0
−3 a0

a1

)
±

√
D

3a1

(6.115)

with

D =
9

16s2

(a′0
a0

)2
+75a2

0−36a1a
′
0−

3m2

4s2 . (6.116)

Equation (6.113) is essentially equation (6.1) and admits all the solutions equation (6.1)
admits. When a solution is substituted in (6.115), we can integrate in principle equation
(6.114). We then can evaluate the function G(ξ ) and then the ratio G′/G . The function
A(ξ ) is determined from (6.112).
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