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Abstract. In this paper,we study the boundary behavior of solutions to boundary blow-up elliptic
problems ⎧⎪⎨

⎪⎩
div(|∇u|m−2∇u)±|∇u(x)|q(m−1) = b(x) f (u), x ∈ Ω,

u > 0, x ∈ Ω,

u|∂ Ω = +∞,

where Ω is a bounded domain with smooth boundary in R
N , m > 1 , q > 0 , b ∈Cα (Ω) , which

is positive in Ω and may be vanishing on the boundary and rapidly varying near the boundary,
and f is rapidly varying or normalized regularly varying at infinity.

1. Introduction

In this paper, we plan to investigate the exact asymptotic behavior of solutions near
the boundary for the following problems⎧⎨

⎩
div(|∇u|m−2∇u)±|∇u(x)|q(m−1) = b(x) f (u), x ∈ Ω,
u > 0, x ∈ Ω,
u|∂Ω = +∞,

(P±)

where the last condition means that u(x) → +∞ as d(x) = dist(x,∂Ω) → 0, and the
solution is called “a large solution” or “an explosive solution”, Ω is a bounded domain
with smooth boundary in R

N (N � 2) , q > 0, m > 1. The function b satisfies:
(b1) b ∈Cα(Ω) for some α ∈ (0,1) , is non-negative in Ω ;
(b2) there exists k ∈ Λ such that

0 < b1 := liminf
d(x)→0

b(x)
km(d(x))Km−2(d(x))

� b2 := limsup
d(x)→0

b(x)
km(d(x))Km−2(d(x))

< ∞,

or
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(b3) there exists k ∈ Λ such that

0 < b1q := liminf
d(x)→0

b(x)
kq(m−1)(d(x))

� b2q := limsup
d(x)→0

b(x)
kq(m−1)(d(x))

< ∞,

where Λ denotes the set of all positive non-decreasing functions in C1(0,δ0)(δ0 >
0)which satisfy

lim
t→0+

d
dt

(
K(t)
k(t)

) := Ck ∈ [0,∞), K(t) =
∫ t

0
k(s)ds, (1.1)

and f satisfies:
( f1) f ∈C1[0,+∞), f (0) = 0, f is increasing on [0,+∞) ;
( f2)

∫ ∞
1

dv

f
1

m−1 (v)
< ∞ ;

( f3) there exists Cf > 0 such that

lim
s→+∞

f
1

m−1−1(s) f ′(s)
∫ ∞

s

dv

f
1

m−1 (v)
= Cf .

We note that for each k ∈ Λ , we have Ck ∈ [0,1] and

lim
t→0+

K(t)
k(t)

= 0, lim
t→0+

K(t)k′(t)
k2(t)

= 1− lim
t→0+

d
dt

K(t)
k(t)

= 1−Ck. (1.2)

In fact, from (1.1), we can see d
dt (

K(t)
k(t) ) = Ck + α(t) , where limt→0+ α(t) = 0, so

K(t)
k(t)

=
∫ t

0
Ckdt +

∫ t

0
α(t)dt = Ckt +

∫ t

0
α(t)dt,

since limt→0+ α(t) = 0, so limt→0+
K(t)
k(t) = 0.

For example, k(t) = t p, p > 0 or k(t) = e
√

x/
√

x satisfies (1.1),we can conclude
that they also satisfy (1.2).

The set Λ was first introduced by Cirstea and Rǎdulescu [3,4] in order to study the
boundary behavior of solutions to the problem

Δω = b(x) f (ω), x ∈ Ω, ω |∂Ω = ∞.

Semilinear elliptic problems involving gradient term with boundary blow-up inter-
ested many authors. Namely Bandle and Giarrusso [1] developed existence and asymp-
totic behavior results for large solutions of

Δu+ |∇u(x)|a = f (u),

in a bounded domain. In the case f (u) = p(x)uγ , a > 0, and γ > max(1,a) , Lair and
Wood [7-9] dealt with the above equation in bounded domain and the whole space, they
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proved the existence of entire large solution under the condition
∫ ∞
0 rmax|x|=r p(x)dr <

∞ when the domain is R
N . Ghergu et al.[5] considered more general equation

Δu+q(x)|∇u(x)|a = p(x) f (u),

where 0 � a � 2, p and q are Hölder continuous functions on (0,∞) . We note that the
Keller-Osserman condition on f (see[2,16]) remains the key condition for the existence
for their work. Ghergu and Radulescu [6] considered the following problem{

Δu+ |∇u(x)|= p(x) f (u), in Ω,
u � 0, in Ω,

where Ω is either a smooth bounded domain or the whole space and f is a nonde-
creasing function satisfying f ∈ C0,α

loc (0,∞) , f (0) = 0, f > 0, on (0,∞) , and ∧ =
supx�1

f (x)
x < ∞ . The authors studied the existence and nonexistence of large solutions

under the assumption that∫ ∞

0
r(max

|x|=r
p(x)−min

|x|=r
p(x))Ψ(r)dr < +∞,

where Ψ(r) = exp( Λ
N−2

∫ ∞
0 rmin|x|=r p(x)dr) .

Faten Toumi [19] extended the above result to the following problem⎧⎨
⎩

Δu+ λ (|x|)|∇u(x)|= ϕ(x,u(x)), in R
N ,

u � 0, u �= 0,
lim|x|→+∞ u(x) = +∞,

where λ : [0,∞) → [0,∞) is a continuous function and ϕ : R
N × [0,∞) → [0,∞) is

measurable,continuous with respect to the second variable.
Quasilinear elliptic problems or such problems involving gradient terms with bound-

ary blow-up interested many authors, see [10-12,14,20,21]
As far as the authors know, however, there are less results which contain the exact

asymptotic behaviour of solutions near the boundary to problem (P±) . In this paper,
also applying Karamata regular variation theory (Karamata regular variation theory see
[15–17,18]), perturbed method and constructing comparison functions, we show the
asymptotic behaviour of solutions near the boundary to problem (P±) .

Our main results are as follows:

THEOREM 1.1. Let q > 0 , b satisfies (b1) f satisfies ( f1),( f2),( f3) with Cf � 1
and the assumption that: ( f4) there exists Γ f ∈ [0,∞) such that

lim
s→+∞

f (s)

[∫ ∞

s

dv

f
1

m−1 (v)

]m−1

= Γ f .

(i) If Γ f > 0, q > m/(m− 1) and b satisfies (b3) , then every solution u+ of
problem (P+) satisfies

lim
d(x)→0

u+(x)
ψ1(Kq(d(x)))

= 1, (1.4)
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where K is in (1.1) with k defined in (b3) and ψ1 is uniquely determined by

∫ ∞

ψ1(t)

dv

f
1

m−1 (v)
= t, t > 0; (1.5)

(ii) if b satisfies (b2) with Ck > 0 and q ∈ (0,m/(m− 1)) and Γ f > 0 , then for
every solution u± of problem (P±)

lim
d(x)→0

u±(x)
ψ1(K2(d(x)))

= 1, (1.6)

where K is in (1.1) with k defined in (b2) and ψ1 is uniquely determined by (1.5);

(iii) if q = m/(m−1) , b satisfies (b2) , and 2− (m−1)Ck −2Γ1/(m−1)
f > 0 , then

for every solution u− of problem (P−)

lim
d(x)→0

u−(x)
ψ1(K2(d(x)))

= 1, (1.7)

where K is in (1.1) with k defined in (b2) and ψ1 is uniquely determined by (1.5);

(iv) if q = m/(m−1) , b satisfies (b2) , and 2− (m−1)Ck +2Γ1/(m−1)
f > 0 , then

every solution u+ of problem (P+)

lim
d(x)→0

u+(x)
ψ1(K2(d(x)))

= 1, (1.8)

where K is in (1.1) with k defined in (b2) and ψ1 is uniquely determined by (1.5).

2. Preliminaries

In this section, we present some bases of the theory which comes from Senta [18],
Preliminaries in Resnick [17], Introductions and the appendix in Maric [15].

DEFINITION 2.1. A positive measurable function f defined on [a,+∞) , for some
a > 0, is called regularly varying at infinity with index ρ , written as f ∈ RVρ , if for
each ξ > 0 and some ρ ∈ R ,

lim
s→∞

f (ξ s)
f (s)

= ξ ρ . (2.1)

For example, f (s) = sρ is regularly varying at infinity. In particular, when ρ = 0, f
is called slowly varying at infinity. Clearly, if f ∈ RVρ , then L(s) := f (s)/sρ is slowly
varying at infinity.

Some basic examples of slowly varying functions at infinity are:

(1) every measure function on [a,∞) which has a positive limit at infinity;

(2) (lns)β and (ln(lns))β , β ∈ R ;

(3) e(lns)p
, 0 < p < 1.



Differ. Equ. Appl. 7, No. 1 (2015), 133–150. 137

DEFINITION 2.2. A positive measurable function f defined on [a,+∞) , for some
a > 0, is called rapidly varying at infinity if for each p > 1,

lim
s→∞

f (s)
sp = ∞. (2.2)

Clearly, if f ∈ RVρ , then L(s) := f (s)/sρ is slowly varying at infinity. Some basic
examples of rapidly varying functions at infinity are:

(1) es and ees
;

(2) ee(lns)p
, esp

and eesp

, p > 0;

(3) (lns)β esp
and sβ esp

, p > 0,β ∈ R ;

(4) sβ e(ln s)p
and (lns)β e(ln s)p

, p > 1,β ∈ R .

We also see that a positive measurable function g defined on (0,a) for some a > 0
is regularly varying at zero with index σ (written as g ∈ RVZσ ) if t → g(1/t) belongs
to RV−σ , g is called rapidly varying at zero if t → g(1/t) is rapidly varying at infinity.

PROPOSITION 2.1. (Uniform convergence theorem) If f ∈ RVρ , then (2.1) holds
uniformly for ξ ∈ [c1,c2] with 0 < c1 < c2 . Moreover, if ρ < 0 , then uniform con-
vergence holds on intervals of the form (a1,∞) with a1 > 0 ; if ρ > 0 , then uniform
convergence holds on intervals (a1,∞] provided f is bounded on (a1,∞] for all a1 > 0 .

PROPOSITION 2.2. (Representation theorem) A function L is slowly varying at
infinity if and only if it may be written in the form

L(s) = ϕ(s)exp(
∫ s

a1

y(τ)
τ

dτ), s � a1, (2.3)

for some a1 > a, where the functions ϕ and y are measurable and for s→∞,y(s)→ 0 ,
andϕ(s) → c0 ,with c0 > 0 .

We call that

L̂(s) = c0 exp(
∫ s

a1

y(τ)
τ

dτ), s � a1, (2.4)

is normalized slowly varying at infinity and

f (s) = c0s
ρ L̂(s), s � a1, (2.5)

is normalized regularly varying at infinity with index ρ (and written as f ∈ NRVρ ).
Similarly, g is called normalized regularly varying at zero with index ρ , written

as g ∈ NRVZρ if t → g(1/t) belongs to NRVρ . A function f ∈ RVρ belongs to NRVρ
if and only if

f ∈C1[a1,∞), for some a1 > 0, and lim
s→∞

s f ′(s)
f (s)

= ρ . (2.6)
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PROPOSITION 2.3. If functions L,L1 are slowly varying at infinity, then

(i) Lσ for every σ ∈ R , c1L+ c2L1 (c1 � 0,c2 � 0withc1 + c2 > 0) , L◦L1

(if L1(t) → +∞ as t → +∞), are also slowly varying at infinity;

(ii) for every θ > 0 and t → +∞ ,tθ L(t) → +∞ and t−θL(t) → 0 ;

(iii) for ρ ∈ R and t → +∞ , ln(L(t))
ln t → 0 and ln(tρ L(t))

ln t → ρ .

PROPOSITION 2.4. (Asymptotic behavior) If a function L is slowly varying at
infinity, then for a > 0 and t → ∞ ,

(i)
∫ t
a sβ L(s)ds ∼= (β +1)−1t1+β L(t) , for β > −1 ;

(ii)
∫ ∞
t sβ L(s)ds ∼= (−β −1)−1t1+βL(t) , for β < −1 .

PROPOSITION 2.5. (Asymptotic behavior) If a function H is slowly varying at
zero, then for a > 0 and t → 0+ ,

(i)
∫ t
a sβ H(s)ds ∼= (β +1)−1t1+βH(t) , for β > −1 ;

(ii)
∫ ∞
t sβ H(s)ds ∼= (−β −1)−1t1+β H(t) , for β < −1 .

LEMMA 2.1. Let k ∈ Λ:

(i) if Ck ∈ (0,1) , then k ∈ NRVZ(1−Ck)/Ck
;

(ii) if Ck = 1 , then k is normalized slowly varying at zero;

(iii) if Ck = 0 , then k is rapidly varying at zero.

Proof. By l’Hospital’s rule and (1.1), we have

lim
t→0

K(t)
tk(t)

= lim
t→0

K(t)
k(t)

t
= lim

t→0

d
dt

(
K(t)
k(t)

)
= Ck; (2.7)

(i)(ii) when Ck > 0, it follows by (1.2) that

lim
t→0

tk′(t)
k(t)

= lim
t→0

K(t)k′(t)
k2(t)

lim
t→0

tk(t)
K(t)

=
1−Ck

Ck
, (2.8)

i.e.,k ∈ NRVZ(1−Ck)/Ck
for Ck ∈ (0,1) and k is normalized slowly varying at zero for

Ck = 1;
(iii) when Ck = 0, for arbitrary γ > 0, it follows by (2.8) that lim

t→0

tk′(t)
k(t) = +∞ and

there exists t0γ such that

k′(t)
k(t)

> (γ +1)t−1, ∀t ∈ (0,t0γ ]. (2.9)

Integrating (2.9) from t to t0γ , we obtain

ln(k(t0γ ))− ln(k(t)) > (γ +1)(lnt0γ − lnt), ∀t ∈ (0,t0γ ],
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i.e.,

0 <
k(t)
tγ <

k(t0γ )

tγ+1
0

t, t ∈ (0,t0γ ].

Let t → 0, we see by Definition 2.2 that k is rapidly varying at zero.

LEMMA 2.2. If f satisfies ( f1) , ( f2) and ( f3) , then

(i) Cf ∈ [1,+∞);
(ii) if ( f3) holds for Cf > 1 , then f ∈ NRVCf /(Cf −1) ;

(iii) when Cf = 1 , then f is rapidly varying at infinity.

Proof. (i) Let

J(s) = f
1

m−1−1(s) f ′(s)
∫ ∞

s

dv

f
1

m−1 (v)
, ∀ s > 0.

Integrating J(s) from a(a > 0) to t and integrate by parts, we obtain∫ t

a
J(s)ds = f

1
m−1 (t)

∫ ∞

t

dv

f
1

m−1 (v)
− f

1
m−1 (a)

∫ ∞

a

dv

f
1

m−1 (v)
+ t−a, ∀ t > a.

It follows from the l’Hospital’s rule that

0 � lim
t→∞

f
1

m−1 (t)
∫ ∞
t

dv

f
1

m−1 (v)

t
= lim

t→∞

1
t

∫ t

a
J(s)ds−1 = lim

t→∞
J(t)−1 =Cf −1,

i.e.,Cf � 1.
(ii) By (i), we see that

lim
s→+∞

f (s)
s f ′(s)

= lim
s→+∞

f
1

m−1 (s)
∫ ∞
s

dv

f
1

m−1 (v)

sJ(s)

=
1
Cf

lim
s→+∞

f
1

m−1 (s)
∫ ∞
s

dv

f
1

m−1 (v)

s

=
Cf −1

Cf
,

i.e., f ∈ NRVCf /(Cf −1) for Cf > 1.
(iii) When Cf = 1, we see by the proof of (ii) that

lim
s→+∞

f (s)
s f ′(s)

= 0.

Consequently, for arbitrary p > 1, there exists S0 > 0 such that

f ′(s)
f (s)

> (p+1)s−1, ∀ s � S0,
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Integrating the above inequality from S0 to s , we obtain

ln( f (s))− ln( f (S0)) > (p+1)(lns− lnS0), ∀ s � S0,

letting s → +∞ , we see by Definition 2.2 that f is rapidly varying at infinity.

LEMMA 2.3. Let f satisfy ( f1) , ( f2) ,( f3) and let ψ1 be the solution to the prob-
lem ∫ ∞

ψ1(t)

ds

f
1

m−1 (s)
= t, ∀ t > 0.

Then:

(i) −ψ ′
1(t) = f

1
m−1 (ψ1(t)), ψ1(t) > 0, t > 0, ψ1(0) := lim

t→0+
ψ1(t) = +∞, and

ψ ′′
1 (t) =

1
m−1

f
2

m−1−1(ψ1(t)) f ′(ψ1(t)), t > 0;

(ii) ψ1 ∈ NRVZ−(Cf −1) ;

(iii) −ψ ′
1 = f

1
m−1 ◦ψ1 ∈ NRVZ−Cf /(m−1) .

Proof. By the definition of ψ1 and a direct calculation, we show that (i) holds.
(ii) It follows from the proof of Lemma 2.1 that

lim
t→0+

tψ ′
1(t)

ψ1(t)
= − lim

t→0+

t f
1

m−1 (ψ1(t))
ψ1(t)

= − lim
s→+∞

f
1

m−1 (s)
∫ ∞
s

dv

f
1

m−1 (v)

s
= −(Cf −1),

(2.10)
i.e., ψ1 ∈ NRVZ−(Cf −1) .

(iii) ( f3) implies

lim
t→0+

tψ ′′
1 (t)

ψ ′
1(t)

= − lim
t→0+

t
m−1

f
1

m−1−1(ψ1(t)) f ′(ψ1(t))

= − lim
s→+∞

1
m−1

f
1

m−1−1(s) f ′(s)
∫ ∞

s

dv

f
1

m−1 (v)
= −Cf /(m−1). (2.11)

3. Proofs of the main results

LEMMA 3.1. (Weak comparison principle)Let Ω be a bounded domain in R
N (N �

2) with smooth boundary ∂Ω and ϕ : (0,a)→ (0,a) be continuous and non-decreasing,
let u1, u2 ∈W 1,m(Ω) satisfy

∫
Ω
|∇u1|m−2∇u1∇ψdx+

∫
Ω

ϕu1ψdx �
∫

Ω
|∇u2|m−2∇u2∇ψdx+

∫
Ω

ϕu2ψdx,
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For all non-negative ψ ∈W 1,m
0 (Ω) . Then the inequality

u1 � u2, on ∂Ω,

implies that
u1 � u2, in Ω.

For any δ > 0, we define

Ωδ = {x ∈ Ω : 0 < d(x) < δ}.
Since Ω is smooth, there exists δ0 > 0 such that d ∈C2(Ωδ0

) and

|∇d(x)| = 1, ∀x ∈ Ωδ0
.

PROOF OF THEOREM 1.1.

(i) q > m/(m−1),m > 1 and Γ f > 0, let ε ∈ (0,b1q/4) and

ξ01 =

(
b1q

qq(m−1)Γq−1
f

) 1
m−1

, ξ02 =

(
b2q

qq(m−1)Γq−1
f

) 1
m−1

;

ξ1 = ξ01

(
1− 2ε

b1q

) 1
m−1

, ξ2 = ξ02

(
1+

2ε
b2q

) 1
m−1

.

It follows that
ξ01

21/(m−1) < ξ1 < ξ2 < 21/(m−1)ξ02.

By (b1),(b2),(1.2),(2.11) and ( f4) , we see that there is δε ∈ (0,δ0/2) (which is cor-
responding to ε ) sufficiently small that:

(b1q− ε)kq(d(x)−ρ) � (b1q− ε)kq(d(x)) < b(x), x ∈ D−
ρ = Ω2δε /Ωρ

and

b(x) < (b2q + ε)kq(d(x)) � (b2q + ε)kq(d(x)+ ρ), x ∈ D+
ρ = Ω2δε−ρ ,

where ρ ∈ (0,δε) .
For i = 1,2,

2(ξ02q)m−1
(

K(t)
k(t)

)(q−1)(m−1)−1

×
[
q

∣∣∣∣ξiK
q(t) f

1
m−1−1

(
ψ1(ξiK

q(t))
)

f ′
(

ψ1(ξiK
q(t))

)∣∣∣∣
+
∣∣∣∣(q−1)(m−1)+

(m−1)K(t)k′(t)
k2(t)

|+ K(t)
k(t)

|Δd(x)
∣∣∣∣
]
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+2(ξ02q
q)m−1

∣∣∣∣∣
[
(ξiK

q(t))m−1 f

(
ψ1(ξiK

q(t))
)]q−1

−Γq−1
f

∣∣∣∣∣
< ε, ∀(x,t) ∈ Ω2δε × (0,2δε).

Let
d1(x) = d(x)−ρ , d2(x) = d(x)+ ρ ,

uε = ψ1(ξ1K
q(d1(x))), x ∈ D−

ρ and uε = ψ1(ξ2K
q(d2(x))), x ∈ D+

ρ .

By using
(ξ1q

q)m−1Γq−1
f = b1q−2ε,

and by a direct calculation, it follows that, for x ∈ D−
ρ

div(|∇uε |m−2∇uε )−b(x) f (uε(x))+ |uε (x)|q(m−1)

= (m−1)
(
ψ ′

1(ξ1K
q(d1(x)))

)m−2ψ ′′
1

(
ξ1K

q(d1(x))
)
(ξ1q)mKm(q−1)(d1(x))km(d1(x))

+
(
ψ ′

1(ξ1K
q(d1(x)))

)m−1(ξ1q)m−1(q−1)(m−1)K(q−1)(m−1)−1(d1(x))km(d1(x))

+
(
ψ ′

1(ξ1K
q(d1(x)))

)m−1(ξ1q)m−1K(q−1)(m−1)(d1(x))(m−1)km−2(d1(x))k′(d1(x))

+
(
ψ ′

1(ξ1K
q(d1(x)))

)m−1(ξ1q)m−1K(q−1)(m−1)(d1(x))km−1(d1(x))Δ(d1(x))

−b(x) f (ψ1(ξ1K
q(d1(x))))+

[
ξ1K

q(d1(x))k(d1(x))ψ ′
1(ξ1K

q(d1(x)))
]q(m−1)

= (−1)m f (ψ1(ξ1K
q(d1(x))))kq(m−1)(d1(x))

{
(ξ1q)m−1(

K(d1(x))
k(d1(x))

)(q−1)(m−1)−1

×
[
qξiK

q(d1(x)) f
1

m−1−1
(

ψ1(ξiK
q(d1(x)))

)
f ′
(

ψ1(ξiK
q(d1(x)))

)

− (q−1)(m−1)− (m−1)K(d1(x))k′(d1(x))
k2(d1(x))

− K(d1(x))
k(d1(x))

Δd(x)
]

−
(

b(x)
Kq(m−1)(d1(x))

−b1q

)
−b1q +(ξ1q

q)m−1Γq−1
f

+(ξ1q
q)m−1

[(
(ξ1K

q(t))m−1 f (ψ1(ξiK
q(t)))

)q−1

−Γq−1
f

]}
� 0,

i.e., uε is a supersolution of problem (P+) in D−
ρ .

In a similar way, for x ∈ D+
ρ ,we can show that uε is a subsolution of of problem

(P+) in D+
ρ .

Now let u+ be an arbitrary solution of problem (P+) and

C1(δε) := max
d(x)�δε

u+(x).

We see that
u+ � C1(δε)+ uε , on ∂D−

ρ .
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Since ψ1 is decreasing, see Lemma 2.3, and ξ02 < ξ2 , we have that

uε � ψ1(ξ02K
q(2δ2ε)) := C2(δε ),

whenever d(x) = 2δ2ε −ρ and uε � u+ +C2(δε) on ∂D+
ρ .

It follows by ( f1) and Lemma 3.1 that

u+ � C1(δε)+ uε on D−
ρ , uε � u+ +C2(δε ) on D+

ρ .

Hence by letting ρ → 0, we have for x ∈ D−
ρ
⋂

D+
ρ ,

1− C2(δε)
ψ1(ξ2Kq(d(x)))

� u+(x)
ψ1(ξ2Kq(d(x)))

and
u+(x)

ψ1(ξ1Kq(d(x)))
� 1+

C1(δε )
ψ1(ξ1Kq(d(x)))

.

Consequently,

1 � liminf
d(x)→0

u+(x)
ψ1(ξ2Kq(d(x)))

and

limsup
d(x)→0

u+(x)
ψ1(ξ1Kq(d(x)))

� 1.

Thus by letting ε → 0, we obtain

1 � liminf
d(x)→0

u+(x)
ψ1(ξ02Kq(d(x)))

and

limsup
d(x)→0

u+(x)
ψ1(ξ01Kq(d(x)))

� 1.

By Lemma 2.3 (ii) and Proposition 2.1, we have

limsup
d(x)→0

ψ1(ξ02Kq(d(x)))
ψ1(Kq(d(x)))

= limsup
d(x)→0

ψ1(ξ01Kq(d(x)))
ψ1(Kq(d(x)))

= 1.

Thus

limsup
d(x)→0

u+(x)
ψ1(Kq(d(x)))

= 1.

(ii) When b satisfies (b2) with Ck > 0, either q ∈ (0,m/(m− 1)),m > 1 and
Γ f > 0.

Let ε ∈ (0,b1/4) and

ξ03 =
1
2

(
b1

2− (m−1)(2−Ck)

) 1
m−1

,
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ξ04 =
1
2

(
b2

2− (m−1)(2−Ck)

) 1
m−1

,

(ξ3)m−1 = (ξ03)m−1 − ε
2− (m−1)(2−Ck)

,

(ξ4)m−1 = (ξ04)m−1 +
ε

2− (m−1)(2−Ck)
.

It follows that
ξ03/

m−1
√

2 < ξ3 < ξ4 <
m−1
√

2ξ04.

By (b1),(b2),(1.2),(2.11) and ( f4) ,we see that there is δε ∈ (0,δ0/2)(which is
corresponding to ε ) sufficiently small that:

(b1− ε)km(d(x)−ρ)Km−2(d(x)−ρ)

� (b1− ε)km(d(x))Km−2(d(x)) < b(x), x ∈ D−
ρ = Ω2δε /Ωρ ,

and

b(x) < (b2 + ε)km(d(x))Km−2(d(x)−ρ)

� (b2 + ε)km(d(x)+ ρ)Km−2(d(x)+ ρ), x ∈ D+
ρ = Ω2δε−ρ ,

where ρ ∈ (0,δε) .
For i = 3,4,

4(2ξ04)m−1
∣∣∣ξiK

2(t) f
1

m−1−1(ψ1(ξiK
2(t))) f ′(ψ1(ξiK

2(t)))−1
∣∣∣

+(m−1)(2ξ04)m−1

∣∣∣∣K(t)k′(t)
k2(t)

− (1−Ck)
∣∣∣∣+(2ξ04)m−1 K(t)

k(t)
|Δd(x)|

+2(2qξ04)m−1
∣∣(ξiK

2(t))m−1 f (ψ1(ξiK
2(t)))−Γ f + Γ f

∣∣q−1

×
(K(t)

k(t)

)1−(q−1)(m−1)
< ε, ∀(x,t) ∈ Ω2δε × (0,2δε).

Let
d1(x) = d(x)−ρ , d2(x) = d(x)+ ρ ,

uε = ψ1(ξ3K
2(d1(x))), x ∈ D−

ρ and uε = ψ1(ξ4K
2(d2(x))) x ∈ D+

ρ .

By using
(2ξ3)m−1(2− (m−1)(2−Ck)) = b1,

and by a direct calculation, it follows that, for x ∈ D−
ρ ,

div(|∇uε |m−2∇uε)−b(x) f (uε(x))±|uε(x)|q(m−1)

= (m−1)
(

ψ ′
1(ξ3K

2(d1(x)))
)m−2

ψ ′′
1

(
ξ3K

2(d1(x))
)

(2ξ3)mKm(d1(x))km(d1(x))
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+
(

ψ ′
1(ξ3K

2(d1(x)))
)m−1

(2ξ3)m−1(m−1)Km−2(d1(x))km(d1(x))

+
(

ψ ′
1(ξ3K

2(d1(x)))
)m−1

(2ξ3)m−1Km−1(d1(x))(m−1)km−2(d1(x))k′(d1(x))

+
(

ψ ′
1(ξ3K

2(d1(x)))
)m−1

(2ξ3)m−1Km−1(d1(x))km−1(d1(x))Δ(d1(x))

−b(x) f (ψ1(ξ3K
2(d1(x))))±

[
2ξ3K(d1(x))k(d1(x))ψ ′

1(ξ3K
2(d1(x)))

]q(m−1)

= (−1)m f (ψ1(ξ3K
2(d1(x))))km(d1(x))Km−2(d1(x))

×
{

2(2ξ3)m−1
(

ξ3K
2(d1(x)) f

1
m−1−1(ψ1(ξ3K

2(d1(x)))) f ′(ψ1(ξ3K
(d1(x))))−1

)
+2(2ξ3)m−1− (m−1)(2ξ3)m−1

− (m−1)(2ξ3)m−1
(

k′(d1(x))K(d1(x))
k2(d1(x))

− (1−Ck)
)

− (m−1)(2ξ3)m−1(1−Ck)− (2ξ3)m−1 K(d1(x))
k(d1(x))

Δd1(x)

−
(

(−1)mb(x)
km(d1(x))Km−2(d1(x))

−b1

)
−b1

± (2qξ3)m−1
(

(ξ3K
2(d1(x)))m−1 f (ψ1(ξ3K

2(d1(x))))
)q−1

×
(K(d1(x))

k(d1(x))

)1−(q−1)(m−1)
}

� 0,

i.e., uε is a supersolution of problem (P±) in D−
ρ .

In a similar way, for x ∈ D+
ρ ,we can show that uε is a subsolution of of problem

(P±) in D+
ρ .

The last part of the proof is the same as that of (i).

(iii) When q = m/(m−1) , b satisfies (b2) and 2−(m−1)Ck−2Γ1/(m−1)
f > 0 for

problem (P−) .
Let ε ∈ (0,b1/4) and

ξ05 =
1
2

m−1

√
b1

2− (m−1)Ck−2Γ1/(m−1)
f

,

ξ06 =
1
2

m−1

√
b2

2− (m−1)Ck−2Γ1/(m−1)
f

,

ξ5 = ξ05− 2ε
2− (m−1)Ck−2Γ1/(m−1)

f

,
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ξ6 = ξ06 +
2ε

2− (m−1)Ck−2Γ1/(m−1)
f

.

It follows that
ξ05/

m−1
√

2 < ξ5 < ξ6 <
m−1
√

2ξ06.

By (b1),(b2),(1.2),(2.11) and ( f4) ,we see that there is δε ∈ (0,δ0/2)(which is
corresponding to ε ) sufficiently small that:

(b1− ε)km(d(x)−ρ)Km−2(d(x)−ρ)

� (b1− ε)km(d(x))Km−2(d(x)) < b(x), x ∈ D−
ρ = Ω2δε /Ωρ

and

b(x) < (b2 + ε)km(d(x))Km−2(d(x)−ρ)

� (b2 + ε)km(d(x)+ ρ)Km−2(d(x)+ ρ), x ∈ D+
ρ = Ω2δε−ρ ,

where ρ ∈ (0,δε) .
And for i = 5,6,

4(2ξ06)m−1
∣∣∣ξiK

2(t) f
1

m−1−1(ψ1(ξiK
2(t))) f ′(ψ1(ξiK

2(t)))−1
∣∣∣

+(m−1)(2ξ06)m−1

∣∣∣∣K(t)k′(t)
k2(t)

− (1−Ck)
∣∣∣∣+(2ξ06)m−1 K(t)

k(t)
|Δd(x)|

+2(2ξ06)m−1

∣∣∣∣ξiK
2(t) f

1
m−1 (ψ1(ξiK

2(t)))−Γ
1

m−1
f

∣∣∣∣
< ε, ∀(x,t) ∈ Ω2δε × (0,2δε).

Let
d1(x) = d(x)−ρ , d2(x) = d(x)+ ρ ,

uε = ψ1(ξ5K
2(d1(x))), x ∈ D−

ρ and uε = ψ1(ξ6K
2(d2(x))) x ∈ D+

ρ .

By using

(2ξ5)m−1(2− (m−1)Ck−2Γ
1

m−1
f ) = b1,

and by a direct calculation, it follows that, for x ∈ D−
ρ ,

div(|∇uε |m−2∇uε)−b(x) f (uε(x))−|uε(x)|m

= (m−1)
(

ψ ′
1(ξ5K

2(d1(x)))
)m−2

ψ ′′
1

(
ξ5K

2(d1(x))
)

(2ξ5)mKm(d1(x))km(d1(x))

+
(

ψ ′
1(ξ5K

2(d1(x)))
)m−1

(2ξ5)m−1(m−1)Km−2(d1(x))km(d1(x))

+
(

ψ ′
1(ξ5K

2(d1(x)))
)m−1

(2ξ5)m−1Km−1(d1(x))(m−1)km−2(d1(x))k′(d1(x))
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+
(

ψ ′
1(ξ5K

2(d1(x)))
)m−1

(2ξ5)m−1Km−1(d1(x))km−1(d1(x))Δ(d1(x))

−b(x) f (ψ1(ξ5K
2(d1(x))))−

[
2ξ5K(d1(x))k(d1(x))ψ ′

1(ξ5K
2(d1(x)))

]m

= (−1)m f (ψ1(ξ5K
m−2(d1(x))))km(d1(x))Km−2(d1(x))

×
{

2(2ξ5)m−1
(

ξ5K
2(d1(x)) f

1
m−1−1(ψ1(ξ5K

2(d1(x)))) f ′(ψ1(ξ5K
(d1(x))))−1

)
+2(2ξ5)m−1− (m−1)(2ξ5)m−1

− (m−1)(2ξ5)m−1
(

k′(d1(x))K(d1(x))
k2(d1(x))

− (1−Ck)
)

− (m−1)(2ξ5)m−1(1−Ck)− (2ξ5)m−1 K(d1(x))
k(d1(x))

Δd1(x)

−
(

(−1)mb(x)
km(d1(x))Km−2(d1(x))

−b1

)

−b1−2(2ξ5)m−1
(

ξ5K
2(d1(x)) f

1
m−1 (ψ1(ξ5K

2(d1(x))))−Γ
1

m−1
f

)

−2(2ξ5)m−1Γ
1

m−1
f

}
� 0,

i.e., uε is a supersolution of problem (P−) in D−
ρ .

In a similar way, for x ∈ D+
ρ , we can show that uε is a subsolution of of problem

(P−) in D+
ρ . The last part of the proof is the same as that of (i).

(iv) When q = m/(m−1) b satisfies (b2) and 2− (m−1)Ck +2Γ1/(m−1)
f > 0 for

problem (P+) .
Let ε ∈ (0,b1/4) and

ξ07 =
1
2

m−1

√
b1

2− (m−1)Ck +2Γ1/(m−1)
f

,

ξ08 =
1
2

m−1

√
b2

2− (m−1)Ck +2Γ1/(m−1)
f

,

ξ7 = ξ07− 2ε
2− (m−1)Ck +2Γ1/(m−1)

f

,

ξ8 = ξ08 +
2ε

2− (m−1)Ck +2Γ1/(m−1)
f

.

It follows that
ξ07/

m−1
√

2 < ξ7 < ξ8 <
m−1
√

2ξ08.
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By (b1),(b2),(1.2),(2.11) and ( f4) , we see that there is δε ∈ (0,δ0/2)(which is
corresponding to ε ) sufficiently small that:

(b1− ε)km(d(x)−ρ)Km−2(d(x)−ρ)

� (b1 − ε)km(d(x))Km−2(d(x)) < b(x), x ∈ D−
ρ ,

and

b(x) < (b2 + ε)km(d(x))Km−2(d(x)−ρ)

� (b2 + ε)km(d(x)+ ρ)Km−2(d(x)+ ρ), x ∈ D+
ρ ,

where D−
ρ = Ω2δε /Ωρ , D+

ρ = Ω2δε−ρ and ρ ∈ (0,δε) .
And for i = 7,8,

4(2ξ08)m−1
∣∣∣ξiK

2(t) f
1

m−1−1(ψ1(ξiK
2(t))) f ′(ψ1(ξiK

2(t)))−1
∣∣∣

+(m−1)(2ξ08)m−1

∣∣∣∣K(t)k′(t)
k2(t)

− (1−Ck)
∣∣∣∣+(2ξ08)m−1 K(t)

k(t)
|Δd(x)|

+2(2ξ08)m−1

∣∣∣∣ξiK
2(t) f

1
m−1 (ψ1(ξiK

2(t)))−Γ
1

m−1
f

∣∣∣∣
< ε, ∀(x,t) ∈ Ω2δε × (0,2δε).

Let d1(x) = d(x)−ρ , d2(x) = d(x)+ ρ and

uε = ψ1(ξ7K
2(d1(x))), x ∈ D−

ρ and uε = ψ1(ξ8K
2(d2(x))) x ∈ D+

ρ .

By using

(2ξ7)m−1(2− (m−1)Ck +2Γ
1

m−1
f ) = b1,

and by a direct calculation, it follows that, for x ∈ D−
ρ ,

div(|∇uε |m−2∇uε)−b(x) f (uε(x))+ |uε(x)|m

= (m−1)
(

ψ ′
1(ξ7K

2(d1(x)))
)m−2

ψ ′′
1

(
ξ7K

2(d1(x))
)

(2ξ7)mKm(d1(x))km(d1(x))

+
(

ψ ′
1(ξ7K

2(d1(x)))
)m−1

(2ξ7)m−1(m−1)Km−2(d1(x))km(d1(x))

+
(

ψ ′
1(ξ7K

2(d1(x)))
)m−1

(2ξ7)m−1Km−1(d1(x))(m−1)km−2(d1(x))k′(d1(x))

+
(

ψ ′
1(ξ7K

2(d1(x)))
)m−1

(2ξ7)m−1Km−1(d1(x))km−1(d1(x))Δ(d1(x))

−b(x) f (ψ1(ξ7K
2(d1(x))))−

[
2ξ7K(d1(x))k(d1(x))ψ ′

1(ξ7K
2(d1(x)))

]m
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= (−1)m f (ψ1(ξ7K
m−2(d1(x))))km(d1(x))Km−2(d1(x))

×
{

2(2ξ7)m−1
(

ξ7K
2(d1(x)) f

1
m−1−1(ψ1(ξ7K

2(d1(x)))) f ′(ψ1(ξ7K
2(d1(x))))−1

)
+2(2ξ7)m−1− (m−1)(2ξ7)m−1

− (m−1)(2ξ7)m−1
(

k′(d1(x))K(d1(x))
k2(d1(x))

− (1−Ck)
)

− (m−1)(2ξ7)m−1(1−Ck)− (2ξ5)m−1 K(d1(x))
k(d1(x))

Δd1(x)

−
(

(−1)mb(x)
km(d1(x))Km−2(d1(x))

−b1

)

−b1 +2(2ξ7)m−1
(

ξ7K
2(d1(x)) f

1
m−1 (ψ1(ξ7K

2(d1(x))))−Γ
1

m−1
f

)

+2(2ξ7)m−1Γ
1

m−1
f

}
� 0,

i.e., uε is a supersolution of problem (P+) in D−
ρ .

In a similar way, for x ∈ D+
ρ ,we can show that uε is a subsolution of of problem

(P+) in D+
ρ . The last part of the proof is the same as that of (i).

The existence of solutions of Problem (P±) is similar as that in references [12,
13].
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