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BOUNDARY BEHAVIOR OF LARGE SOLUTIONS TO QUASILINEAR
ELLIPTIC PROBLEMS WITH A NONLINEAR GRADIENT TERM

CHUNLIAN LIU AND ZUODONG YANG

(Communicated by Qihu Zhang)

Abstract. In this paper,we study the boundary behavior of solutions to boundary blow-up elliptic
problems

div(|Vu"2Vu) + [Vu(x) 10D = b(x) f(u), x€Q,
u>0, xeQ,
ulgg = +ee,
where Q is a bounded domain with smooth boundary in RN, m > 1, ¢ >0, b € C* (ﬁ) , which

is positive in € and may be vanishing on the boundary and rapidly varying near the boundary,
and f is rapidly varying or normalized regularly varying at infinity.

1. Introduction

In this paper, we plan to investigate the exact asymptotic behavior of solutions near
the boundary for the following problems

div(|Vu|"2Vu) £ [Vu(x)|90"D = b(x) f(u), x€Q,
u>0, xeQ, (Py)
M|BQ = oo,

where the last condition means that u(x) — oo as d(x) = dist(x,dQ) — 0, and the
solution is called “a large solution” or “an explosive solution”, € is a bounded domain
with smooth boundary in R¥ (N >2), ¢ >0, m > 1. The function b satisfies:

(b)) beC*(Q) for some a € (0,1), is non-negative in Q;

(by) there exists k € A such that

;= limin b(x) :=lim b(x)
O < Pr= i etk < T L etk 2 w)

< oo,

or
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(b3) there exists k € A such that

o b(x) . b(x)
0< by, =1 f— " < by, =1 S A
197 000 kD (d () ST e KD (d(x)

< oo,
where A denotes the set of all positive non-decreasing functions in C'(0, &) (8 >
0) which satisfy

Hm%g%%:QGWM% K@:A%@m7 (1.1)

and f satisfies:
(f1) f€CY0,+),f(0) =0, f is increasing on [0, +o0);
() i —— <o
fm=T (v)
(f3) there exists Cy > 0 such that

tim /=10 [ =¢.

o 1)

We note that for each k € A, we have C; € [0,1] and

K(1) . KK (1) . dK(t)
—— =0, lim ——=1—1lm ——==1-C;. 1.2
o k() ot K2(r) 0" dt k(1) ¢ (1-2)
In fact, from (1.1), we can see %(%) = Cr+ a(r), where lim, 5+ ct(z) =0, so
K 1 1 t
K() :/ det—|—/ a(t)dt:th+/ o(t)dt,
k() 0 0 0

since lim, o+ o(t) = 0, so lim,_,+ % =0.

For example, k(1) =7, p > 0 or k(r) = eV*/\/x satisfies (1.1),we can conclude
that they also satisfy (1.2).

The set A was first introduced by Cirstea and Rddulescu [3,4] in order to study the
boundary behavior of solutions to the problem

Ao =b(x)f(w), x€Q, |yg=rce.

Semilinear elliptic problems involving gradient term with boundary blow-up inter-
ested many authors. Namely Bandle and Giarrusso [1] developed existence and asymp-
totic behavior results for large solutions of

B+ V()| = £ (),

in a bounded domain. In the case f(u) = p(x)u”, a >0, and ¥ > max(1,a), Lair and
Wood [7-9] dealt with the above equation in bounded domain and the whole space, they
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proved the existence of entire large solution under the condition [;"rmax,_, p(x)dr <
o when the domain is RY. Ghergu et al.[5] considered more general equation

Au+q(x)|Vu(x)|* = p(x) f(u),

where 0 < a <2, p and ¢ are Holder continuous functions on (0,0). We note that the
Keller-Osserman condition on f (see[2,16]) remains the key condition for the existence
for their work. Ghergu and Radulescu [6] considered the following problem

N+ Vu(x)| = p(x)f(w), in @
u>0, inQ,

where Q is either a smooth bounded domain or the whole space and f is a nonde-
creasing function satisfying f € Co’a(O,oo), f(0)=0, f>0, on (0,0), and A =

loc
SUPy> | @ < oo. The authors studied the existence and nonexistence of large solutions

under the assumption that

/ r(max p(x) — min p(x) ¥ (r)dr < +oo
0 X|=r X|=r
where W(r) = exp(25 fo~ rminj,_, p(x)dr).

Faten Toumi [19] extended the above result to the following problem

A+ A(X)IVa(x)| = o u(x), in BY,
u>0, ut0,
limyy o tt(x) = oo,

where A : [0,00) — [0,0) is a continuous function and ¢ : RV x [0,00) — [0,0) is
measurable,continuous with respect to the second variable.

Quasilinear elliptic problems or such problems involving gradient terms with bound-
ary blow-up interested many authors, see [10-12,14,20,21]

As far as the authors know, however, there are less results which contain the exact
asymptotic behaviour of solutions near the boundary to problem (P ). In this paper,
also applying Karamata regular variation theory (Karamata regular variation theory see
[15-17,18]), perturbed method and constructing comparison functions, we show the
asymptotic behaviour of solutions near the boundary to problem (P4 ).

Our main results are as follows:

THEOREM 1.1. Let ¢ >0, b satisfies (by) f satisfies (fi),(f2),(f3) with Cr > 1
and the assumption that: (f4) there exists T'y € [0,00) such that

m—1
< dv
li =Ty.
S—l>l:I‘rloof(S) |:/s fml—l (V)] !

(i) If Ty >0,g>m/(m—1) and b satisfies (b3), then every solution u, of
problem (Py) satisfies

fim

O K@) (14)
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where K isin (1.1) with k defined in (b3) and y is uniquely determined by

/m ?IV =t, t>0; (L.5)
vi() fmT(v)

(ii) if b satisfies (by) with Cy >0 and q € (0,m/(m—1)) and T'y > 0, then for
every solution u of problem (Py.)

. ue(x)
ARy (1.6)

where K isin (1.1) with k defined in (by) and y is uniquely determined by (1.5);
(iii) if g =m/(m — 1), b satisfies (by), and 2 — (m—1)Cy, — 21"}/(”[71) > 0, then
Sfor every solution u_ of problem (P-)
. u_(x)
lim —————— =1,
d(x)—-0 Y1 (K*(d(x)))
where K isin (1.1) with k defined in (by) and  is uniquely determined by (1.5);

@iv) if g=m/(m—1), b satisfies (by), and 2 — (m—1)Cy + 21"}/(”'_1) > 0, then
every solution u. of problem (Py)

(1.7)

lim (1.8)

dx)—0 Y1 (K2(d(x)))

where K isin (1.1) with k defined in (by) and y, is uniquely determined by (1.5).

2. Preliminaries

In this section, we present some bases of the theory which comes from Senta [18],
Preliminaries in Resnick [17], Introductions and the appendix in Maric [15].

DEFINITION 2.1. A positive measurable function f defined on [a, 4<), for some
a > 0, is called regularly varying at infinity with index p, written as f € RV, if for
each £ >0 and some p € R, &5

- SS5) _ep
8151010 70 = &P, (2.1)

For example, f(s) = s is regularly varying at infinity. In particular, when p =0, f
is called slowly varying at infinity. Clearly, if f € RV, then L(s) := f(s)/s" is slowly
varying at infinity.

Some basic examples of slowly varying functions at infinity are:
(1) every measure function on [a,e) which has a positive limit at infinity;
(2) (Ins)# and (In(Ins))B, B € R;
3) ™)’ 0<p<1.
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DEFINITION 2.2. A positive measurable function f defined on [a,+o<), for some
a > 0, is called rapidly varying at infinity if for each p > 1,

tim £ _ (2.2)

s—oo sP
Clearly, if f € RV, then L(s) := f(s)/sP is slowly varying at infinity. Some basic
examples of rapidly varying functions at infinity are:
(1) ¢ and ¢ ;
) ee(lm)p , ¢ and e“'rp, p>0;
3) (lns)ﬁes” and sPe?”, p>0,B €R;
(4) sBe)” and (Ins)Be)” p>1.B cR.

We also see that a positive measurable function g defined on (0,a) for some a > 0
is regularly varying at zero with index o (written as g € RVZs) if t — g(1/¢) belongs
to RV_g, g is called rapidly varying at zero if  — g(1/¢) is rapidly varying at infinity.

PROPOSITION 2.1. (Uniform convergence theorem) If f € RV, then (2.1) holds
uniformly for & € [c1,cz] with 0 < ¢y < ¢p. Moreover, if p <0, then uniform con-
vergence holds on intervals of the form (aj,e) with ay > 0; if p > 0, then uniform
convergence holds on intervals (ay,°o| provided f is bounded on (ay,*| for all a; > 0.

PROPOSITION 2.2. (Representation theorem) A function L is slowly varying at
infinity if and only if it may be written in the form

A T
1) = gexnl [ an). s> an, 23)
aj
Sfor some a; > a, where the functions ¢ and y are measurable and for s — oo, y(s) — 0,
and @(s) — co,with co > 0.
We call that
Sy s y(7)
L(s) = coexp( Tdr), s> ay, (2.4)
ajy
is normalized slowly varying at infinity and
f(s) =cosPL(s), s>ay, (2.5)

is normalized regularly varying at infinity with index p (and written as f € NRV)).

Similarly, g is called normalized regularly varying at zero with index p, written
as g € NRVZ, if t — g(1/t) belongs to NRV,,. A function f € RV, belongs to NRV,
if and only if

!
f €C'ay,), forsome a; >0, and lim s/(s)

s=e f(s)

=p. (2.6)
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PROPOSITION 2.3. [f functions L,L, are slowly varying at infinity, then
(i) L forevery o € R, ciL+cyLy (¢ = 0,¢p = Owithep +c¢3 >0), LoLy
(if Ly (t) — +oo as t — +eo), are also slowly varying at infinity;
(i) for every 0 >0 and t — +o0,t9L(t) — oo and t=OL(t) — 0;

(iii) for p € R and t — oo, WHOandmﬁp_

Int
PROPOSITION 2.4. (Asymptotic behavior) If a function L is slowly varying at
infinity, then for a > 0 and t — oo,
() [1sPL(s)ds = (B+ 1)~ " *PL(t), for B> —1;
(i) [~sPL(s)ds = (=B —1)""¢"*BL(r), for B < —1.

PROPOSITION 2.5. (Asymptotic behavior) If a function H is slowly varying at
zero, then for a> 0 and t — 0T,

() [1sPH(s)ds= (B+1)"'"*PH(1), for B> —1;

(i) ["sPH(s)ds = (—B—1)""t"*BH(t), for B < —1.
LEMMA 2.1. Let k€ A:

(1) lka € (O, 1), then k € NRVZ(I—Ck)/Ck 5

(1i) if Cx = 1, then k is normalized slowly varying at zero;

(i) if Cx =0, then k is rapidly varying at zero.

Proof. By I’Hospital’s rule and (1.1), we have

K(t)
KO i B0 _ i @ (KON
ke am =\ k) T @7
(1)(ii) when Cy > 0, it follows by (1.2) that
/ / _
lim tk' (1) i K(t)k' (1) lim tk(1) 1 Ck7 (2.8)

10 k() o0 k(1) oK@ | G

ie.k € NRVZ ¢/, for G € (0,1) and k is normalized slowly varying at zero for
Ce=1;
(iii) when C; = 0, for arbitrary y > 0, it follows by (2.8) that liI% % = 40 and
11—
there exists 7, such that

k(1)
k(1)

Integrating (2.9) from ¢ to l,, We obtain

>(y+ 1), Ve (0,0, (2.9)

In(k(to,)) —In(k(t)) > (y+ 1)(Intg, —1Inz), 'Vt € (0,10,],
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i.e.,

k(t)  k(t,)
O<t_7< tg“ , 1€ (0,10,].

Let + — 0, we see by Definition 2.2 that k is rapidly varying at zero.

LEMMA 2.2. If f satisfies (f1), (f2) and (f3), then
(i) Cr € [1,+e);
(i) if (f3) holds for Cy > 1, then f € NRVc,/(c;—1)5
(iii) when Cy =1, then f is rapidly varying at infinity.

Proof. (i) Let

< d
J6) = FRTNOS ) [ ——, ¥ s >0.
)
Integrating J(s) from a(a > 0) to ¢ and integrate by parts, we obtain
< d < d
/J L‘()/ = —fml*l(a)/ Y ti—a ¥V t>a
e « i)
It follows from the 1’Hospital’s rule that
m 1( )ft m m—1 1 4
0< lim / ” —lim = [ J(s)ds—1=limJ(t)— 1 =C;—1,
t—o0 t t—eo t Jy {—o0
i.e.,Cf >1

(i) By (i), we see that

L (s) f—

o Sy R0
s—toosfl(s)  s—fee sJ(s)
m 1( )foo :
-~ lim i ()
Cps—te s
Cr—1
Cr '’

i.e., f S NRVCf/(Cf*l) for Cf > 1.
(iii) When Cy = 1, we see by the proof of (ii) that
tim ) _
s—+eo sf7(s)
Consequently, for arbitrary p > 1, there exists So > 0 such that
f'(s)
f(s)

> (p+ l)s_l7 Vs> S,
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Integrating the above inequality from Sy to s, we obtain

In(f(s)) ~ In(£(S0)) > (p+ 1)(Ins — InSo), Vs > So,

letting s — +oo, we see by Definition 2.2 that f is rapidly varying at infinity.

LEMMA 2.3. Let f satisfy (f1), (f2), (f3) andlet W, be the solution to the prob-

lem J
/ ls =t, V>0
l[/l(t) fmfl (S)

Then:
) =y (1) = FT (g (1)), wi(t) >0, 1> 0, y1(0) := iy (1) = oo, and

wi(t) = —— w1 ()£ (wi(), > 0;

m—1
(ii) y1 € NRVZ_ (¢, 1
(i) —y; = f"Toyi ENRVZ ¢, /(m-1)-

Proof. By the definition of y; and a direct calculation, we show that (i) holds.
(ii) It follows from the proof of Lemma 2.1 that

/ 1 7T (s s
o+ t://ll((tt)) =~ hm W = ‘SEwa ! . T —(Cr—1),
ie., Y1 €NRVZ (¢, y). (2.10)
(iii) (f3) implies
i tf,fl((,? == lim L Ty (0)f (v 1)
== Jim —— 06 [ - mjf(y)
=—Cy/(m—1). 2.11)

3. Proofs of the main results
LEMMA 3.1. (Weak comparison principle) Let Q be a bounded domain in RN (N >

2) with smooth boundary dQ and ¢ : (0,a) — (0,a) be continuous and non-decreasing,
let uy, uy € WH(Q) satisfy

/\Vul\m’2Vu1Vl//dx—|—/ (pu“//dxé/ |Vu2\m72Vu2Vl[/dx+/Q(pugl[/dx,
Q Q Q
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For all non-negative y € WO1 "™(Q). Then the inequality
uy <up, on 9Q,

implies that
uy <upy, in Q.

For any & > 0, we define
Qs ={xeQ:0<d(x) <}
Since Q is smooth, there exists & > 0 such that d € C*(Qg,) and
Vd(x)| =1, Vxe€Qg,.
PROOF OF THEOREM 1.1.

(i)g>m/(m—1),m>1and I'y >0,let € € (0,b1,/4) and

1 1

B b]q m—1 B bzq m—1 '
gOl - (q‘l(’”l)l";{l> ) 502 - (q‘l(ml)l—?l 5

1 1
28 m—1 28 m—1

&1 =&o (1——> , &=8n <1+—) .
blq b2q

It follows that
o1
21/(m=1)

By (b1),(b2),(1.2),(2.11) and (fa), we see that there is O¢ € (0,6y/2) (which is cor-
responding to €) sufficiently small that:

<& <& <2Vm gy,

(brg—€)k1(d(x) —p) < (b1g—€)k(d(x)) < b(x), x € D, = ngg/ﬁp
and
b(x) < (byg+€)ki(d(x)) < (bag+€)kI(d(x)+p), x€ D; =5, p;

where p € (0,6).

Fori=1,2,
2y (KO)
«[alexrrm (wiaro)) r (x|
|ig= im0+ R0 )|
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qg—1

[(éKq(t))’“—lf (lm ((S,-Kq(t)))} o

<&, V(x,1) € Q5 % (0,26).

+2(Epg!)™ !

Let
di(x) =d(x)=p, dax) =d(x)+p,
ue = Y1 (& K9(d) (x))), xeD, and u, = Y1 (&K (da(x))), xED;.
By using
(&g T = by, —2e

and by a direct calculation, it follows that, for x € DI;
div(|Vite|" 2 Vitg) — b(x) f (1t (x)) + |ite (x) 70"V

(u
= (m—1)(y1 (&K (d; (x))
—1

(dy ()" W} (E1K(d (x))) (E19)" K™V (dy (x))K" (s (x))
T (VEKI @)™ (i) (g — 1) — DK, () (e ()
T (W EK ()™ (€)™ K0 () m — DR () (s ()
T (VEK ()™ (g™ KDy ()" (dy () A (1))
q(m—1)
) (v (E K (x [W ) () k(e () W (€1 K (s (2) >>}

= (1" G )R )] i (o

< azkr@ ! (@) ) 7 (&K @) )

(m— DK W () K(d ()
2 () K () Ad(’“)}

b(x) m—1 g1

—(g=1D)(m—1)-

+ (G [((&K%r))m—lf(wl(@K‘f(z»))q—l )
<0,

i.e., itg is a supersolution of problem (P.) in D, .

In a similar way, for x € DI‘," ,we can show that u, is a subsolution of of problem
(P+) in D; .

Now let u. be an arbitrary solution of problem (P ) and

C1(0¢) := max u(x).
x)>6¢
We see that
ur < Ci(8) +itg, on dD, .
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Since y is decreasing, see Lemma 2.3, and &y, < &, we have that

uy < Y1 (EnK(202¢)) :=Ca(8¢),

whenever d(x) =28 — p and u, < uy +Ca(8) on ID] .
It follows by (f1) and Lemma 3.1 that

ur < Ci(6)+ue on Dy, ug <y +Cy(8) on D
Hence by letting p — 0, we have for x € D; D},

B C(0) . ut(x)
v (&K(d(x)) ~ wi(&K(d(x)))

and

() Ci(6:)
VEK@W) S EKId)
Consequently,
L 14 (x)
LS k()
and

imsu U (x)
limsup Kl <

Thus by letting € — 0, we obtain

o uy(x)
LS Y CoaKe(d ()

and

im U (x)
S B K9(d())

By Lemma 2.3 (ii) and Proposition 2.1, we have

cmsap YLE0K(d() i (GoKN(d()))
IS T KIE() e Ty K@)

Thus )
. Uuy(x
limsup ——————~
dw—o Y1(K(d(x)))
(ii) When b satisfies (b2) with Cp > 0, either g € (0,m/(m—1)),m > 1 and
l—‘f >0.
Let € € (0,b;/4) and

=1

1

b0 = % (2— (m —bf><2—ck>) "
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1 b =
’504:5<2—<m—12><2—ck>) ’
m—1 __ m— £

(&) = (&n) 1_2—(m—1)(2—Ck)’
€
2= )2-C)

(&)™ = (&)™ +

It follows that

503/ mi\l/i < 53 < 54 < m7%§04.

By (b1),(b3),(1.2),(2.11) and (f4),we see that there is 0, € (0, 8/2) (which is
corresponding to €) sufficiently small that:

(b1 —€)k"(d(x) — p)K™*(d(x) —p)
< (b — &)k (d(x))K"(d(x)) < b(x), x €D, = Qy5,/Qyp,

and

b(x) < (br+€)k"(d(x))K"*(d(x) — p)
< (by+€)K™(d(x) +p)K"2(d(x) +p), x € D} = Qo5 p,

where p € (0,6).
Fori=3,4,

4(2800)" &K (1) f (i (GRP(0) f (v (EK(2))) — 1’

+ (m—1)(2&04)""! KSQ z/)(t) —(1- Ck)‘ + (2&04)"! % |Ad(x)|
+2(29E00)" | (EK2 ()" (w1 (EK2 (1)) — T+ T
X (%)l—((]—l)(m—l) <&, Y(x,1) € Qg x (0,28).

Let
di(x) =d(x)—p, d(x)=d(x)+p,

Ug = W1(€3K2(d1(x))), xeD, and u, = l//1(§4K2(d2(x))) X € D;.

By using
(26)"' 2~ (m—1)(2~Cy) = b1,

and by a direct calculation, it follows that, for x € DI; s
div(|Vize "2V te) — b(x) f(ite (1)) = | ()2

m—2
—(m—1) (l//i(éus (d <x>>>) v (5318 (d <x>>) ()" K™ (dy ()K" () (1))
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-1

+(w (&K (i (x ) (28" (m— DK™ 2(dy (x) K" (dy (x))

+ (llf (&K (dy (x ) (2&)" K" (dy (x)) (m — DK% (dy (x))K (di (x))
-1

+ (llf (&K (dy (x ) (2&)" K™ (dy (x))k" (dy (x))A(dy (x))

g(m—1)
— b(x) (w1 (&K (dy (x)))) £ [2€3K(d1 (xX))k(d1 (x))y1 (&K (ds (X)))]

= (=1)"f(y1 (EK>(dy (x))))k™ (d1 (x)) K™% (dy (x))
X {2(253)"1_1 (531(2(511 (X))fﬁ_l(%(éﬂ(z(a’l M) (w1 (&K di(x)))) — 1)

+2(283)" ! = (m—1)(2&)""!

~n- gy (CAEEEE) )

~ =181 -6 - g F M A
(—1)"b(x)
- (k’“(ch K2 " 1) —h
g—1
+ (20! ((éus (1 ()" F (v (K <x>>>>)
K(di (%)) (m-1)
<k dll(x ) }
<0,

i.e., g is a supersolution of problem (Py) in D, .

In a similar way, for x € D; ,we can show that u, is a subsolution of of problem
(Pi) in D;.

The last part of the proof is the same as that of (i).

(iii) When g =m/(m—1), b satisfies (by) and 2 — (m—1)Cy — 21“}/('"_1) >0 for
problem (P_).

Let € € (0,b;/4) and

b by
05 = — m— 5
2\ 2-(m-ng—2ry"

Lo b
06 = = ™, ,
2\ 2—(m-ng—2ry"

2¢e

éS = 505_ 9
2 (m—1)¢—2ry "
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2¢
2~ (m—1)G—2ry "

6 = So6 +
It follows that
Eos/ " V2 < & < & < "V2&os.
By (b1),(b2),(1.2),(2.11) and (fa).we see that there is & € (0,0/2) (which is
corresponding to €) sufficiently small that:
(b1 — &)k (d(x) = p)K"*(d(x) — p)
< (b1 — e)k"(d(x)K™2(d(x)) < b(x), x €Dy =5, /D

and
b(x) < (by+€)K"(d(x))K"*(d(x) — p)
< (ba+ )K" (d(x) +p)K"*(d(x) +p), x € Dy = Qag,
where p € (0,6).
And for i = 5,6,

4(2E06)" | ER () f T (Wi (EK2(0))) £ (v (EK (1)) — 1'

D~ (1- )+t K ad)

ER () (7T (yi (EK2(1)) ~ T T
<&, V(x,1) € Q5 % (0,26).

+(m—1)(2806)" "

+2(2806)" "

Let
di(x) =d(x)—p, da(x)=d(x)+p,

e = vi(EKX(di(x)), x€D, and u, = yi (&K (da(x))) x€DJ.
By using
(285" @~ (m— )G~ 20 ) = by,
and by a direct calculation, it follows that, for x € D; s

div(|Vite|"Vite) — b(x) f(ite (x)) — |ite (x)|"

m—2
— =) (WiEKH @) (SR 0) ) 8 K@ )R ()
m—1
F(WER@WD) T &) o DK™ ()R 2)

m—1
n (w{(&smdl <x>>>) (E5)™ K" (dy (x)) (m — DR (dy () (dy ()
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m—1

+<wi(€sl<2(d1(x)))) (285" K" (d ()R (dy () A (e ()

—b(x)f(y1 (&K (dy (x)))) — [255[((0'1 (x))k(dy (x) y} (EsK?(d (x)))]
(1) P (&K ()R s () K™ 2(dy (1))
x {2(2&)“" (&K%dl ()7 (v (EsK(d () (v (€K () — 1)

+2(285)" 7! = (m—1)(2&5)"

— (m—1)(2&)""! (“";&?jﬁiﬁ; WD _i- ck))

—(m—1)(2&)" ' (1-C) — (2&5)" !

K(d(x))

K ()

[y
<km(d1(x))Km2(d1(x)) bl)

—bi1—=2(28)"" (&sK%dl ()7 (wi (EsK>(dh (x)))) =T T )
~25) Ty

<0,

i.e., g is a supersolution of problem (P-) in D, .

In a similar way, for x € Dﬁf, we can show that u, is a subsolution of of problem
(P-) in D/j. The last part of the proof is the same as that of (i).

(iv) When g =m/(m— 1) b satisfies (b3) and 2 — (m —1)Ce+2T'Y "~V > 0 for
problem (Py).

Let € € (0,b;/4) and

o7 = ! m=1 d
2 \/2—(m—1)ck+2r}/(’””’
1 b,
=3 m\l/z — (m— 1)+ 20/
S 1)2; orl/m=1)’
f
s =&os + 2 ryl

2 (m—1)C+ 21}

It follows that

&) "V2 < & < & < "V 2.
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By (b1),(b2),(1.2),(2.11) and (f1), we see that there is 0 € (0,8y/2)(which is
corresponding to €) sufficiently small that:

(b1 —&)k"(d(x) — p)K"*(d(x) —p)
< (b1 — €)K"(d(x)K"2(d(x)) < b(x), x € D},

and

b(x) < (b2 +€)k"(d(x)K"2(d(x) — p)
< (b2 +e)K"(d(x) +p)K" *(d(x) +p), x €Dy,

where D, = Q5. /Q, D =5, and p € (0,5).

And for i =7,8,
4280 |01 (i (GRS (v (670 ~ 1|
+ = 12! | K9 - (1 0+ (20n™ 1K((f)’ Ad(x)

ERX(0)f 7 (i (EK2(1)) ~TT T
<&, Y(x,1) € Qs x (0,26).

+2(280s)""!

Let di(x) = d(x) —p, dr(x) = d(x) +p and
ite = y1 (&K% (d)(x))), x€D, and u, =y (&K (da(x))) x€D].
By using
&) 12— (m— 1)ck+2r‘;ﬁ) = b,

and by a direct calculation, it follows that, for x € D* s
div(|Vite|"*Vite) — b(x) f (ite(x)) + \ue( )"

— -1 (ViR @ ) i (K@) ) )R R @1 2)

m—1

<u/1 £ K2(d (x 7 = DK™ (dy ()K" (d (x))

m—1

)
m—1

( (&K dy (x ) (28" K" (dy (x)) (m — 1)K (dy (1)K (d ()
) (2&)" 1K™ (dy ()K" (di (x))A(di (x))

(wl &K (d (x

—b(0)f(y1 (&K (di(x)))) — [2571((0’1( )k(di () w1 (6K (d1 (x)))
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(1) (G K2y ()R s () K™ (e ()
x {2(257)'“—1 (&K%dl () (v (R (d () (v (K () — 1)

+2(28)" ! = (m— 128"
- (LGRS

—(m—=1)(2&)" ' (1-C) — (2&)" !

(L Cumy
(km(dm DK"2(d; (%)) ’”)

— b1+ 2(2&)" (&K (di () f 7T (w1 (EK (d (x)))) —

—(1—Ck))

+202&)"TFT

Hf—//\
=1
-3

|

N—

<0,

i.e., itg is a supersolution of problem (P..) in D,

In a similar way, for x € D; ,we can show that u, is a subsolution of of problem

(P+) in D . The last part of the proof is the same as that of (i).

13].
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