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EXISTENCE OF A MILD SOLUTION FOR

IMPULSIVE NEUTRAL FRACTIONAL DIFFERENTIAL

EQUATIONS WITH NONLOCAL CONDITIONS
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(Communicated by Michal Fečkan)

Abstract. In the present work, we investigate the existence of a mild solution of the fractional
order differential equation with impulsive conditions in a Banach space. We establish the exis-
tence of a mild solution by using some fixed point theorems and resolvent operator theory. We
present an example for showing the effectiveness of the main theory.

1. Introduction

In recent few decades, the fractional calculus has received much attention of re-
searchers mainly due to its demonstrated applications in widespread fields of science
and engineering, e.g., fluid flow, rheology dynamical, mechanics, electrical engineer-
ing, modelling of many physical phenomena and so on. Fractional calculus have been
available and applicable to deal with real system characterized by power laws, anoma-
lous diffusion process etc. The nonlinear oscillations of earthquake are one of such
important models. The deficiency of continuum traffic flow can be characterized by the
fractional derivative. Concerning this matter, we refer to the monographs [17, 24, 27,
29] and the references cited therein. Also, neutral differential equation arises in many
areas of applied mathematics, science and engineering such as theory of aeroelasticity
[18] and lossless transmission lines[14]. The theory of heat conduction in materials and
the lumped control systems can be described by neutral differential equations. For more
details on neutral functional differential equation, we refer to papers [7, 8, 9, 10, 11, 20]
and references given therein.

The existence of the solution for the differential equations with nonlocal condi-
tions has been investigated widely by many authors that the nonlocal conditions are
more realistic than the classical initial condition such as in dealing with many physical
problems. The differential equation with nonlocal conditions has been firstly consid-
ered by Byszewski [5]. In [21], authors have studied the existence of the mild solution
to fractional integro-differential equations of Sobolev type with nonlocal conditions by
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using a fixed point theorem for condensing operators. In [30], authors have established
the existence and uniqueness of the mild solutions for fractional differential equations
with nonlocal conditions. The existence of solutions to semi-linear neutral fractional
differential equations has been proved by the authors [1]. Recently, the approximate
controllability to fractional neutral stochastic evolution equations involving nonlocal
conditions has been investigated by the authors [11]. Concerning the developments in
the study of nonlocal problems we refer to [2, 8, 9, 10, 11, 16, 20, 22, 30, 38, 39] and
references given therein.

On the other hand, many real world processes and phenomena which are sub-
jected during their development to short-term external influences can be modeled as
impulsive differential equation with fractional order. Their duration is negligible com-
pared to the total duration of the entire process or phenomena. Such process is inves-
tigated in various fields such as biology, physics, control theory, population dynamics,
medicine and so on. Impulsive differential equations are an appropriate model to hered-
itary phenomena for which a delay argument arises in the modelling equations. For
the general theory of such equations, we refer to the monographs [4],[19] and papers
[1, 2, 12, 13, 16, 23, 25, 30, 31, 32, 34, 35, 36, 37, 38] and references given therein.

In our recent work [7]-[8], we have adopted the idea of [12] and studied the im-
pulsive neutral fractional integro-differential equations in an arbitrary Banach space
X involving single base point [13], [23], without assuming Lipschitz continuity of
nonlinear function f and compactness of the solution operator Sq(t), t � 0. In [7],
we have obtained the existence of mild solution for the impulsive neutral fractional
integro-differential equation with infinite delay by using Hausdorff’s measure of non-
compactness and Darbo fixed point theorem with analytic solution operator. In [8], we
have considered the impulsive neutral fractional integro-differential equation with fi-
nite delay and nonlocal conditions. Utilizing Hausdorff’s measure of noncompactness,
we have established the existence results by mean of analytic solution operator and
Darbo-Sadovskii fixed point theorem.

In this paper, our main concern is to establish the existence and uniqueness of a
mild solution for the fractional order neutral differential equation with the multiple base
points in a Banach space (X ,‖ · ‖X) ,

cDη [u(t)−F(t,u(h1(t)))] = A[u(t)−F(t,u(h1(t)))]+G(t,u(h2(t))),
t ∈ [0,T ], t �= ti 0 < T < ∞, (1.1)

Δu(ti) = Ii(u(t−i )), i = 1,2, · · · ,δ , δ ∈ N, (1.2)

u(0) = u0 +g(u) ∈ X , (1.3)

where cDη is the classical Caputo fractional derivative of order η , 0 < η < 1 [27] and
A : X ⊃ D(A) → X is a closed linear operator with dense domain D(A) in a Banach
space X and Ii ∈C(X ,X) , 0 = t0 < t1 < · · · < tδ < tδ+1 = T , Δu|t=ti = u(t+i )−u(t−i )
and u(t+i ) = limh→0+ u(ti +h) and u(t−i ) = limh→0− u(ti +h) denote the right and left
limits of u(t) at t = ti , respectively. The functions F , G , h1 ,h2 and g are appropriate
continuous functions to be stated later and h j ∈C(I ,I ), j = 1,2.

In this study, we present two existence results for the mild solution to the system
(1.1)-(1.3). Our first existence result is obtained by using Banach fixed point theorem
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and analytic semigroup with assuming Lipschitz continuity of f . Our second result is
obtained by using Schaefer’s fixed-point theorem and compact solution operator with
the assumption that f does not satisfy the Lipschitz continuity.

The organization of the paper is as follows: Section 2 gives some basic defini-
tions, lemmas and theorems as preliminaries as these are useful for proving our results.
Section 3 focuses on proving the existence results for mild solutions to the system (1.1)-
(1.3). Section 4 provides an example for illustrating the theory.

2. Preliminaries

In this section, we discuss some definitions and notations about sectorial operators,
solution operator and analytic solution operators required for establishing our results.

Throughout this work, X is a complex Banach space equipped with the norm
‖ · ‖X . The symbol C(I ;X) stands for the Banach space of all continuous functions
from I = [0,T ] into X with supremum norm i.e., ‖y‖I = supt∈I ‖y(t)‖ . The notation
L(X ,Y ) denotes the Banach spaces of all bounded linear operators from X into Y with
the operator norm denoted by ‖ · ‖L(X ,Y ) and when X = Y then we write simply L(X)
and ‖ · ‖L(X) . In addition, PC(I ,X) represents the Banach space of all the piecewise
continuous functions from I into X with the norm

‖y‖PC = max{sup
t∈I

‖y(t +0)‖X , sup
t∈I

‖ y(t −0)‖X},

and Br(x,X) denotes a closed ball with center at x and radius r in X .
To set the structure for our primary existence results, we recall the following defi-

nitions.

DEFINITION 1. The definition of one parameter Mittag-Leffler function is given
by

Eα(z) =
∞

∑
k=0

zk

Γ(αk+1)
,

and two parameter function of Mittag-Leffler type is defined by

Eα ,β (z) =
∞

∑
k=0

zk

Γ(αk+ β )
=

1
2π i

∫
C

μα−β eμ

μa− z
dμ , 0 < α,β ,z ∈ C,

here C is a contour which start and ends at −∞ and encircles the disc |μ | � |z|1/2

counter clockwise. The Laplace transform of the Mittag-Leffler is defined as

L(tβ−1Eα , β (−ραtα)) =
λ α−β

λ α + ρα , Re λ > ρ1/α , ρ > 0.

For more details, we refer to [27].
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DEFINITION 2. [27] The Riemann-Liouville fractional integral operator J of
order η > 0 is defined by

J ηF(t) =
1

Γ(η)

∫ t

0
(t− s)η−1F(s)ds, (2.1)

where F ∈ L1((0,T );X) .

DEFINITION 3. [27] The Riemann-Liouville fractional derivative is given by

DηF(t) = Dδ
t J δ−ηF(t), δ −1 < η < δ , (2.2)

where Dδ
t = dδ

dtδ , F ∈ L1((0,T );X), J δ−ηF ∈ W δ ,1((0,T );X) . Here the notation

W δ ,1((0,T );X) stands for the Sobolev space defined by

W δ ,1((0,T );X) =
{

v ∈ X : ∃z ∈ L1((0,T );X) :

v(t) =
δ−1

∑
k=0

dk
tk

k!
+

tδ−1

(δ −1)!
∗ z(t), t ∈ (0,T )

}
. (2.3)

Note that z(t) = vδ (t) , dk = vk(0) .

DEFINITION 4. [27] The Caputo fractional derivative is given by

cDηF(t) =
1

Γ(δ −η)

∫ t

0
(t− s)δ−η−1Fδ (s)ds, δ −1 < η < δ , (2.4)

where F ∈Cδ−1((0,T );X)∩L1((0,T );X) . The Laplace transform of the Caputo deriva-
tive of order η > 0 is given by

L[cDηu(t);λ ] = λ ηL[u(t)]−
δ−1

∑
k=0

λ η−k−1uk(0), δ −1 < η < δ . (2.5)

DEFINITION 5. [31] An operator A which is closed and linear, is called sectorial
operator if there are constants ω ∈ R , θ ∈ [π/2,π ] , M > 0 such that the following two
conditions are satisfied:

(1) ρ(A) ⊃ ∑(θ , ω) = {λ ∈C : λ �= ω , |arg(λ −ω)|< θ},
(2) ‖ R(λ ,A)‖L(X) � M

|λ−ω| , ω ∈ ∑(θ , ω),

where ρ(A) be the resolvent set of A .

For more details, we refer to [3]. Consider the following Cauchy problem for the frac-
tional evolution equation

cDηu(t) = Au(t), t > 0; u(0) = x, uk(0) = 0, k = 1, · · · ,δ −1, (2.6)

where η > 0 and δ = 
η� .
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DEFINITION 6. [3] A family {Sη(t)}t�0 ⊂ L(X) is called a solution operator for
(2.6) if the following conditions are satisfied:

(a) Sη(t) is strongly continuous for t � 0 and Sη(0) = I ;

(b) Sη(t)D(A) ⊂ D(A) and ASη(t)x = Sη(t)Ax for all x ∈ D(A) , t � 0;

(c) Sη(t)x is a solution of (2.6) for all x ∈ D(A) , t � 0.

The solution operator Sη(t) of (2.6) is also defined by (see [3])

λ η−1(λ η I−A)−1x =
∫ ∞

0
e−λ tSη(t)xdt, Re λ > ω , x ∈ X , (2.7)

where ω � 0 and {λ η : Reλ > ω} ⊂ ρ(A) .
An operator A is said to belong to C η(X ;M,ω) , or C η(M,ω) if the problem

(2.6) has a solution operator Sη(t) satisfying ‖Sη(t)‖� Meωt , t � 0. Denote C η (ω) =⋃{C η(M,ω); M � 1} , or C η =
⋃{C η(ω ; ω � 0)} (Bazhlekova, [3]).

DEFINITION 7. [3] A solution operator Sη(t) of (2.6) is said to be analytic if
Sη(t) admits an analytic extension to a sector ∑θ0

for some θ0 ∈ (0,π/2] .

An analytic solution operator Sη(t) is said to be of analyticity type (θ0,ω0) if for
each θ < θ0 and ω > ω0 there exists a positive constant M = M(θ ,ω) such that
‖Sη(t)‖ � Meω Re t , for t ∈ ∑θ = {t ∈ C/{0} : |arg t| < θ} . Denote A η (θ0,ω0) =
{A ∈ C η ; A generates analytic solution operator Sη(t) of type (θ0,ω0)} .

LEMMA 1. [3, 28] Let η ∈ (0,2) . A linear closed densely defined operator A
belongs to A η(θ0,ω0) if and only if λ η ∈ ρ(A) for each λ ∈ ∑θ0+π/2(ω0) , and for
any ω > ω0 , θ < θ0 , there exists a constant C = C(θ ,ω) such that

‖λ η−1R(λ η ,A)‖ � C
|λ −ω | , λ ∈ ∑

θ+π/2

(ω). (2.8)

Now, we have following result for mild solution of the non-homogenous Cauchy prob-
lem of fractional order.

THEOREM 1. Suppose A is a sectorial operator and f satisfies the uniform Hölder
condition with exponent β ∈ (0,1] , then

u(t) = Sη(t)x0 +
∫ t

0
Tη(t− ς) f (ς)dς , t ∈ [0,T ], (2.9)

where

Sη(t) =
1

2π i

∫
Γ
eλ tλ η−1R(λ η ,A)dλ ,

(2.10)



156 ALKA CHADHA AND DWIJENDRA N. PANDEY

Tη (t) =
1

2π i

∫
Γ
eλ tR(λ η ,A)dλ ,

is the mild solution for the following fractional Cauchy problem

cDηu(t) = Au(t)+ f (t), 0 < η < 1, t ∈ I , (2.11)

u(0) = x0 ∈ X , (2.12)

where Γ is a suitable path lying on ∑θ , ω . For 0 < η < 1 , Tη(t) is the η -resolvent
family and Sη(t) is the solution operator, generated by A.

For more details about solution operators, we refer to [3, 28], and references cited
in these papers.

Consider the set of functions

PC(I , X) = {z : I → X : z ∈C((ti, ti+1],X), i = 0,1, · · · ,δ and z(t+i )
and z(t−i ) exist with z(t−i ) = z(ti)} (2.13)

equipped with the norm
‖z‖PC = sup

t∈I
‖z(t)‖X ,

which is a Banach space (PC(I , X),‖ · ‖PC) .
According to the Theorem 2.4. in [31], we present the following definition of a

mild solution for equation (1.1).

DEFINITION 8. The function u : I → X is said to be a mild solution of equation
(1.1) if u(·) ∈ PC(I ,X) satisfies the following integral equation

u(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sη(t)[u0 +g(u)−F(0,u(h1(0)))]+F(t,u(h1(t)))
+

∫ t
0 Tη (t− ς)G(ς ,u(h2(ς)))dς , t ∈ [0,t1]

Sη(t− t1)[u(t−1 )+ I1(u(t−1 ))−F(t1,u(h1(t+1 )))]+F(t,u(h1(t)))
+

∫ t
t1

Tη(t− ς)G(ς ,u(h2(ς)))dς , t ∈ (t1, t2]
...

...
...

Sη(t− tδ )[u(t−δ )+ Iδ(u(t−δ ))−F(tδ ,u(h1(t+δ )))]+F(t,u(h1(t)))
+

∫ t
tδ

Tη(t− ς)G(ς ,u(h2(ς)))dς , t ∈ (tδ ,T ],

(2.14)

and also satisfies the following impulsive conditions 
u|t=ti = Ii(u(t−i )), i = 1, · · · ,δ .

LEMMA 2. [3, 31] If η ∈ (0,1) and A ∈ Aη(θ0,ω0) , then for any x ∈ X and
t > 0 , we have Sη(t)x ∈ D(A) and

‖Sη(t)‖L(X) � Meωt , ‖Tη(t)‖L(X) � Ceωt(1+ tη−1), t > 0, ω > ω0.

Thus, we have
‖Sη(t)‖L(X) � M̃S, ‖Tη(t)‖L(X) � tη−1M̃T ,

where M̃S = sup
0�t�T

‖Sη(t)‖L(X), M̃T = sup
0�t�T

Ceωt(1+ t1−η).
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3. Existence Results

In this section, we provide two existence results for the mild solution of system
(1.1)-(1.3). Our first existence result is based on Banach fixed point theorem which
gives the existence and uniqueness of the mild solution to the system (1.1)-(1.3). The
second existence result is established by using Schaefer’s fixed point theorem and com-
pact resolvent operator which provides the existence of a mild solution to system (1.1)-
(1.3).

3.1. First Existence Result

To prove our first existence result, we make following assumptions on F , G , g
and Ii .

Assumptions for the first existence result:

(A1) The function F : I ×X → X is continuous and there exists a constant LF > 0
such that

‖F(s1,w1)−F(s2,w2)‖ � LF [|s1 − s2|+‖w1−w2‖X ] , (3.1)

and
‖ F(t,w)‖ � L1‖ w‖+L2, (3.2)

for every w, w1, w2 ∈ X and t, s1, s2 ∈I and L1 and L2 are positive constants.

(A2) The function G : I ×X → X is continuous and there exists a constant LG > 0
such that

‖G(t,w1)−G(t,w2)‖ � LG‖w1−w2‖X , (3.3)

for every w1, w2 ∈ X and t,∈ I .

(A3) Ii : X → X , where i = 1, · · · ,δ are continuous functions and there exists a con-
stant LI > 0 such that

‖Ii(w1)− Ii(w2)‖ � LI‖w1−w2‖X (3.4)

for each w1, w2 ∈ X .

(A4) The map g : C(I ;X) → C(I ;X) is a Lipschitz continuous function and there
exists a constant Lg > 0 such that

‖g(w1)−g(w2)‖ � Lg‖w1 −w2‖, (3.5)

and
‖g(w)‖ � D1‖w‖+D2, (3.6)

for each w,w1,w2 ∈ X .
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THEOREM 2. Let us assume that the conditions (A1)− (A4) are satisfied and

L = M̃S(Lg +1)+ M̃SLI +(M̃S +1)LF + M̃TLG
Tη

η
< 1. (3.7)

Then, the impulsive problem (1.1) has a unique mild solution u ∈ X on I .

Proof. Let u0 ∈ X be fixed. Define a mapping Q : PC(I ;X) → PC(I ;X) such
that

(Qu)(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sη(t)[u0 +g(u)−F(0,u(h1(0)))]+F(t,u(h1(t)))
+

∫ t
0 Tη(t− ς)G(ς ,u(h2(ς)))dς , t ∈ [0,t1]

Sη(t − t1)[u(t−1 )+ I1(u(t−1 ))−F(t1,u(h1(t+1 )))]+F(t,u(h1(t)))
+

∫ t
t1

Tη (t− ς)G(ς ,u(h2(ς)))dς , t ∈ (t1,t2]
...

...
...

Sη(t − tδ )[u(t−δ )+ Iδ (u(t−δ ))−F(tδ ,u(h1(t+δ )))]+F(t,u(h1(t)))
+

∫ t
tδ

Tη(t − ς)G(ς ,u(h2(ς)))dς , t ∈ (tδ ,T ].
(3.8)

By the assumptions (A1)-(A4) , it can be easily shown that the map Q is well defined
on PC(I ;X) . Furthermore, for u∗,u∗∗ ∈ PC(I ;X) and t ∈ [0,t1] , we get

‖Qu∗(t)−Qu∗∗(t)‖
� ‖ Sη(t)‖L(X)‖g(u∗)−g(u∗∗)‖

+‖ Sη(t)‖L(X)‖ F(0,u∗(h1(0)))−F(0,u∗∗(h1(0)))‖X

+‖ F(t,u∗(h1(t)))−F(t,u∗∗(h1(t)))‖X

+
∫ t

0
‖ Tη (t− ς)‖‖ G(ς ,u∗(h2(ς)))−G(ς ,u∗∗(h2(ς)))‖Xdς ,

� M̃SLg sup
ς∈[0,T ]

‖u∗(ς)−u∗∗(ς)‖+ M̃SLF sup
ς∈[0,T ]

‖u∗(ς)−u∗∗(ς)‖

+LF sup
ς∈[0,T ]

‖u∗(ς)−u∗∗(ς)‖+ M̃TLG

×
∫ t

0
(t− ς)η−1 sup

ς∈[0,T ]
‖u∗(ς)−u∗∗(ς)‖dς

� [M̃S(Lg +LF)+LF + M̃TLG
T η

η
]‖ u∗ −u∗∗‖PC. (3.9)

Similarly, for t ∈ (ti, ti+1], i = 1, · · · ,δ , we obtain

‖Qu∗(t)−Qu∗∗(t)‖
� ‖Sη(t− ti)[u∗(t−i )−u∗∗(t−i )]‖+‖Sη(t − ti)[Ii(u∗(t−i ))− Ii(u∗∗(t−i ))]‖

+‖Sη(t− ti)[F(ti,u∗(hi(t+i )))−F(ti,u∗∗(hi(t+i )))]‖
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+‖F(t,u∗(h1(t)))−F(t,u∗∗(h1(t)))‖
+

∫ t

ti
‖Tη(t− ς)[G(ς ,u∗(h2(ς)))−G(ς ,u∗∗(h2(ς)))]‖dς ,

� M̃S sup
ς∈[0,T ]

‖u∗(ς)−u∗∗(ς)‖+ M̃SLI sup
ς∈[0,T ]

‖u∗(ς)−u∗∗(ς)‖

+ M̃SLF sup
ς∈[0,T ]

‖u∗(ς)−u∗∗(ς)‖+LF sup
ς∈[0,T ]

‖u∗(ς)−u∗∗(ς)‖

+ M̃T LG

∫ t

ti
(t− ς)η−1 sup

ς∈[0,T ]
‖u∗(ς)−u∗∗(ς)‖dς ,

�
[
M̃S + M̃SLI +(M̃S +1)LF + M̃TLG

T η

η

]
×‖ u∗ −u∗∗‖PC. (3.10)

Thus, for all t ∈ I , we conclude

‖Qu∗(t)−Qu∗∗(t)‖ � [M̃S(Lg +1)+ M̃SLI +(M̃S +1)LF + M̃TLG
T η

η
]

×‖ u∗ −u∗∗‖PC. (3.11)

Taking supremum over t , we get,

‖Qu∗ −Qu∗∗‖PC � L ‖ u∗ −u∗∗‖PC. (3.12)

Since L = M̃S(Lg + 1)+ M̃SLI + (M̃S + 1)LF + M̃TLG
Tη

η < 1. Thus, it gives that Q
is a strictly contraction map i.e., there exists a unique fixed point of the map Q on I
which is a unique mild solution to the problem (1.1)-(1.3).

3.2. Second Existence Result

Our next result based on the Schaefer’s fixed-point theorem. The statement of the
theorem is as follows:

THEOREM 3. Let Q : X → X be a continuous and a compact map such that the
set {x ∈ X : x = λQx for some 0 � λ � 1} is bounded, then Q has a fixed point.

For this second result, we need to assume a new set of assumptions on G , g , F and
Ii, i = 1, · · · ,δ .

Assumptions for the second existence result:

(B1) G : I ×X → X is a continuous function and there exist a continuous function
mG : I → (0,∞) and continuous non-decreasing function W : [0,∞) → (0,∞)
such that

‖ G(τ,w1)‖X � mG(t)W (‖ w1‖), (τ,w1) ∈ I ×X , (3.13)

and
∫ ∞
0

dς
W (ς) < ∞

(B2) The function F : I × X → X is a completely continuous function satisfying
assumption (A1) .



160 ALKA CHADHA AND DWIJENDRA N. PANDEY

(B3) The functions Ii : X → X are completely continuous and there exists Ω > 0 such
that

Ω = max
1�i�δ , y∈X

{‖ Ii(y)‖X}. (3.14)

(B4) The operator families Sη(t),t � 0 and Tη(t),t � 0 are compacts.

(B5) M̃T Tη

η(1−M)

∫ T
0 mG(ς)dς <

∫ ∞
ω1

dς
W (ς) , where ω1 = M∗

(1−M) ,

M∗ = max{M̃S‖u0‖+(M̃S +1)L2 + M̃SD2,M̃SΩ +(M̃S +1)L2} and

M = M̃S(D1 +1)+ (M̃S +1)L1 < 1.

THEOREM 4. Assume that (B1)− (B5) are satisfied. Then, there exists at least
one mild solution of the impulsive problem (1.1)-(1.3) on I .

Proof. Consider the operator Q : PC(I ;X) → PC(I ;X) as in Theorem 2. It can
be easily proved that map Q is well defined on PC(I ;X) .

Step 1: The map Q is continuous.
To prove the continuity, let un be sequence in PC(I ;X) such that limn→∞ un(t) =

u(t) i.e. un → u as n → ∞ in PC(I ;X) . Since G and F are continuous. Therefore,
by the continuity of G , F and g we deduce that for each τ ∈ I

G(τ,un(h2(τ))) → G(τ,u(h2(τ))), as n → ∞, (3.15)

F(τ,un(h1(τ))) → F(τ,u(h1(τ))), as n → ∞, (3.16)

g(un) → g(u), as n → ∞. (3.17)

Now for every t ∈ [0,t1] , we have

‖ (Qun)(t)− (Qu)(t)‖
� ‖Sη(t)[g(un)−g(u)]‖+‖Sη(t)[F(0,un(h1(0)))−F(0,u(h1(0)))]‖

+‖ F(t,un(h1(t)))−F(t,u(h1(t)))‖
+

∫ t

0
‖ Tη(t − ς)‖ · ‖G(ς ,un(h2(ς)))−G(ς ,u(h2(ς)))‖dς ,

� M̃S‖g(un)−g(u)‖+ M̃S‖F(0,un(h1(0)))−F(0,u(h1(0)))‖
+‖ F(t,un(h1(t)))−F(t,u(h1(t)))‖
+ M̃T

∫ t

0
(t − ς)η−1‖ G(ς ,un(h2(ς)))−G(ς ,u(h2(ς)))‖dς ,

Thus, by the dominated convergence theorem, we get that

‖ (Qun)(t)− (Qu)(t)‖→ 0, as n → ∞, (3.18)

i.e., Qun(t) converges to Qu(t) in X for each t ∈ [0,t1] .
For t ∈ (ti, ti+1], i = 1,2, · · · ,δ , we get

‖ (Qun)(t)− (Qu)(t)‖
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� ‖Sη(t − ti)[un(t−i )−u(t−i )]‖+‖Sη(t − ti)[Ii(un(t−i ))− Ii(u(t−i ))]‖
+‖Sη(t− ti)[F(ti,un(h1(t+i )))−F(ti,u(h1(t+i )))]‖
+‖F(t,un(h1(t)))−F(t,un(h1(t)))‖
+

∫ t

ti
‖Tη(t− ς)[G(ς ,un(h2(ς)))−G(ς ,u(h2(ς)))]dς . (3.19)

By the continuity of Ii , G , F and dominated convergence theorem, we have

lim
n→∞

‖ (Qun)(t)− (Qu)(t)‖ PC = 0. (3.20)

Therefore it implies that Qun(t) converges to Qu(t) in PC(I ;X) . Hence, this proves
the continuity of the map Q .

Step2. Secondly, we show that Q maps bounded sets into bounded sets in the
space PC(I ;X) . To prove the result, it is enough to show that for any r > 0 there exists
γ > 0 such that ‖ Qu‖PC � H for each u ∈ Br(PC) = {u ∈ PC(I ;X) : ‖ u‖PC � r} .
Let

G1 = sup
t∈I , u∈Br

‖ G(t,u(h2(t)))‖,

then for any u ∈ Br(PC) , t ∈ [0,t1] , we have

‖ Qu(t)‖X � M̃S[‖ u0‖+D1r+D2]+ (L1r+L2)(1+ M̃S)+
M̃T T ηG1

η
,

= H0,

For t ∈ (ti, ti+1], i = 1, · · · ,δ , we get

‖ Qu(t)‖ � M̃S[r+ Ω]+ (L1r+L2)(M̃S +1)+
M̃T T ηG1

η
= Hi.

Thus, for t ∈ [0,T ] , we obtain
‖ Qu(t)‖ � H , (3.21)

where H = max0�i�δ Hi .
Step 3. Q maps bounded sets into equicontinuous sets of PC(I ;X) .
To this end, we show that Q(Br) is equicontinuous. Take 0 � ζ1 < ζ2 � t1 and

u ∈C([0, t1];X) , we have

‖ Qu(ζ2)−Qu(ζ1)‖
� ‖ [Sη(ζ2)−Sη(ζ1)](u0 +g(u)−F(0,u(h1(0))))‖

+‖ F(ζ2,u(h1(ζ2)))−F(ζ1,u(h1(ζ1)))‖

+‖
∫ ζ2

0
Tη (ζ2− ς)G(ς ,u(h2(ς)))dς −

∫ ζ1

0
Tη (ζ1− ς)G(ς ,u(h2(ς)))dς‖,

� ‖ [Sη(ζ2)−Sη(ζ1)]‖[‖ u0‖+‖g(u)‖+‖F(0,u(h1(0)))‖]+LF(|ζ2− ζ1|)

+
∫ ζ2

ζ1

‖ Tη(ζ2 − ς)‖‖ G(ς ,u(h2(ς)))‖dς ,
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+
∫ ζ1

0
‖ Tη(ζ2 − ς)−Tη(ζ1− ς)‖‖ G(ς ,u(h2(ς)))‖dς ,

� ‖ [Sη(ζ2)−Sη(ζ1)]‖[‖ u0‖+‖g(u)‖+‖F(0,u(h1(0)))‖]+LF(|ζ2− ζ1|)

+ M̃T

∫ ζ2

ζ1

(ζ2 − ς)η−1‖ G(ς ,u(h2(ς)))‖dς ,

+ M̃T

∫ ζ1

0
((ζ2 − ς)η−1− (ζ1− ς)η−1)‖ G(ς ,u(h2(ς)))‖dς . (3.22)

Since Sη(t) and Tη(t) are compact, therefore ‖ Qu(ζ2)−Qu(ζ1)‖ → 0 as ζ2 → ζ1 .
Therefore Q is equicontinuous on [0,t1] .

For ζ1,ζ2 ∈ (ti, ti+1] with ti < ζ1 < ζ2 � ti+1 , where i = 1, · · · ,δ ,

‖Qu(ζ2)−Qu(ζ1)‖
� ‖ [Sη(ζ2 − ti)−Sη(ζ1 − ti)](u(t−i )+ Ii(u(t−i ))−F(ti,u(h1(t+i ))))‖

+‖ F(ζ2,u(h1(ζ2)))−F(ζ1,u(h1(ζ1)))‖

+‖
∫ ζ2

ti
Tη (ζ2− ς)G(ς ,u(h2(ς)))dς −

∫ ζ1

ti
Tη (ζ1− ς)G(ς ,u(h2(ς)))dς‖,

� ‖ [Sη(ζ2 − ti)−Sη(ζ1 − ti)](u(t−i )+ Ii(u(t−i ))−F(ti,u(h1(t+i ))))‖
+LF [|ζ2− ζ1|+‖u(h1(ζ2))−u(h1(ζ1))‖]

+
∫ ζ2

ζ1

‖ Tη(ζ2 − ς)‖‖ G(ς ,u(h2(ς)))‖dς ,

+
∫ ζ1

0
‖ Tη(ζ2 − ς)−Tη(ζ1− ς)‖‖ G(ς ,u(h2(ς)))‖dς ,

� ‖ [Sη(ζ2 − ti)−Sη(ζ1 − ti)](u(t−i )+ Ii(u(t−i ))−F(ti,u(h1(t+i ))))‖
+LF [|ζ2− ζ1|+‖u(h1(ζ2))−u(h1(ζ1))‖]

+ M̃T sup
t∈[0,T ]

‖ G(t,u(h2(t)))‖ (ζ2− ζ1)η

η

+ M̃T

∫ ζ1

0
((ζ2 − ς)η−1− (ζ1− ς)η−1)‖ G(ς ,u(h2(ς)))‖dς . (3.23)

Since Sη(t) and Tη(t) are compact, therefore ‖ Qu(ζ2)−Qu(ζ1)‖ → 0 as ζ2 → ζ1 .
Therefore Q is equicontinuous on (ti,ti+1] . Hence we conclude that Q(Br) is equicon-
tinuous.

Step 4. Q maps Br into a compact set in X .
For this, we decompose Q into Q1 and Q2 , where

Q1(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

F(t,u(h1(t)))+
∫ t
0 Tη (t− ς)G(ς ,u(h2(u(ς))))dς , t ∈ [0,t1],

F(t,u(h1(t)))+
∫ t
t1

Tη(t − ς)G(ς ,u(h2(u(ς))))dς , t ∈ (t1,t2],
...

...
...

F(t,u(h1(t)))+
∫ t
tδ

Tη(t− ς)G(ς ,u(h2(u(ς))))dς , t ∈ (tδ ,T ],

(3.24)
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and

Q2u(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Sη(t)(u0 +g(u)), t ∈ [0,t1],

Sη(t − t1)[u(t−1 )+ I1(u(t−1 ))−F(t1,u(h1(t+1 )))], t ∈ (t1, t2]
...

...
...

Sη(t − tδ )[u(t−δ )+ Iδ (u(t−δ ))−F(tδ ,u(h1(t+δ )))], t ∈ (tδ ,T ].

(3.25)

We now prove that {Q1u(t), u ∈ Br} is relatively compact on X for all t ∈ I . It
is obvious that the set {Q1u(t), u ∈ Br} is relatively compact in X for t = 0. Let
0 < t � T be fixed and 0 < ε < t . For u∈ Br and t ∈ [0,t1] , we define an operator Q1,ε
as

Q1,εu(t) = F(t,u(h1(t)))+
∫ t−ε

0
Tη(t − ς)G(ς ,u(h2(u(ς))))dς . (3.26)

Similarly, for t ∈ (ti,ti+1], i = 1, · · · ,δ . Let ti < t < s � ti+1 be fixed and ε be a real
number satisfying 0 < ε < t . For u ∈ Br , we define

Q1,εu(t) = F(t,u(h1(t)))+
∫ t−ε

ti
Tη (t− ς)G(ς ,u(h2(u(ς))))dς . (3.27)

By using the compactness of Tη (t),t > 0 and completely continuity of F , we conclude
that the set Uε (t) = {(Q1,εu)(t) : u ∈ Br} is relatively compact in X for each ε , 0 <
ε < t . Moreover, for every u ∈ Br and t ∈ (ti,ti+1], i = 1, · · · ,δ , we have

‖ Q1u(t)−Q1,εu(t)‖ �
∫ t

t−ε
‖ Tη (t− ς)‖‖ G(ς ,u(h2(ς)))‖dς . (3.28)

Therefore, taking ε → 0 we can see that there are relatively compact sets arbitrarily
close to the set U (t) = {Q1u(t), u ∈ Br} . Therefore, the set {Q1u(t), u ∈ Br} is
relatively compact in X . Hence, we conclude that Q1 is compact for all t ∈ I by the
Arzel á-Ascoli theorem.

Next we show that {Q2u(t), u∈ Br} is relatively compact in X for all t ∈I . For
t ∈ [0, t1] we have Q2u(t) = Sα(t)[u0 +g(u)−F(0,u(h1(0)))] , by the compactness of
Sη(t), t > 0, it follows that {Q2u(t), u ∈ Br} is relatively compact subset of X for all
t ∈ [0, t1] . On the other hand, for t ∈ (ti,ti+1] , where δ � i � 1 and u ∈ Br , there exist
r̂ > 0 such that

Q̂2u(t)i ∈

⎧⎪⎪⎨
⎪⎪⎩

Sη(t − ti)[un(ti)+ Ii(un(ti))−F(ti,u(h1(t+i ))], t ∈ (ti,ti+1), un ∈ Br̂,

Sη(ti+1 − ti)[un(ti)+ Ii(un(ti))−F(ti,u(h1(t+i ))], t = ti+1, un ∈ Br̂,

un(ti)+ Ii(un(ti))−F(ti,u(h1(t+i )), t = ti, un ∈ Br̂,
(3.29)

where Br̂ is an open ball of radius r̂ . From (A1) and (A6)-(A8) , it follows that Q̂2u(t)i
is relatively compact in X for all t ∈ (ti,ti+1] . Hence, by the assumptions (B1)− (B4)
and Arzela-Ascoli theorem, we conclude that Q2 is compact for all t ∈ I . Therefore
Q = Q1 +Q2 is compact.
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Step 5. (A priori bounds) We prove that the set E = {u∈PC(I ;X) such that u =
λQu for some 0 < λ < 1} is bounded.

Let u ∈ E with u(t) = λQu(t) for some 0 < λ < 1. Then for each t ∈ [0,t1] ,

‖ u(t)‖X � λ [M̃S‖ u0‖+ M̃S(D1‖u(t)‖+D2)+ M̃S(L1‖ u(t)‖+L2)+L1‖ u(t)‖+L2

+M̃T

∫ t

0
(t− ς)η−1‖ G(ς ,u(h2(ς)))‖dς , ]

� λ [M̃S‖ u0‖+ M̃S(D1‖u(t)‖+D2)+ M̃S(L1‖ u(t)‖+L2)+L1‖ u(t)‖+L2

+M̃T

∫ t

0
(t− ς)η−1mG(ς)W (‖ u(ς)‖)dς ],

� λ [M̃S‖ u0‖+ M̃S(D1‖u(t)‖+D2)+L1(M̃S +1)‖ u(t)‖+L2(1+ M̃S)

+
M̃TT η

η

∫ t

0
mG(ς)W (‖ u(ς)‖)dς ], (3.30)

Moreover, for t ∈ (ti,ti+1], i = 1,2, · · · ,δ ,

‖ u(t)‖X � λ [‖Sη(t − ti)u(t−i )‖+‖Sη(t − ti)Ii(u(t−i ))‖+‖Sη(t − ti)F(ti,u(h1(t+i ))‖
+‖F(t,u(h1(t)))‖+

∫ t

ti
‖Tη(t− ς)G(ς ,u(h2(ς)))dς‖]

� λ [M̃S sup
ς∈I

‖u(ς)‖+ M̃SΩ + M̃S(L1 sup
ς∈I

‖u(t)‖+L2)+ (L1 sup
ς∈I

‖u(t)‖+L2)

+
M̃T Tη

η

∫ t

ti
mG(ς)W (‖ u(ς)‖)dς ] (3.31)

Thus, for each t ∈ I , we obtain

‖ u(t)‖X � M∗ +
[
M̃S(D1 +1)+ (M̃S +1)L1

]‖u(t)‖

+
M̃T T α

α

∫ t

0
mG(ς)W (‖ u(ς)‖)dς , (3.32)

where M∗ = max{M̃S‖u0‖+(M̃S +1)L2 + M̃SD2,M̃SΩ +(M̃S +1)L2} . Therefore, for
all t ∈ I = [0,T ] , by the Young inequality [[3], page 6], we get

‖ u(t)‖X � M∗
1−M

+
M̃T T η

η(1−M)

∫ t

0
mG(ς)W (‖ u(ς)‖)dς ,

� ω1 +
M̃T T η

η(1−M)

∫ t

0
mG(ς)W (‖ u(ς)‖)dς , (3.33)

where ω1 = M∗
(1−M) and M = M̃S(D1 +1)+ (M̃S +1)L1 . Then for all t ∈ I ,

‖ u(t)‖ � βλ (t) � ω1 +
M̃T T η

η(1−M)

∫ t

0
mG(ς)W (‖ u(ς)‖)dς .
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Calculating β ′
λ (t) for t ∈ I , we obtain

β ′
λ (t) � M̃T Tη

η(1−M)
mG(t)W (‖ u(t)‖).

Thus we have

dβλ (t)
W (‖ βλ (t)‖) � dβλ (t)

W (‖ u(t)‖) � M̃T T η

η(1−M)
mG(t)dt. (3.34)

Since W (ς) is positive and non-decreasing. Integrating both sides, we get

∫ βλ (t)

0

dς
W (ς)

� M̃T T η

η(1−M)

∫ T

0
mG(s)ds <

∫ ∞

ω1

dς
W (ς)

, (3.35)

where we have, βλ (0) = ω1, βλ (t) is positive and non-decreasing. Hence, from the
above inequality, we obtain that the set of functions {βλ : λ ∈ (0,1)} is bounded. This
implies that set {u ∈ PC(I ;X) : u = λQu, 0 < λ < 1} is bounded in X . Hence by
Schaefer’s fixed point theorem, we get that Q has a fixed point on I = [0,T ] . This
completes the proof of the theorem.

4. Application

We consider the following fractional order impulsive partial functional differential
system of the form

∂ η

∂ tη [z(t,x)+
∫ t

0
b(t,ξ ,x)[z(sin t,ξ )+

∂
∂ξ

z(sin t,ξ )]dξ ]

=
∂ 2

∂x2 [z(t,x)+
∫ t

0
b(t,ξ ,x)[z(sin t,ξ )+

∂
∂ξ

z(sin t,ξ )]dξ ]+ χ(t,
∂
∂x

z(sin t,x)),

t ∈ [0,1], π � x � 0, (4.1)

z(t,0) = z(t,π) = 0, (4.2)

z(0,x) = z0(x), π � x � 0, (4.3)

Δz|ti = z(t+ti )− z(t−ti ) = Ii(z(t−ti )), i = 1, · · · ,δ , (4.4)

where 0 < η < 1 and 0 < t1 < t2 < · · · < tδ < 1 and b ∈ C([0,1]× [0,π ]× [0,π ],R)
and χ ∈C([0,1]×R,R) are continuous function. Take X = L2[0,π ] and let an operator
A such that

A f = f ′′ (4.5)

with the domain

D(A) = H2([0,π ]) = { f (·) ∈ X : f ′, f ′′ ∈ X and f (0) = f (π) = 0}. (4.6)
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It implies that A generates a strongly continuous semigroup T (·) which is analytic and
semi-adjoint. The operator T (t) is given by

T (t) f =
∞

∑
m=1

e−m2t( f ,zm)zm.

Also, A has a discrete spectrum, the eigenvalues are −m2 , m ∈ N with the correspond-

ing normalized eigenvectors zn(x) =
√

2
π sin(nx) . We have that if f ∈ D(A) , then

A f =
∞

∑
m=1

m2( f ,zm)zm for all f ∈ X and t > 0.

Now we assume following assumptions:

(i) b : [0,1]× [0,π ]× [0,π ] → R is continuously differentiable with b(t,ξ ,0) =
b(t,ξ ,π) = 0.

(ii) The function b is measurable and

sup
0�t�1

∫ π

0

∫ π

0
b2(t,ξ ,x)dξdx < ∞. (4.7)

and function ∂ 2

∂x2 is measurable and

K1 = sup
0�t�1

[
∫ π

0

∫ π

0
(

∂ 2

∂x2 b(t,ξ ,x))2dξdx]1/2 < ∞ (4.8)

(iii) χ : [0,1]×R → R is Lipschitz continuous with respect to the second argument
and there exist positive constant a0 such that

‖ χ(t,x1)− χ(t,x2)‖ � a0‖ x1 − x2‖ (4.9)

for t ∈ [0,1], x1, x2 ∈ R .

(iv) Ii ∈C(X ,X), i = 1,2, · · · ,δ such that

‖ Ii(x)‖ � ψi(‖ x‖ ), (4.10)

for x ∈ X , where ψi ∈ ([0,1],R+) is nondecreasing function.

Let h1(t) = h2(t) = sin t , , F(t,z)(x) =
∫ π
0 b(t,ξ ,x)[z(ξ ),z′(ξ )]dξ , and G(t,z)(x) =

χ(t,z′(ξ )) .
Therefore the equation (4.1)-(4.2) can be reformulated as

dη

dtη [u(t)+F(t,u(h1(t)))] = A[u(t)+F(t,u(h1(t)))]+G(t,u(h2(t))),

0 � t � 1, (4.11)

u(0) = u0, (4.12)

Δu|ti = Ii(u(t−ti )), i = 1,2, · · · ,δ . (4.13)

It is not difficult to verify that F and G satisfy the condition (A1) and (A2) respec-
tively, and from (ii) it is clear that F(t,z) is bounded linear operator on R . Thus from
Theorem 2, the system (4.11)-(4.13) admits a mild solution [0, T ] as well as (4.1)-(4.2).



Differ. Equ. Appl. 7, No. 2 (2015), 151–168. 167

RE F ER EN C ES

[1] H.M. AHMED, Fractional neutral evolution equations with nonlocal conditions, Adv. Difference Equ.,
2013 (2013), 117.

[2] P. BALASUBRAMANIAM, V. VEMBARASAN, T. SENTHILKUMAR, Approximate controllability of
impulsive fractional integro-differential systems with nonlocal conditions in Hilbert space, Numer.
Funct. Anal. Optimi., 35 (2014), 177–197.

[3] E. BAZHLEKOVA, Fractional evolution equations in Banach spaces, Ph.D. Thesis, Eindhoven Univer-
sity of Technology, 2001.

[4] M. BENCHOHRA, J. HENDERSON, S.K. NTOUYAS, Impulsive differential equations and inclusions,
Contemporary Mathematics and Its Applications, Vol.2, Hindawi Publishing Corporation, New York,
2006.

[5] L. BYSZEWSKI, Theorems about the existence and uniqueness of solutions of a semilinear evolution
nonlocal Cauchy problem, J. Math. Anal. Appl., 162 (1991), 497–505.

[6] L. BYSZEWSKI, V. LAKSHMIKANTHAM, Theorem about the existence and uniqueness of a solution
of a nonlocal abstract Cauchy problem in a Banach space, Applied Anal., 40 (1990), 11–19.

[7] A. CHADHA, D.N. PANDEY, Existence results for an impulsive neutral fractional integrodifferential
equation with infinite delay, Int. J. Diff. Equ., 2014 (2014), pp-10.

[8] A. CHADHA, D.N. PANDEY, Existence of a mild solution for an impulsive neutral fractional integro-
differential equation with nonlocal conditions, J. Fract. Cal. Appl., 6 (2015), 5–20.

[9] K. EZZINBIA, X. FU, K. HILAL, Existence and regularity in the α -norm for some neutral partial
differential equations with nonlocal conditions, Nonlinear Analysis: TMA, 67 (2007), 1613–1622.

[10] K. EZZINBIA, X. FU, Existence and regularity of solutions for some neutral partial differential equa-
tions with nonlocal conditions, Nonlinear Analysis: TMA, 57 (2004), 1029–1041.

[11] S. FARAHI, T. GUENDOUZI, Approximate controllability of fractional neutral stochastic evolution
equations with nonlocal conditions, Results. Math., 2014 (2014), pp-21.
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