
D ifferential
Equations

& Applications

Volume 7, Number 2 (2015), 169–186 doi:10.7153/dea-07-10

GLOBAL EXISTENCE OF RADIAL SOLUTIONS OF A

HYPERBOLIC MEMS EQUATION WITH NONLOCAL TERM

TOSIYA MIYASITA

Abstract. We consider a nonlocal hyperbolic MEMS equation in the higher dimensional annular
domain. In this paper, we concentrate on the radial solutions. First we establish a time-local
solution by a contraction mapping theorem. This procedure is standard. Next we show that
there exists a global solution for small parameter and initial value. The important facts for the
proof are the Sobolev embedding theorem and the energy conservation. Finally, we deal with
the corresponding stationary problem. By the maximum principle, we can evade integrating the
stationary solution over the domain near the boundary. Then we establish the upper bound of the
parameter for the existence of the stationary solution.
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