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GLOBAL EXISTENCE OF RADIAL SOLUTIONS OF A

HYPERBOLIC MEMS EQUATION WITH NONLOCAL TERM
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(Communicated by Philippe Souplet)

Abstract. We consider a nonlocal hyperbolic MEMS equation in the higher dimensional annular
domain. In this paper, we concentrate on the radial solutions. First we establish a time-local
solution by a contraction mapping theorem. This procedure is standard. Next we show that
there exists a global solution for small parameter and initial value. The important facts for the
proof are the Sobolev embedding theorem and the energy conservation. Finally, we deal with
the corresponding stationary problem. By the maximum principle, we can evade integrating the
stationary solution over the domain near the boundary. Then we establish the upper bound of the
parameter for the existence of the stationary solution.

1. Introduction

The Micro-Electro Mechanical System(MEMS) is often utilized to combine elec-
tronics with micro-size mechanical devices. The MEMS devices can be modelled as
the dynamic deflection of an elastic membrane inside this system and arise in the ac-
celerometers for airbag deployment in automobiles, in the ink jet printer heads, in the
optical switches, in the chemical sensors and so on. For more details see [35] and
references therein. Typically, the devices consist of an elastic membrane suspended
above a rigid ground plate with a fixed voltage source and a fixed capacitor. In the case
where the distance between the two plates is relative small compared to the length of
the device, the original mathematical system describing the operation of the MEMS is
reduced to the equation with nonlocal term. Denoting the deflection of the membrane
by u , we have

utt + εut = Δu+ λ
f (x)(

1−u
)2

(
1+ α

∫
Ω

dx
1−u

)2 , x ∈ Ω, t ∈ (0,T ) (1.1)

with u(x, t) = 0 on x∈ ∂Ω , t ∈ (0,T ) , where Ω is a bounded domain in R
2 and T > 0

is a maximal existing time of the solution u . Here ε is the ratio of the interaction due
to the inertial and damping terms in the model, λ = V 2L2ε0/(2τl2) and α is the ratio
of a fixed capacitance to a reference one of the device. The physical constants V , τ , L ,
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l and ε0 stand for the applied voltage, the tension in the membrane, the characteristic
length of the domain Ω , the characteristic width of the gap between the membrane and
the fixed electrode and the permittivity of the free space. For the derivation and related
topics, see [7, 35, 36]. The function f (x) represents varying dielectric properties of the
membrane and applied alternating current. Physically f (x) is supposed to be positive
in Ω . Some typical examples [18] of dielectric profile are given as

f (x) = |x|q for q > 0

and

f (x) = ek
(
|x|2−c

)
for k,c > 0.

The nonlocal term in (1.1) arises due to the fact that the device is embedded in an
electrical circuit with a capacitor of fixed capacitance. In the limiting case α = 0,
there is supposed to be no capacitor in the circuit. It is also assumed that the edges
of the membrane are kept fixed leading to Dirichlet boundary conditions, whereas it
is usually considered that initially the elastic membrane is in rest corresponding to
u(x,0) ≡ 0. In this paper, we treat the radial problem, where Ω is an annular domain
Aa ≡ {x ∈ R

n | a < |x| < 1} for n � 2 with 0 < a < 1, f (x) ≡ 1, u(x,0) = u0(x) ,
ut(x,0) = v0(x) and u0 ∈ [0,1) . Here, u0(x) and v0(x) are supposed to belong to an
appropriate function space. We consider the case where the ut term is much smaller
than the utt and Δu terms in (1.1). Then (1.1) with α = 1 is reduced to the following
nonlocal hyperbolic problem:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
utt = Δu+ λ 1

(1−u)2
(
1+

∫
Ω

dx
1−u

)p , x ∈ Ω, t ∈ (0,T ),

u(x,t) = 0, x ∈ ∂Ω, t ∈ (0,T ),
u(x,0) = u0(x) ∈ [0,1), x ∈ Ω,
ut(x,0) = v0(x), x ∈ Ω,

(1.2)

where λ > 0, p > 1 and T > 0. If the solution u(x,t) of (1.1) reaches 1 at some
point in Ω in finite time t = Tq , the right-hand side of (1.1) becomes infinite, which
leads to the singularity. In this case, the solution u(x,t) is said to quench in finite time
t = Tq and Tq is called the quenching time of the solution. The quenching behaviour
physically corresponds to the phenomenon of “touch-down” i.e., the elastic membrane
touches the ground electrode. In applications, the touch-down phenomenon is observed
when the applied voltage V at the ends of the electrical circuit exceeds a fixed value. In
[23], Kavallaris, Lacey, Nikolopoulos and Tzanetis consider (1.2) for Ω = (0,1) , p = 2
and f (x) = 1. They obtain the global existence and quenching results of the solution
for sufficiently small and large λ > 0, respectively. Lately, in [13], Guo and Huang
consider the damped hyperbolic equation (1.1) for Ω = (0,1) and f (x) = 1 and obtain
the results similar to those in [23]. Their key facts are the one-dimensional Sobolev
embedding H1(Ω) ⊂ C(Ω) and the one-dimensional representation formula for the
elementary solution of the wave equation. Hence their ideas are not applicable to the
domain for higher dimension, which is our motivation of this paper. In [28, 29], Liang,
Li and Zhang consider the damped hyperbolic equation (1.1) for higher dimensional
domain. We introduce their interesting results of the global existence, quenching and
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stability in Section 5 and compare our results to theirs. For more details, see Section 5.
If we consider the case α = 0 i.e.,

⎧⎪⎪⎨
⎪⎪⎩

utt = Δu+ λ 1
(1−u)β , x ∈ Ω, t ∈ (0,T ),

u(x,t) = 0, x ∈ ∂Ω, t ∈ (0,T ),
u(x,0) = u0(x) ∈ [0,1), x ∈ Ω,
ut(x,0) = v0(x), x ∈ Ω,

(1.3)

there are many results for global existence of the solution for sufficiently small λ > 0
(e.g. see [3] for β = 1 and [26, 38] for an abstract nonlinearity), quenching results for
sufficiently large λ > 0 (e.g. see [3] for β = 1 and [26, 33, 38] for an abstract non-
linearity), the estimate of the quenching time [33] and the singularity of the derivative
(e.g. see [2] for an abstract nonlinearity). In stead of (1.2), we suppose that the ut

term dominates the utt term in (1.1). Then we have the following nonlocal parabolic
equation: ⎧⎪⎨

⎪⎩
ut = Δu+ λ 1

(1−u)2
(
1+

∫
Ω

dx
1−u

)p , x ∈ Ω, t ∈ (0,T ),

u(x,t) = 0, x ∈ ∂Ω, t ∈ (0,T ),
u(x,0) = u0(x) ∈ [0,1), x ∈ Ω.

This problem has been studied by many authors (e.g. see [12, 14, 20, 34, 36] for p = 2).
They obtain the results similar to those for (1.3). In [20] Hui and in [14] Guo and
Kavallaris show that the global solution converges to the stationary minimal solution of
local problem {

Δu+ λ 1
(1−u)2 = 0, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω
(1.4)

for sufficiently small λ > 0, respectively. In [14], they investigate the structure of the
set of stationary solution

{
Δu+ λ 1

(1−u)2
(
1+

∫
Ω

dx
1−u

)p = 0, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω
(1.5)

and its spectral properties. Also in the parabolic equation, the local problem

⎧⎨
⎩

ut = Δu+ λ 1
(1−u)β , x ∈ Ω, t ∈ (0,T ),

u(x,t) = 0, x ∈ ∂Ω, t ∈ (0,T ),
u(x,0) = u0(x) ∈ [0,1), x ∈ Ω

(1.6)

has been considered. Thanks to the maximum principle, we have the results of global
existence (e.g. see [25] for general β and [9] for β = 2), quenching (e.g. see [9, 16, 17]
for β = 2 and [24, 25] for general β ), the connecting orbit [24], the Morse-Smale
property [24] and its stationary solution (e.g. see [11, 24] for general β and [4, 5, 6, 8]
for β = 2). In the previous works, Ω has been supposed to be a unit ball or convex
domain. The aim of this paper is to consider (1.2) in the case of p > 1 and annular
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domain. In this paper, we treat the radial solution u = u(|x| ,t) = u(r,t) of (1.2) with
r = |x| and concentrate on the following equation:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
utt = urr + n−1

r ur + λ 1

(1−u)2
(
1+ωn

∫ 1
a

rn−1
1−u dr

)p , r ∈ I, t ∈ (0,T ),

u(a, t) = u(1,t) = 0, t ∈ (0,T ),
u(r,0) = u0(r) ∈ [0,1), r ∈ I,
ut(r,0) = v0(r), r ∈ I,

(1.7)

where n � 2, p > 1, I ≡ (a,1) and ωn denotes the area of the unit sphere in R
n . The

first theorem is concerned with the local existence of the solution.

THEOREM 1. Let D ≡ H1
0 (I)×L2(I) and H ≡ L2(I)×H−1(I) . For any n � 2 ,

p > 1 , λ > 0 and (u0,v0) ∈ D with

‖u0‖C(I) � 1− δ

for 0 < δ < 1 , there exists a unique solution of (1.7) with

φ =
(

u
ut

)
∈C

(
[0,T );D

)∩C1([0,T );H
)

for sufficiently small T > 0 , where ‖ · ‖C(I) denotes the norm of the space of continuous

functions in I . The solution u can be continued as long as maxr∈I u(r, t) < 1 .

Throughout this paper, the definition of the function spaces and norms is presented in
Section 2. In the second theorem, we derive the global existence of the solution. We
define the energy E0 of initial function by

E0 =
1
2

(
‖u0‖2

H1
0 (I) +‖v0‖2

L2(I)

)
.

THEOREM 2. Let D ≡ H1
0 (I)×L2(I) and H ≡ L2(I)×H−1(I) . We assume that

n � 2 and p > 1 . For any (u0,v0) ∈ D with

‖u0‖C(I) � 1− δ

for 0 < δ < 1 , small parameter

λ <
ωn(p−1)an−1

1−a

(
1+

1
n
(1−an)ωn

)p−1

and small initial functions

E0 � an−1

1−a
− λ

ωn(p−1)

(
1

1+ 1
n (1−an)ωn

)p−1

−θ
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for some small θ > 0 , there exists a unique global solution of (1.7) with

φ =
(

u
ut

)
∈C

(
[0,∞);D

)∩C1([0,∞);H
)
.

For the higher dimensional general domain, we can show that the solution of (1.3)
quenches in finite time for sufficiently large λ > 0 as proven in [33, 38], while it re-
mains open for (1.2). For example, one of the reasons is that it is difficult to investigate
the location of quenching points. Lately, in [15], Guo and Souplet derive the conditions
on β and f (x) under which the quenching point of the solution of⎧⎪⎨

⎪⎩
ut = Δu+ λ f (x)

(1−u)β , x ∈ Ω, t ∈ (0,T ),
u(x,t) = 0, x ∈ ∂Ω, t ∈ (0,T ),
u(x,0) = 0, x ∈ Ω

is not near the boundary ∂Ω . Since the proof is based heavily on the maximum prin-
ciple, it is not applicable to our problem. Finally we consider the following stationary
problem: {

Δu+ λ 1

(1−u)2
(
1+

∫
Aa

dx
1−u

)p = 0, x ∈ Aa,

u(x) = 0, x ∈ ∂Aa.
(1.8)

For fixed λ > 0, we define the section of radial solution set by

C λ = {u | u = u(|x|) = u(r) is a classical solution of (1.8) for λ > 0} .

Then the third theorem is on the existence of the solution of (1.8).

THEOREM 3. We assume that n = 2 and 1 < p � 2 . Then there is λ ∈ (0,+∞)
such that C λ = /0 for all λ > λ .

This paper is organized as follows: In Section 2, we transform (1.7) to the integral
equation and apply the contraction mapping theorem to it so that we can obtain the
local solution. In Section 3, we consider the radial global solution for small parameter
λ and initial value (u0,v0) . In Section 4, we obtain the upper bound of λ for the
existence of the stationary solution. In Section 5, we compare our results in this paper
to those for the damped equations obtained by [28, 29]. We discuss the advantage of
the damping term.

2. Local solution

We transform (1.7) to the modified Schrödinger equation by [37, 38]. We apply
the contraction mapping theorem owing to the facts for the Schrödinger equation in [1].
Then we establish the local solution. This is a standard manner to prove. In this paper,
C(I) denotes the space of continuous functions in I with the norm

‖w‖C(I) = sup
r∈I

|w(r)|
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for w ∈C(I) and Hs(I) denotes the usual Sobolev space in I with the norm

‖w‖Hs(I) =
( s

∑
k=0

∥∥∥∥ ∂ k

∂ rk w

∥∥∥∥
2

L2(I)

) 1
2

for w ∈ Hs(I) . Here, ‖ · ‖Lp(I) denotes the standard Lp norm in I . Hs
0(I) is defined as

the closure of the set D(I) in the space Hs(I) , where we denote by D(I) the space of
all infinitely differentiable functions on I with compact supports. Now the following
Poincaré inequality holds:

‖w‖L2(I) � CP ‖wr‖L2(I)

for w ∈ H1
0 (I) for some constant CP > 0 depending only on I . Hence we adopt the

norm in H1
0 (I) as

‖w‖H1
0 (I) = ‖wr‖L2(I) .

H−s(I) is defined as the dual space of Hs
0(I) with the norm

‖w‖H−s(I) = sup
φ∈Hs

0(I),‖φ‖Hs
0(I)�1

∣∣∣∣
∫

I
w(r)φ(r)dr

∣∣∣∣
for w ∈ H−s(I) . Since I ⊂ R , we have the Sobolev embedding inequality

‖w‖C(I) � CS ‖w‖H1
0 (I)

for w ∈ H1
0 (I) for some constant CS > 0 depending only on I . Note that we can take

CS =
√

(1−a)/2. For the homogeneous wave equation⎧⎪⎪⎨
⎪⎪⎩

utt = urr, r ∈ I, t > 0,
u(a,t) = u(1,t) = 0, t > 0,
u(r,0) = u0(r), r ∈ I,
ut(r,0) = v0(r), r ∈ I,

(2.1)

we define

φ =
(

u
v

)
=

(
u
ut

)
, A = i

(
0 I

−B2 0

)
,

where i =
√−1, B2 = −∂ 2/∂ r2 is a positive definite self-adjoint operator of H−1(I)

with domains D(B2) = H1
0 (I) , D(A) = D ⊂ H and I denotes the identity operator on

L2(I) . Then, we can write (2.1) into the homogeneous Schrödinger equation⎧⎪⎪⎨
⎪⎪⎩

φt = −iAφ , r ∈ I, t > 0,
φ(a,t) = φ(1,t) = 0, t > 0,

φ(r,0) = φ0(r) =
(

u0(r)
v0(r)

)
, r ∈ I.

(2.2)

Then we introduce the following well-known theorem.
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LEMMA 1. (Théorème X.14 in [1]) For any φ0 ∈D, there exists a unique solution

φ ∈C
(
[0,+∞);D

)∩C1([0,+∞);H
)

of (2.2). Moreover, we have
‖φ( · ,t)‖D = ‖φ0‖D

for t > 0 , where
‖φ‖D = ‖u‖H1

0 (I) +‖v‖L2(I) .

We denote the mapping e−iAt : D → D by

e−iAtφ0( · ) = φ( · ,t).
First of all, let

F(u) =
1

1−u
and G(u) = 1+ ωn

∫
I
F(u(r,t))rn−1dr.

For 0 < δ < 1, we define the modification of F by

Fδ (u) =

⎧⎨
⎩

F(u), u � 1− δ ,

F(1− δ
2 ), u � 1− δ

2 .

Here we define Fδ suitably in the range (1− δ ,1− δ/2) so that we assume that Fδ is
positive, bounded and uniformly Lipschitz continuous on R . Putting

Gδ (u) = 1+ ωn

∫
I
Fδ (u(r,t))rn−1dr,

we define

J(φ) =
( 0

n−1
r ur + λF(u)2

G(u)p

)
and Jδ (φ) =

( 0
n−1

r ur + λFδ (u)2

Gδ (u)p

)
.

Under these notations, we have the integral equation corresponding to (1.7)

φ = e−iAtφ0 +
∫ t

0
e−iA(t−s)J(φ(s))ds (2.3)

and the modified integral equation with the same initial function φ0

φ = e−iAtφ0 +
∫ t

0
e−iA(t−s)Jδ (φ(s))ds. (2.4)

From now on, we concentrate on (2.4). Taking η = ‖φ0‖D ≡ ‖u0‖H1
0 (I) +‖v0‖L2(I) , we

set
XT ≡

{
φ ∈C

(
[0,T ];D

) | ‖φ‖XT
� 2η

}
,
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where T is a positive constant to be determined later. Here in the space XT , the norm
is equipped with

‖φ‖XT
= sup

t∈[0,T ]
‖φ( · ,t)‖D = sup

t∈[0,T ]

(
‖u( · ,t)‖H1

0 (I) +‖v( · ,t)‖L2(I)

)
.

For φ ∈ XT , we define the mapping S(t) from D by the right-hand side of (2.4), that
is,

Sφ = e−iAtφ0 +
∫ t

0
e−iA(t−s)Jδ (φ(s))ds.

Then we show that S is a contraction mapping from XT into XT for sufficiently small
T > 0.

LEMMA 2. If

T < T1 ≡ η
2(n−1)η

a + λC2
1

√
1−a

,

then S is a mapping from XT into XT , where C1 = ‖Fδ‖C(R) .

Proof. Let φ =
(

u
v

)
∈ XT . Since 1 � Gδ (s) holds for all s ∈ R , we have

‖Sφ‖D �
∥∥e−iAtφ0

∥∥
D +

∫ t

0

∥∥∥e−iA(t−s)Jδ (φ(s))
∥∥∥

D
ds

= ‖φ0‖D +
∫ t

0
‖Jδ (φ(s))‖D ds

� η +
∫ t

0

∥∥∥∥n−1
r

ur

∥∥∥∥
L2(I)

ds+ λ
∫ t

0

∥∥Fδ (u)2
∥∥

L2(I)

Gδ (u)p ds

� η +
(

n−1
a

‖φ‖XT
+ λC2

1 |I|
1
2

)
T

� η +
(

2(n−1)η
a

+ λC2
1 |I|

1
2

)
T

� 2η

and
‖Sφ‖XT

� 2η ,

where |I| denotes the measure 1−a of I in R . �

LEMMA 3. If

T < T2 ≡ min

(
T1,

1
2

1
n−1
a + λC1

√
1−a(2LCS +MC1)

)
,

then S is a contraction mapping from XT into XT . Here CS > 0 is an embedding
constant depending only on I and M is a positive constant depending only on p, n, I ,
C1 and Lipschitz constant L of Fδ (s) on R , respectively.
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Proof. Let φ =
(

u1

v1

)
,ψ =

(
u2

v2

)
∈ XT . Setting

C2 =
(
1+ ωnC1 |I|

)p−1
,

we note

|Gδ (u1)p−Gδ (u2)p| � pmax
u∈R

Gδ (u)p−1 |Gδ (u1)−Gδ(u2)|

� pωnC2

∫
I
|Fδ (u1)−Fδ(u2)|dr

� pωnC2 |I|LCS sup
t∈[0,T ]

‖u1−u2‖H1
0 (I)

� M ‖φ −ψ‖XT
,

where M = pωnC2 |I|LCS . We have

‖Sφ −Sψ‖D

�
∫ t

0

∥∥∥e−iA(t−s)
(
Jδ (φ(s))− Jδ (ψ(s))

)∥∥∥
D

ds

�
∫ t

0

∥∥∥∥n−1
r

(
u1−u2

)
r

∥∥∥∥
L2(I)

ds+ λ
∫ t

0

∥∥∥∥ Fδ (u1)2

Gδ (u1)p −
Fδ (u2)2

Gδ (u2)p

∥∥∥∥
L2(I)

ds

� n−1
a

‖φ −ψ‖XT
T + λ

∫ t

0

∥∥∥∥Fδ (u1)2 −Fδ(u2)2

Gδ (u1)p

∥∥∥∥
L2(I)

ds

+λ
∫ t

0

∥∥∥∥Fδ (u2)2 Gδ (u1)p−Gδ (u2)p

Gδ (u1)pGδ (u2)p

∥∥∥∥
L2(I)

ds

�
(

n−1
a

+2λC1CSL |I|
1
2 + λC2

1M |I| 1
2

)
‖φ −ψ‖XT

T

� 1
2
‖φ −ψ‖XT

and

‖Sφ −Sψ‖XT
� 1

2
‖φ −ψ‖XT

for T < T2 . �
Proof of Theorem 1. By Lemmas 2 and 3, the mapping S is a contraction from XT

to XT for sufficiently small T ∈ (0,T2) . Hence (2.4) has a unique time local solution
φ ∈C

(
[0,T );D

)
. Since we get

‖vt‖H−1(I) � ‖urr‖H−1(I) + (n−1)
∥∥∥ur

r

∥∥∥
H−1(I)

+ λ
∥∥∥∥ Fδ (u)2

Gδ (u)p

∥∥∥∥
H−1(I)

�
(

1+
n−1

a
CP

)
‖u‖H1

0 (I) + λCP

∥∥∥∥ Fδ (u)2

Gδ (u)p

∥∥∥∥
L2(I)
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�
(

1+
n−1

a
CP

)
‖u‖H1

0 (I) + λCP |I|
1
2 C2

1 ,

φt ∈C
(
[0,T );H

)
follows. If the solution of (2.4) begins with 0 � u0(r) � 1− δ and

satisfies maxr∈I u(r, t) � 1− δ for all t > 0, then u is a solution of (2.3) and hence
(1.7). Otherwise there is a finite time T0 > 0 at which maxr∈I u(r,T0) = 1− δ . We
choose δ1 ∈ (0,δ ) and apply the contraction mapping theorem to (2.4) with δ replaced
by δ1 . We may extend u(r,t) uniquely to an interval (0,T ′

0) with T0 < T ′
0 such that

maxr∈I u(r, t)� 1−δ1 for [0,T ′
0) . Since we can take δ1 ∈ (0,δ ) arbitrarily small, u(r,t)

is a solution of (1.7) on I× [0,T ′
0) as long as maxr∈I u(r,t) < 1. �

3. Global existence

In the use of the conserved energy, we extend the local solution obtained in The-
orem 1 globally in time. We note that the inclusion H1

0 (I) ⊂C(I) with an embedding
constant CS =

√
(1−a)/2, where I = (a,1) . Then we obtain

0 � max
r∈I

u(r,t) � ‖u(t)‖C(I) �
√

1−a
2

‖u(t)‖H1
0 (I)

for t ∈ [0,Tq) , where Tq is the quenching time. We follow the procedure in the proof
given in [23]. First we define

g(x) = αx2 + β
(

1− x
γ − x

)p−1

for 0 � x � 1 and

α =
an−1

1−a
, β =

λ
ωn(p−1)

and γ = 1+
1
n
(1−an)ωn.

Proof of Theorem 2. Since we have established the local solution, we have only to
derive the a priori estimate. Then defining a conserved energy by

E(t) =
1
2

∫ 1

a
(u2

t +u2
r)r

n−1dr+ β
1(

1+ ωn
∫ 1
a

rn−1

1−u dr
)p−1 ,

we get E ′(t) = 0. Now let m(t) = maxr∈I u(r,t) . We have

E(t) � an−1

2
‖u‖2

H1
0 (I) + β

1(
1+ ωn

∫ 1
a

rn−1

1−m(t)dr
)p−1

� an−1

1−a
m(t)2 + β

1(
1+ ωn

1
n (1−an)
1−m(t)

)p−1
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= αm(t)2 + β
(

1−m(t)
1+ 1

n(1−an)ωn −m(t)

)p−1

= g(m(t)).

On the other hand, we obtain

E(0) � 1
2

(
‖u0‖2

H1
0 (I) +‖v0‖2

L2(I)

)
+ β

1(
1+ ωn

∫ 1
a

rn−1

1−u0
dr

)p−1

� E0 + β
1(

1+ ωn
∫ 1
a rn−1dr

)p−1

= E0 + β
1(

1+ ωn
1−an

n

)p−1

= E0 +g(0).

Since E(t) = E(0) holds, we have

g(m(t)) � E0 +g(0) � g(1)−g(0)−θ +g(0) = g(1)−θ . (3.1)

Now letting

m(t) → 1−0

as t → Tq , then we obtain θ � 0 from (3.1). However this is a contradiction. Hence we
conclude that

m(t) � 1− δ2

for some δ2 ∈ (0,1) . Owing to the conserved energy, we have

‖φ‖D = ‖u‖H1
0 (I) +‖ut‖L2(I) < 2

√
2

an−1 E(0) < +∞,

which implies that φ ∈C
(
[0,+∞);D

)
. In the same manner as the proof of Theorem 1,

we obtain

‖φt‖H = ‖ut‖L2(I) +‖vt‖H−1(I)

<

(
2+

n−1
a

CP

)√
2

an−1 E(0)+ λCP |I|
1
2

(
1

1−m(t)

)2

< +∞,

which leads us to φ ∈C1
(
[0,∞);H

)
. �
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4. Stationary solution

If Ω is a unit ball, according to [10], any solution of (1.4) is radially symmetric.
Then the solution set is investigated in [6, 21, 24]. Setting

σ =
λ
K

and K =
(

1+ ωn

∫ 1

a

rn−1

1−u
dr

)p

,

we obtain the solution set of (1.5) by means of [14, 30]. Hence, we get the radial
solution of (1.5) for sufficiently small λ > 0. With this result, we utilize the argument
in [31] to guarantee the existence of radial solution in an annular domain for sufficiently
small λ > 0. As proven in [27], it is possible that the non-radial solution bifurcates at
the point on the branch of radial solution of (1.8). However it seems to be open now.
The reason is that the algebraic property of eu plays an important role in the arguments
of [27, 31, 32]. For this purpose, first of all, we have to deal with the bifurcation diagram
of solution set of (1.4) for an annular domain and study its spectral properties [31, 32].
We have denoted the radial stationary solution by u = u(r) . In this section, we regard
this solution as a function of x , denoted by w = w(x) . We establish the upper bound of
λ for the existence of radial solution of (1.8). We replace the integral over the domain
Aa by the integral over the domain ω inside the annulus Aa . The idea is based on
Proposition 2.3 in [20].

PROPOSITION 1. There exists τ ∈ (0,(1−a)/4) such that

∫
Aa

dx
1−w

� Cτ

∫
Aa\Ω1

dx
1−w

,

where
Ω1 =

{
x ∈ R

2 | a < |x| < a+ τ
}∪{

x ∈ R
2 | 1− τ < |x| < 1

}
and Cτ > 0 depends only on τ . Here τ is independent of λ and the solution w.

Proof. Let ν = ν(x) be the outer unit normal vector to x ∈ ∂Aa with |x| = 1,
where |x| = √

x · x and · denotes the inner product in R
2 . We define

F(s) = w(ν − sν)

for 0 � s � 1− a . By Theorem 2.1 in [10], there exists τ ∈ (0,(1− a)/4) such that
F(s1) < F(s2) for any s1,s2 with 0 < s1 < τ < s2 < 2τ . Because the union of the
corresponding maximal cap Σν to all directions ν is given by

∪ν Σν =
{

x = (x1,x2) ∈ Aa | a+1
2

< |x| < 1

}
,

τ is independent of ν , λ and the solution w . Let

Ω1,τ =
{
x ∈ R

2 | 1− τ < |x| < 1
}
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and
Ω1,2τ =

{
x ∈ R

2 | 1−2τ < |x| < 1− τ
}

.

Now that we concentrate on the radial case, we have

w(x) < w(y)

and eventually
1

1−w(x)
<

1
1−w(y)

for any x ∈ Ω1,τ and y ∈ Ω1,2τ . Integrating it over Ω1,τ with respect to x and next
Ω1,2τ with respect to y , respectively, we have

∫
Ω1,τ

dx
1−w(x)

� |Ω1,τ |
|Ω1,2τ |

∫
Ω1,2τ

dy
1−w(y)

=
2− τ
2−3τ

∫
Ω1,2τ

dy
1−w(y)

,

where |A| denotes the measure of the subset A ⊂ R
2 . Let

Ω2,τ =
{
x ∈ R

2 | a < |x| < a+ τ
}

and
Ω2,2τ =

{
x ∈ R

2 | a+ τ < |x| < a+2τ
}
.

In the case of Ω2,τ and Ω2,2τ , for instance, we fix the point x0 = (a,0) ∈ ∂Aa and
the closed disk D =

{
x ∈ R

2 | |x− p|� a−b
}

, where we take p = (b,0) so that D ⊂{
x ∈ R

2 | |x| � a
}

and D∩Aa = {x0} . Then we adopt the Kelvin transform [10, 19, 39]
given by

y = p+
(a−b)2

|x− p|2 (x− p) and z(y) = w(x).

The image Ãa of Aa by the transformation is included in D and touches the boundary
∂Aa only at x0 . Then since (a− b)−4 |y− p|4 Δyz = Δxw and Ãa is uniformly convex
near x0 , we apply the moving plane argument to Ãa . Hence taking smaller τ̃ and τ if
necessary, we have

∫
Ω2,τ

dx
1−w(x)

� |Ω2,τ |
|Ω2,2τ |

∫
Ω2,2τ

dy
1−w(y)

=
2a+ τ
2a+3τ

∫
Ω2,2τ

dy
1−w(y)

.

In combination with
2a+ τ
2a+3τ

<
2− τ
2−3τ

,

we have∫
Ω1

dx
1−w(x)

� 2− τ
2−3τ

∫
Ω1,2τ∪Ω2,2τ

dy
1−w(y)

� 2− τ
2−3τ

∫
Aa\Ω1

dy
1−w(y)

and finally ∫
Aa

dx
1−w(x)

� 4−4τ
2−3τ

∫
Aa\Ω1

dy
1−w(y)

. �
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Proof of Theorem 3. We suppose that w(x) ∈ C λ for some λ > 0. Let φ be the
first eigenfunction of −Δ associated with first eigenvalue μ > 0. Namely we have⎧⎨

⎩
Δφ = −μφ , x ∈ Aa,
φ > 0, x ∈ Aa,
φ = 0, x ∈ ∂Aa.

Here we normalize φ as ∫
Aa

φdx = 1.

We have

λ
∫

Aa

φ
(1−w)2

(
1+

∫
Aa

dx
1−w

)p dx = −
∫

Aa

Δwφdx = μ
∫

Aa

wφdx � μ

by 0 �w < 1. On the other hand, choosing ω = Aa\Ω1 and C3 =Cτ in the proposition,
we have

λ
∫

Aa

φ
(1−w)2

(
1+

∫
Aa

dx
1−w

)p dx

� λ
∫

Aa

φdx
(1−w)2

1(
1+C3

∫
ω

dx
1−w

)p

� λ
∫

Aa

φdx
(1−w)2

1(
1+C3

√∫
ω

1
φ dx

√∫
ω

φ
(1−w)2 dx

)p

� λ
∫

Aa

φdx
(1−w)2

1(
1+ C3|ω| 12√

minx∈ω φ(x)

√∫
Aa

φ
(1−w)2 dx

)p .

Hence these inequalities yield

λ
∫

Aa

φdx
(1−w)2

1(
1+ C3|ω| 12√

minx∈ω φ(x)

√∫
Aa

φ
(1−w)2 dx

)p � μ .

Setting

C4 =
C3 |ω | 1

2√
minx∈ω φ(x)

and t =
∫

Aa

φdx
(1−w)2 ,

we obtain 0 < C4 < +∞ and t � 1 because of ω ⊂ Aa and ω ∩ ∂Aa = /0 . Finally we
obtain

λ � μ
(
1+C4

√
t
)p

t
and consider the behaviour of the function

h(t) =

(
1+C4

√
t
)p

t
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for t � 1. Because of h(1) = (1+C4)p and

h′(t) =

(
1+C4

√
t
)p−1

t2

(
C4

( p
2
−1

)√
t−1

)
< 0

for t � 1, we have h(t) � (1+C4)p and finally

λ � μ(1+C4)p. �

REMARK 1. Let 1 < p � 2. We assume that Ω is a strictly convex smooth
bounded domain in R

n with n � 2 such that x · ν � k > 0 with some k > 0 for all
x ∈ ∂Ω , where ν is the unit outer normal vector to ∂Ω at x . Then according to Propo-
sition 2.3 in [20], we have the same statement as Proposition 1 in this paper. Hence also
in this case, the conclusion of Theorem 3 holds.

REMARK 2. If the solution of (1.2) satisfies the result of Proposition 1, we can
prove the quenching result for large λ > 0. However since the proof of the proposition
is done by the maximum principle, it is impossible to lead us to the quenching result in
this manner.

5. Discussion

In this section, we compare our results with those of [28, 29]. In [29], they consider
the following damped MEMS equation with nonlocal term:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

utt +ut = Δu+ λ
(1−u)2

(
1+

∫
Ω

dx
1−u

)2 , x ∈ Ω, t ∈ (0,T ),

u(x,t) = 0, x ∈ ∂Ω, t ∈ (0,T ),
u(x,0) = u0(x) < 1, x ∈ Ω,
ut(x,0) = v0(x), x ∈ Ω,

(5.1)

where Ω is a bounded domain in R
n(n = 1,2,3) with smooth boundary ∂Ω and T > 0

is a maximal existing time of the solution u . Different from (1.7), we do not have to
assume the symmetry of the solution u and domain Ω . Owing to the damping term
ut , the second order derivative estimates ‖u‖H2(Ω) , ‖ut‖H1(Ω) , ‖utt‖L2(Ω) are obtained.
For instance, modifying (5.1) as constructed in Section 2 and multiplying this modified
equation by 2u , we have

d
dt

∫
Ω

(
u2
t + |∇u|2

)
dx+2

∫
Ω

u2
t dx � 8λ

δ 2 |Ω|‖ut‖L2(Ω) ,

where δ is the constant defined in Section 2 and |Ω| is a measure of Ω in R
n . Hence

we can control ‖ut‖L2(Ω) in the right-hand side by the Cauchy-Schwartz inequality.
Compared to (1.2), this estimate is the advantage of (5.1). Finally, they have the result
of global existence of a solution for higher dimensional domain.
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THEOREM 4. (Theorem 3.1 in [29]) Suppose that u0 ∈ H2(Ω) ∩ H1
0 (Ω) , 0 �

u0(x) � 1− 2δ for some δ ∈ (0,1/2) and v0 ∈ H1
0 (Ω) . There exist two constants

γ > 0 and λ̂ depending only on Ω , n and δ such that (5.1) has a unique global
solution satisfying

u ∈C
(
[0,∞);H2(Ω)∩H1

0 (Ω)
)∩C1([0,∞);H1

0 (Ω)
)∩C2([0,∞);L2(Ω)

)
, (5.2)

provided that ‖u0‖H2(Ω) +‖v0‖H1(Ω) � γ and 0 < λ � λ̂ .

We note that (1.5) has a solution for 0 < λ < λ ∗ by [14]. Owing to the nonlocal term,
we can not expect the monotonicity of the nonlinear terms of (1.2) and (5.1). Thus it
is not clear whether λ̂ = λ ∗ or not. Moreover the method of proof of Theorem 4 is
also applicable to that of stability theorem. Then they show that the global solution
converges to the stationary solution exponentially. For more details, see Corollary 3.1
in [29]. In [28], they consider the following damped MEMS equation without nonlocal
term: ⎧⎪⎪⎨

⎪⎪⎩
εutt +ut = Δu+ λ

(1−u)2 , x ∈ Ω, t ∈ (0,T ),
u(x,t) = 0, x ∈ ∂Ω, t ∈ (0,T ),
u(x,0) = u0(x) < 1, x ∈ Ω,
ut(x,0) = v0(x), x ∈ Ω,

(5.3)

where ε > 0 and λ > 0. In the corresponding stationary problem (1.4), according to
[6, 24], there exists a constant λ ∗ such that we have solutions w for 0 < λ < λ ∗ and
no solution for λ > λ ∗ . We take advantage of comparison principle to show that (1.4)
has a minimal solution wλ for 0 < λ < λ ∗ with the positive eigenvalue. In (1.5), we
can not derive the minimality of solution. Hence, in addition to Theorem 4, they prove
λ̂ = λ ∗ and the quenching result.

THEOREM 5. (Theorem 2.1 in [28]) Assume that 1 � n � 3 , ε ∈ (0,1] and 0 <
λ < λ ∗ . Suppose that u0 ∈ H2(Ω)∩H1

0 (Ω) and v0 ∈ H1
0 (Ω) . There exists a constant

γ > 0 independent of ε such that if

‖u0−wλ‖H2(Ω) +‖v0‖H1(Ω) +
√

ε
∥∥∥∥ λ

(1−u0)2 + Δu0− v0

∥∥∥∥
L2(Ω)

� γ,

then (5.3) has a unique global solution satisfying (5.2). Furthermore, the solution has
the following asymptotic stability :

‖u−wλ‖H2(Ω) +‖ut‖H1(Ω) +
√

ε ‖utt‖L2(Ω) � Ce−αt ,

where α > 0 and C > 0 are constants independent of t and ε .

On the other hand, for 0 < λ < λ ∗ , they show that the solution with sufficiently large
initial data quenches in finite time by deriving the energy inequality. For more details,
see Theorem 2.2 in [28]. By the Kaplan’s argument [22] and the existence of minimal
solution, they show that the solution must quench in finite time for any λ > λ ∗ . For
more details, see Theorem 3.1 in [28]. From the viewpoint of physics, it is important to
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study the asymptotic behaviour of solution as ε → 0 and to argue the relation between
(5.3) and (1.6) with β = 2. This limit is said to be the viscosity dominated limit.
If the initial functions are sufficiently smooth and satisfy the suitable compatibility
conditions, they approximate the solution of (5.3) by that of (1.6) plus initial layers in
the power of ε . For more details, see Theorem 4.1 in [28].

Acknowledgements. The author would like to express his deepest gratitude to the
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