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EXISTENCE OF SOLUTIONS FOR A COUPLED SYSTEM OF
THREE-POINT FRACTIONAL ORDER BOUNDARY VALUE PROBLEMS

K.R. PRASAD AND B.M.B. KRUSHNA

(Communicated by Meigiang Feng)

Abstract. In this paper, we establish the existence of a solution for a coupled system of three-
point fractional order boundary value problems by applying the Schauder fixed point theorem in
a Banach space under suitable conditions.

1. Introduction

This paper is concerned with establishing the existence of a solution to the coupled
system of three-point fractional order boundary value problems,

Dfu(r) = fl(rv(>,Dg¢v<t>7ngzv<r>)7re<o,1>, M
pPoe) = fo (z,u(t)pg' ) )
u(0) = /(0) =0, /(1) - é(n) 0, ©)
v(0) = v/(0) =0, V(1) = &v'(n) = )

where 2 < o, <3,m € (0,1),& €R, f1,f>:[0,1] x R? — R are given functions

and D0+,Dg+,Dg;,Dg’+, i = 1,2 are the standard Riemann—Liouville fractional order
derivatives.

The study of fractional order differential equations has emerged as an important
area of mathematics. It has wide range of applications in various fields of science and
engineering such as physics, mechanics, control systems, flow in porous media, elec-
tromagnetics and viscoelasticity. For some of the recent developments in fractional
calculus, we refer to Miller and Ross [13], Podlubny [15], Kilbas, Srivasthava and Tru-
jillo [7], Kilbas and Trujillo [8], Lakshmikantham and Vatsala [11] and the references
therein.

Recently, much interest has been created in establishing the existence of solutions
for two-point and multi-point fractional order boundary value problems. To mention
the related papers along these lines, we refer to Bai and Lii [2], Kauffman and Mboumi
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[6], Benchohra, Henderson, Ntoyuas and Ouahab [3], Su and Zhang [19] for fractional
order differential equations, Su [18], Khan, Rehman and Henderson [9], Prasad and
Krushna [16] for systems of fractional order differential equations.

Ahmad and Nieto [ 1] obtained an existence result for a coupled system of nonlin-
ear fractional order boundary value problem,

) )
u(0) = 0,u(1) = yu(n), v(0) = 0,v(1) = yv(n),

where D is the standard Riemann-Liouville fractional order derivative, 1 < o, 3 <2,
p,q,1n,7 satisfy certain conditions, by applying the Schauder fixed point theorem.

In [10], the authors studied the existence and uniqueness of solutions to the bound-
ary value problem,

D%u(t) = f(t,u(t),u'(t)), t € (0,1),
u(0) =0, DPu(1) = 8DPu(n),

where D is the Caputo fractional order derivative, | < <2, 0<d<p<1,0<n<
1, by using some fixed point theorem.
We assume that the following conditions hold throughout the paper:

(A1) f1,/f>:[0,1] x R* — R are continuous,
(A2) a—qi = laﬂ —Di P 17 fori= 1727
(A3) En*2<1, EnP2<1, ne(0,1)and & €R,

(A4) there exists a nonnegative function [(z) € C(0,1) such that
fi(t,2,3,2)| < U1) + &3] +eafy|® + &s2|%,
where €1,&,6>0and0< 0;,6,,0;3 < 1,

(AS) there exists a nonnegative function /*(¢) € C(0, 1) such that
f2(8,,3,2)| S I(2) + 81 X[ V! + B[y |¥2 + 2],
where 01,8,,03 >0and 0 < y,yn, 3 < 1.
1.1. Preliminaries
In this section, we present some definitions and lemmas that are useful in the proof

of our main results.

DEFINITION 1. [15] The Riemann-Liouville fractional integral of order p > 0 of
a function f: [0,4e0) — R is given by

B0 = s [ =2 e

provided the right-hand side is defined.
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DEFINITION 2. [15] The Riemann—Liouville fractional derivative of order
p >0 of a function f : [0,4e) — R is given by

1 dk o
Ry 0 e 1< p <),

Dy, f(t) =
provided the right-hand side is defined.
LEMMA 1. [151If f(tr) € Li(0,T), then the equation
Dgty(t) = £(1)
has the unique solution y(t) € L1(0,T), which satisfies the initial conditions
D) =bek=12.0m,
is

0= [0 e §

189

The rest of the paper is organized as follows. In Section 2, the Green’s function for
the homogeneous fractional order boundary value problem is constructed and sufficient
lemmas are estimated. In Section 3, the existence of a solution for a coupled system
of fractional order boundary value problem (1)-(4) is established using the Schauder
fixed point theorem. In Section 4, as an application, the results are demonstrated with

an example.

2. Green’s Function and Lemmas

In this section, the Green’s function for the homogeneous fractional order bound-
ary value problem is constructed and sufficient lemmas are estimated, which are needed

to establish the main results.
Let
X= {u : u,DgLu,Dgiu € Clo, 1}}

be the Banach space equipped with the norm,

Jullx = ma )| +II[l€aIX’Dgl+u(t)’ + max ‘Dmu

and
Y = {v 2y, DLy, D2y € C[o, 1]}

be the Banach space equipped with the norm,

[l = max |v(o)| + max | DL v(0)| + max | D v(r)|.
te
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LEMMA 2. Let d = (1 —En* 2)(«) # 0. If h(t) € C[0,1], then the fractional
order differential equation,

D u(t) =h(t), t € (0,1), )

with (3) has a unique solution,

u(t) = /0 G (t.5)h(s)ds

where G (t,s) is the Green’s function for the boundary value problem (5),(3) and is
given by

Gii(t,8),0<s<r<n <1,
[g;)] Gp(t,s),0<t<s<n<l,
Gia(t,5),0<tr<n<s<l,
Gi(t,s) = (6)
Gia(t,s),0<n <s<r<1,
[GGI[S;SI)] = Gis(t,s),0<n <t <s<1,
’ Gi(t,s), 0<s<n<t<l,
Gua(t,9) =5 [(1=9)" (1= g0 2) 1o (=9 2 & — ) 2],
e
Glg(t,s) :3 gtocfl(n _s)oc72 —ta71(1 _s)a72},
Gis(t,s) :é el —s)‘H],
e
Gualt,s) == |(1=9)*" H1=En* ) =1 (1 —s)* 2+ &% (n —5)* 72,
Gis(t,s) :é el —S)H],
I
Grolt,) = [(1=5) 71 (1 = En2) =11 (1—5)°72].

Proof. Let u(t) € C[0,1] be the solution of fractional order boundary value prob-
lem (5), (3) and is uniquely expressed as

ult) =§{ [ la=en=da—9e =+ (50 =972 = 1 -9% ) as)as

+ [N et m =9 - -9 2 nas
B /1ta*l(l —s)"‘zh(s)ds}
n
:/l G (t,5)h(s)ds
0
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In a similar manner, we construct the Green’s function G,(z,s) for the homoge-
neous fractional order boundary value problem corresponding to (2) and (4).
Let T:X xY — X x Y be the operator defined as

T(u,0) (1) = (To(0), Tou(0)), ™
where

Tiv(t) / G (t,s)f1 (s v(s ),DQV(S),DS%V(S))dS,
Tou(r) / Galt,5)f> (s,u(s), DG u(s), Dz u(s) ) ds.

In view of the continuity of G1,G3, f1 and f>, it follows that T is continuous.
Let B= X x Y be the Banach space defined as

B:{(um):H(u,v)||<R7tEI}7 )

where
eyl = max { vl },
and

1

1 & 1
R > max { (4A1£1> = ,(4/\182) - (41\183) % 4y,
1 1 %
(4A261> v <4A262> v (41\253) ¥ ,4v}.

LEMMA 3. [1] Assume that (A1) is satisfied. Then (u,v) € B is a solution of the
fractional order boundary value problem (1)-(4) if and only if (u,v) € B is a solution

of (7).

3. Existence of a solution

In this section, we establish the existence of a solution for a coupled system of
nonlinear fractional order boundary value problem (1)-(4) by applying the Schauder
fixed point theorem.

For our convenience, we denote

1-&n*2+aém*2—n*") (a-D2-En*?)+&n* (a—q1)

M DI AT+ 1) T (0 D)1 En® (o —qi + 1)
(a—1)2—En" ) +En* Ha—q)
(@)1 En* (e —ga 1)

Al rag P2 —neh (B2 —&nP )+ Enf T (B py)

B-D(1-EnP LB+ (B-1(1-EnP LB pit1)
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(B=1)2—E&nP2)+EnP (B — po)
(B=1)(1=EnP2T(B—p2+1)

y=in [ |6
2-ene 2 [ —gent (1-geet
+1—§n“‘2{/o l Ta—q) ' Ta—a) 1’(“‘)‘”5}

! ! ! ! —5)%21(s)ds
) [rw—ql)*r(a—qz)u (=" ),

and

v ,"ggl/ [Ga (e, ()|
—&nb-2 (1—s)B 11 (1—s)B-p2-1
*T—&Zf”{/o T T ’(”‘“}

/ "0 — )82 (s)ds.
0

+

1 1 1
(1-¢nk-2) [1‘([3 —p1) - (B —p2)

To establish the existence of a solution to the fractional order boundary value prob-
lem (1)-(4) by utilizing the Schauder fixed point theorem.

LEMMA 4. (Schauder fixed point theorem) Let E be a Banach space and € be
any nonempty convex and closed subset of E. If M is a continuous mapping of Q into
itself and MQ is relatively compact, then the mapping M has at least one fixed point.

THEOREM 1. Assume that the conditions (Al)-(AS) hold. Then there exists a
solution for the coupled system of fractional order boundary value problem (1)-(4).

Proof. Using the assumptions (A1)-(A5) together with the results
(o) (o)

Dol = L _omailggg pla ol o 20
0" F(a_ql> 0* F(OC—(]z)

1¢al,
Firstly, we prove that T : B— B, where B is given in (8). We have,

Tiv(n)| = /0 L Gis) i (5:(5), D), DI v(s) ) ds

g/ol’Gl(t,s)l(s)’dﬁ—i<£i|R|9">/01‘Gl(t,s)‘ds
</01 )Gl(t,s)l(s))ds—kg<£,~|R|9"> l—/ot %ds
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(1—&na2) “7 (1= én‘”

1—En 2+a€(n"‘ -n* )
(=1 (a+1)(1-En*=2)

+/1ta—1(l_s)a—2d éta 1 n Sa 2 ‘|
0

- /01 )Gl (t;s)l(s))ds+i:21 <8i|R|9i>

and

|Dg1+ Tw(t)' -

DI (1,v(0), DY) DR v(1) )
o
(1—&n=)

= &1 £ (n,v(n), DR v(m), D v(m)) | Dt

7 £ (1v(1), DR (1), DR v(1))

165 i (1,90, DR (), D V(1) )

o
(I1-&n*2)

18 (1v(1),D5(1), Df (1))

Ta

tOC—ql—l
(e —q1)

— &I fi (n,v(n),DSiv(nLDgiv(n))]

1
R

[(z en ) [l i

e [ -9 H(syas

+ (&1lRI% + exlRI% + e3[Rl

(a—1D)2=En* ) +En*a—q)
(a—=1)(1-=En* 2 (a—q1+1)

and

‘D Tiv( )‘

DRI fi (1,90, D51v(0), D v(0))

v
(1-&n*-2)

=818 (n.v(n). D ). D o)) D |

187 (19000240, Df ()

157 i (1,9(0), D51 v(0), D ()

N W [Ig+f1 (17v(1),pg¢v(1),pg§v(1)>
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T'o
F(OC — q2)

tafqul

= &1 fi (m,v(m), DR v(m), D () ) |

F(OC — q2)

! a—q— 1 ! o
X/O(I—S) q ldS—f—m{/o (l—s) 2l(s)ds

1
+ (R + R +elR®) [ (=525

t
[/ (¢ —S)aiqzill(s)dS—F (81‘R‘61 +82|R|02 +83‘R‘63>
0

+& /On(n — )% 2U(s)ds + & <£1 IR|% + &|R|® +33\R\93)
x /01(1 —s)o‘*zds—i-’g'/on(n — )% 2(s)ds

n
+§<£1 |R|91 +£2\R\92+83|R|93>/0 (n—s)“zdsH

1
S Ta—q)(1_Ene?)

n
+& [ (=57 2u(s)ds+ (&R + ealR|® +e:|R (")

x {(z—én“> / (1)@ elds 1 g / " _swdsH

1
S Fa—g)(1—&ne2

-0 [[(1-ge e tisas

) [(2—571‘“) [ - isas

e " (0 — 5% 2(s)ds

+ (&1RI + exlRI% + e3[Rl

(a—1)2-En*?) +&n* (o —q0)
(@ =11 =En* ) (e —g2+1)

Thus,

+ max )D Tov( ))

ITiv(1)||x = max |Tyv(r)| + max ‘D Tiv(1)
r€[0,1] r€[0,1]

1€(0,1
1
g/ [G1(1,9)1(5)ds| + (&1 |RI® + &2|RI%: +&5|RI%
0

1-En* 2+ a(n* 2 —n"" 1)1
(

(a=DT(a+1)(1-En*?)

v 1 —&n"?) [ (1= 1(5)s
Mo a0 Ene7) 0
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+§/ )*21(s)ds

| @=DR=En*?)+En a—q1)
(a—=1)(1=En*2)I (o — g1 +1)

+ (&R + &2 RI% + e3[Rl

+ ! (
I(o—q2)(1-En*?)

+§/ ) 21(s)ds

s DE-En*?) +&n* (o —q)
(@ =11 =En* ) (e —g2+1)

<7+ (alR? +&lR|® +&lRI% A
<R+R+R+R

S44 4y

=R.

280 [ (-5 e is)ds

+ (&RI% + 2RI 4 &3 R

Similarly, it can be shown that
IT@)lly < v+ (BRI + BIRI* + &IRI™ ) A2 < R.

Hence, we conclude that
[T (u,v)|lxxy <R

Since T1v(r), Tau(r), D\ Tiv(t), DgiTou(r), DFTiv(r) and Dg; Tou(r) are continu-
ous on [0, 1]. Therefore T:B—B.
Now, we show that T is a completely continuous operator. For this, we let

)

= 8 | (0, ulo), DY), DR ()|

For (u,v) € B, 1,1 €[0,1], < T, we have

M= 35 1wl DR, D ()

ITyv(t) — Tiv(7)| :' /0 1 (G1 (1,5)— Gy (‘L’,s)) fi <s7v(s),pg¢v(s),pg$v(s))
< W l/ot[(f—sf“l — (=5 (1=En"?)

+ (,L.afl _tafl)(l _S)a72+sé(1a71 _tocfl)(n _S)a2‘| ds

+ [l e[ 9m 2 g —9e 2 as
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+/nl(r°‘—1 — N —s)“_zds]

7% & (Tafl_tafl)(l_gnafl)
Cle+1)  (a—DF(a)(1-En*72) |’

and

‘ngv(z) —ngv(r)‘

150, (Lv(t),Dé’iv(t),DSﬁv(t))

o o | .
st =g (A (L0 P .0 )

= &8 (nv(m). DG (n). D)) i
~ 57 i (8, D5v(2). DR v()

| o o 1 .
" (o —qp)(1—Ene—2) {Io+f1 (17V(1),D8+V(1),Dg+v(l)>

— &8¢ i (n.v(n). (). D v(n) }Ta,,ll

/0 = g)e-a-lg (s, v(s>,D§iv(s>,D§3V(S)>ds

M(Tai[fl*l _taiqlil) ! o— n o—
+F(a—q1)(1_é’na72) {/0 (1—y) lds—é/o (n—ys) lds}

M(200 — @) | M(1—En?)(ze a1 =)
Ta—qi+1) I—&n* M a—q)a

<
= F(a—ql)

- /0 “(rog)aaly, (s.9(6). DL v(s). D2 () ) s

and

|DE Tiv() — DG Tiv()|

157 i (1,9(0), DL v(o), D (1) )

o o 1 i
a I'lo—qo)(1— éna—2) {10+f1 (17V(1)aDg+V(1),Dg+V(1)>

— §Ig+f1 <n,V(n),Dgiv(n),Dgiv(n)> }tocqzl
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157 fi (2,v(2), DR v(2), D (1))

T o | .
+ T(o—qgo)(1—Eno2) {10+f1 (I»V(l)7D€+v(l)7D€+v(l))

—EIS N (ﬂ»V(n%DSiv(n),Dgiv(n)) }Taqzl

/0 ‘(- syl (5,(). DL v(5), DR v(s) ) ds

|

c Ll
S T(a—q)

— [ = (59(6). DL v(s), D () ) s

. M
T(o—gq2)(1-6n*72)

X {/01(1 —s)aflds—’g'/on(n —s)alds}

/0 —g)n-p (s,v(s),DSiv(s%Dé’iV(S))ds

|

(T(X—qz—l _ tOC—qz—l)

<
= F(a—qQ)

- /O (rog)rnly (590 DL v(s). D2 () ) s

MO0 ot e
Ma—oi e ma )

M [/T(I )l (g gty

S T(a—q2) | Jo

M(1 = En%)(z el —gaal)
(I=En* (o —q2)x
Mo ) M1 (o] )
Ioo—g2+1) (1—En*2) (o —q2)o

+

T
+/ (T—s)* 2" 1ds
t

Analogously, it can be proved that

‘Tzu(t) - TQM(T)‘ <N

U G 0 L et 3 L)
T(B+1) (B-1I(B)(1—-EnP2) |

’Dgi Tou(t) —DgiTzu(T)’

_ (Tﬁ_Pl _,ﬁ—pl) N (1 _énﬁ)(fﬁ—m—l _tﬁ_Pl_l)
S TB-pi+1) (1=EnP-2)T(B—p1)B
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and

D2 Tou(r) _ngu(r))

- (tB=r2 —¢B=r2) (1 —EnB)(gB-r2—1 —(B-r2-1)
S| TB=p2tD) (1=EnP=2)0(B —p2)B

Therefore, it follows from the above estimates that 7 is an equicontinuous. Also it is
uniformly bounded as 7 C B. Thus, we conclude that T is a completely continuous
operator. Hence by the Schauder fixed point theorem, there exists a solution to the
coupled system of fractional order boundary value problem (1)-(4). This completes the
proof.

4. An example

In this section, as an application, we demonstrate our results with an example.
Consider the system of fractional order differential equations,

%7 1€(0,1),
DI v(1) = ﬁ <D§+u(t)>% + (D(iu(t))"’z + (u) ™|+ o
%, t€(0,1),
satisfying the three-point boundary conditions,
u(0) = u'(0) =0, u’(l)—%u’(%) —0, (11)
v(0) = V/(0) =0, v’(l)—%v’(%) —0, (12)

where 0< 6;, y; <1, i=1,2,3. By direct calculations, one can determine

A1 =29.285308,A = 15.356694, 7= 0.475942, v = 0.811456

and
fi(t,x,y,2) :ﬁ [(x(t)yl + (y(t)> “ (z(t)> N %7
f(t,x,y,2) :ﬁ [(x(t)>‘4’l . (y(t)> v (Z(I)>u/3 iy
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for r € (0,1), we have

fi(e,x,,2)| U+ e +ealy|® +eslzl*,
12 (t,x,3,2) | <+ 81 x|V + B[y |¥> + 8302 V2,

where [, [* are constants, €1,&,& >0 and 8;,0,,8; > 0. Applying the Theorem I,
the fractional order boundary value problem (9)-(12) has a solution (u,v) € B, where
B is determined from (8).
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