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(Communicated by Shangbin Cui)

Abstract. We investigate the blowup and stability of semilinear stochastic partial differential
equations with time-dependent coefficients using stopping times of exponential functionals of
Brownian martingales and a non-homogeneous heat semigroup. In particular we derive lower
bounds for the probability of blowup in finite time, and we provide sufficient conditions for the
existence of global positive solutions.

1. Introduction

In [5], Dozzi and López-Mimbela have estimated the probability of finite-time
blowup of positive solutions and the probability of existence of non-trivial positive
global solutions of the SPDE with constant coefficients

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

du(t,x) =
(
Δu(t,x)+u1+β(t,x)

)
dt + κu(t,x)dWt,

u(0,x) = f (x) � 0, x ∈ D,

u(t,x) = 0, t > 0, x ∈ ∂D,

(1.1)

where β > 0 and κ � 0 are constants, D is a bounded domain of R
d with smooth

boundary ∂D , the initial condition f : D→R+ is of class C2 with f �≡ 0 and (Wt)t∈R+

is a standard 1-dimensional Brownian motion on a stochastic basis
(
Ω,F ,(Ft )t�0,P

)
.

In order to explain briefly the type of results obtained in [5] let us consider initial
values of the form f (x) = mψ(x) , x ∈ D (where m > 0 is a parameter and ψ is the
eigenfunction corresponding to the first eigenvalue of the Laplacian on D normalized

Mathematics subject classification (2010): 60H15, 35R60, 35K58, 35B40, 35B44.
Keywords and phrases: stochastic partial differential equations, blowup of semilinear equations, weak

and mild solutions, exponential functionals of Brownian motion.
The authors thank the referees for a careful reading of this paper and several suggestions. A.A. would like to thank

the Philippine Commission on Higher Education (CHED) for a research grant under the Science and Engineering Graduate
Scholarship program. J.A.L.-M. and N.P. respectively acknowledge CONACyT Grant No. 157772 and NTU Tier 1 Grant
RG19/12 for partial supports.

c© � � , Zagreb
Paper DEA-07-12

201

http://dx.doi.org/10.7153/dea-07-12
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by
∫
D ψ(x)dx = 1), and let u(t,x) be a weak solution of (1.1). Then, using essen-

tially the transformation v(t,x) = e−κWtu(t,x) and Itô’s formula one can deduce that
the explosion time ρ of (1.1) fulfills σ∗ � ρ � σ∗ almost surely, where

σ∗ = inf

{
t � 0 :

∫ t

0
exp(κβWr −β (λ1 + κ2/2)r)dr � 1/(βmβ‖ψ‖β

∞)
}

,

σ∗ = inf

{
t � 0 :

∫ t

0
exp(κβWr −β (λ1 + κ2/2)r)dr � 1/(βmβ (∫ ψ2(x)dx

)β )
}

,

and λ1 is the first eigenvalue of the Dirichlet problem for the Laplacian Δ on D . There-
fore, almost surely the weak solution of (1.1) is global on the event {σ∗ = ∞} , and
blows up in finite time on {σ∗ < ∞} . Moreover we have

P(σ∗ � t) � P(ρ � t) � P(σ∗ � t)

for any t > 0, where the random variables σ∗ and σ∗ are given in terms of one and
the same Brownian functional

∫ t
0 exp(κβWr−β (Λ+κ2/2)r)dr , whose density can be

obtained for every t > 0 from Yor’s formula (see [21], Ch. 4).
Similar results are valid for systems of semilinear SPDEs of the form

du1(t,x) =
(
(Δ +V1)u1(t,x)+up

2(t,x)
)
dt + κ1u1(t,x)dWt

du2(t,x) =
(
(Δ +V2)u2(t,x)+uq

1(t,x)
)
dt + κ2u2(t,x)dWt , x ∈ D, (1.2)

with Dirichlet boundary conditions (where p � q > 1, and Vi > 0 and κi �= 0 are
given constants, i = 1,2). In [4] it is shown that for this kind of systems, the prob-
ability distributions of suitable lower and upper bounds for the blow-up time of (1.2)
are determined, respectively, by Brownian functionals of the form

∫ t
0 eaWr ∧ebWr dr and∫ t

0 eaWr ∨ ebWr dr for appropriate constants a,b .
In this paper we extend the above type of results to the time-dependent semilinear

SPDE

du(t,x) =
(

1
2
k2(t)Δu(t,x)+h(t)G

(
u(t,x)

))
dt + κ(t)u(t,x)dWt (1.3)

with the same Dirichlet conditions as in (1.1) above, where h,k,κ are continuous func-
tions from R+ into (0,∞) and G : R → R+ is a locally Lipschitz function.

Nonautonomous equations of the above type have been investigated by many au-
thors, see e.g. [2, 8, 13, 14, 17, 16, 20, 19]. Existence and uniqueness of local mild so-
lutions, space-time regularity properties, as well as conditions for existence of a unique
global solution have been investigated in [17] and [19] for a wide class of evolution
equations on Banach spaces perturbed by Hilbert space-valued Brownian motions. Sev-
eral notions of solutions for a class of semilinear nonautonomous SPDEs on bounded,
convex, smooth Euclidean domains are discussed in [16], which in many cases turn
out to be equivalent, see also [19]. Since the equations we study here use a simple
time-dependence of coefficients and a noise component which is a scalar multiple of
Brownian motion, the existence and uniqueness of their solutions follows from an easy
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adaptation of the approach used in [10, Sect. 3], where well-posedness of a nonau-
tonomous system of semilinear PDEs is investigated.

Let us explain in brief our main results and the methods we use to prove them. In
the sequel we let λ1 > 0 denote the first eigenvalue of the Dirichlet problem for the
Laplacian Δ on D with associated eigenfunction ψ normalized by

∫
D ψ(x)dx = 1, i.e.

Δψ + λ1ψ = 0 on D and ψ |∂D = 0.

Let u be a weak solution of (1.3). Imposing the conditions G(z) � Cz1+β for
z > 0, and

h(t)
κ2(t)

exp

(
−β λ1

2

∫ t

0
k2(s)ds+

β λ1

ν

∫ t

0
κ2(s)ds

)
� c (1.4)

where C,β ,c > 0 are constants and ν ∈ (0,∞] is a parameter, we show in Theo-
rem 1 below that the probability of blowup of u in finite time is lower bounded by
γ(μ ,θ )/Γ(μ) , where γ(μ ,θ ) is the lower incomplete gamma function relative to

θ :=
2c
β

(∫
D

f (x)ψ(x)dx

)β

with parameter μ := (2λ1 + ν)/(νβ ) . This is achieved by using the transformation
v(t,x) = e−

∫ t
0 κ(s)dWsu(t,x) and then exploiting the random PDE solved by v .

On the other hand, the existence of global solutions of (1.3) is analyzed using
the heat semigroup (Sr,t)0�r�t∈R+ of the process

(∫ t
r k(s)dW̃s

)
t∈[r,∞) where W̃t is a

d -dimensional Brownian motion killed on leaving D , under the assumptions that G
satisfies G(0) = 0 and

G(z) � Λz1+β , z > 0,

for some constant Λ > 0, and z 
→ G(z)/z is increasing. In Corollary 3 below we show
that if the initial condition f satisfies

Λβ
∫ ∞

0
h(r)exp

(
β
∫ r

0
κ(s)dWs− β

2

∫ r

0
κ2(s)ds

)
‖S0,r f‖β

∞dr < 1 (1.5)

then (1.3) has a global positive solution. In the special setting C = Λ = 1 and f (x) =
pψ , x ∈ D , where p > 0 is some parameter and under Condition (1.4) we provide
in Corollary 4 an upper bound for the probability that the solution of (1.3) is global.
In case D is a connected bounded C1,α -domain in R

d where α > 0, we show in
Theorem 4 that (1.5) is satisfied under Conditions (4.13)–(4.14). In case of constant
coefficients h(t) = 1, k(t) =

√
2 and κ(t) = κ > 0 we recover in particular the blowup

and existence results of Dozzi and López-Mimbela [5].
It also follows from our analysis that the presence of noise does not trigger blow-

up, and a higher level of noise modeled by the function κ(t) can actually increase the
regularity of the solution, as can be seen in (1.4) and (1.5). This is in contrast with the
analysis of [11] in which the presence of a centered stochastic term does not prevent
blow-up of the solution.
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Our treatment of (1.3) renders as well an explosion condition for its deterministic
version. That is, if we consider the PDE

∂u
∂ t

(t,x) =
1
2
k2(t)Δu(t,x)+h(t)G(u(t,x))

with the same initial and boundary conditions, and the same assumptions on h,k and
G as for SPDE (1.3), a criterion for explosion of positive solutions of this equation
is given in Section 2, which extends partially the classical result of H. Fujita [6]; see
Remark 1 below.

We remark that, although our approach is based on the methods used in [5], the
nonautonomous equation (1.3) is qualitatively different from its autonomous counter-
part, owing to the fact that it allows for richer dynamics and behaviors that are not
present in the autonomous equation: on the one hand, the coefficients h(t) and κ(t)
allow one to model time-dependent scale variations in the reaction and noise terms. On
the other hand, the linear operators 1

2k2(t)Δ represent anomalous, time-inhomogeneous
diffusions capable of modifying qualitatively the development of (1.3). As a matter of
fact, the factor k2(t) in front of Δ can drastically alter the asymptotic behavior of (1.3),
a phenomenon that might be better understood in the deterministic setting κ ≡ 0: tak-
ing for simplicity h(t)≡ 1 and D = R

d one can show, as in [9], that integrability of k2

already excludes existence of global positive solutions of

∂u(t,x)
∂ t

=
1
2
k2(t)Δu(t,x)+u1+β(t,x), x ∈ D, (1.6)

for all nontrivial initial values u(0) � 0. From our analysis of Eq. (1.3) one can easily
deduce that also in the case of a bounded smooth domain D , the solution of (1.6)
blows up in finite time whenever k2 is integrable and u(0) � 0 is not identically 0, see
Condition (2.17) below.

As in [5], our method to study the finite-time blowup and existence of global
positive solutions of (1.3) is to rewrite this SPDE into the random PDE (2.2) given
in Proposition 1 below. Upper and lower bounds for the blowup times of Eq. (2.2),
which are stopping times for exponential functionals of the form

Y (t) :=
∫ t

0
m(r)exp

(
−n(r)+ β

∫ r

0
κ(s)dWs

)
dr, t � 0,

are obtained for suitable nonnegative functions m(r) and n(r) . The asymptotic behav-
ior of (1.3), i.e. finite-time blowup versus existence, globally in time, of its positive
solutions is then studied by exploiting assumption (1.4) and classical results about the
law of Y (∞) .

We proceed as follows. In Section 2 we recall some background definitions, cf.
also [5] for details, and we prove some preliminary results on weak solutions and
blowup times. Section 3 deals with the probability of blowup in finite time, while
existence results are presented in Section 4 based on semigroup arguments.
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2. Preliminaries

In this section we identify a random stopping time τ which is a blowup time for
(1.3), i.e. any solution u(t,x) of (1.3) blows up before time τ almost surely in the sense
that

lim
t↗τ

sup
x∈D

|u(t,x)| = +∞, a.s. on {τ < +∞}.

In the sequel we will use the process (Mt)t∈R+ defined by

Mt :=
∫ t

0
κ(s)dWs.

The next proposition shows that u(t,x) can be transformed into the solution of a random
PDE. We refer to § 1 of [5] for the notions of weak and mild solutions of a random PDE.

PROPOSITION 1. Let τ be a given stopping time such that (1.3) possesses a weak
solution u on the interval (0,τ) . Then the function v defined by

v(t,x) := e−Mt u(t,x), t ∈ [0,τ), x ∈ D, (2.1)

is a weak solution of the random PDE⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂v
∂ t

(t,x) =
1
2
k2(t)Δv(t,x)− κ2(t)

2
v(t,x)+h(t)e−MtG

(
eMt v(t,x)

)
,

v(0,x) = f (x) � 0, x ∈ D,

v(t,x) = 0, t ∈ [0,τ), x ∈ ∂D.

(2.2)

Proof. We proceed as in [5]. Using Itô’s formula we write the semimartingale expan-
sion

e−Mt = 1−
∫ t

0
κ(s)e−MsdWs +

1
2

∫ t

0
κ2(s)e−Msds, t ∈ R+.

Then we have∫
D

u(t,x)ϕ(x)dx =
∫

D
f (x)ϕ(x)dx

+
∫ t

0

∫
D

(
1
2
k2(s)u(s,x)Δϕ(x)+h(s)G

(
u(s,x)

)
ϕ(x)

)
dxds

+
∫ t

0

∫
D

κ(s)u(s,x)ϕ(x)dxdWs, (2.3)

P-a.s. for all t ∈ [0,τ) and for every ϕ ∈C2(D) vanishing on ∂D . Letting

u(t,ϕ) :=
∫

D
u(t,x)ϕ(x)dx,
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we rewrite (2.3) as

u(t,ϕ) = u(0,ϕ)+
1
2

∫ t

0
k2(s)u(s,Δϕ)ds

+
∫ t

0
h(s)G(u)(s,ϕ)ds+

∫ t

0
κ(s)u(s,ϕ)dWs,

and for any fixed ϕ , the process (u(t,ϕ)1[0,τ)(t))t∈R+ is also a semimartingale. Ob-
serve that the cross variation between e−Mt and u(t,ϕ) is given by

d〈e−Mt ,u(t,ϕ)〉 = −κ2(t)e−Mt u(t,ϕ)dt,

which yields

v(t,ϕ) = e−Mt u(t,ϕ)

= e−M0u(0,ϕ)+
∫ t

0
e−Msd

(
u(s,ϕ)

)
+
∫ t

0
u(s,ϕ)d

(
e−Ms

)
+ 〈e−Mt ,u(t,ϕ)〉

= u(0,ϕ)+
1
2

∫ t

0
k2(s)v(s,Δϕ)ds+

∫ t

0
h(s)e−MsG

(
eMv
)
(s,ϕ)ds

− 1
2

∫ t

0
κ2(s)v(s,ϕ)ds

= v(0,ϕ)+
1
2

∫ t

0
k2(s)Δv(s,ϕ)ds+

∫ t

0
h(s)e−MsG(eMv)(s,ϕ)ds

− 1
2

∫ t

0
κ2(s)v(s,ϕ)ds, (2.4)

since we have u(0,ϕ) = v(0,ϕ) by (2.1), and v(s,Δϕ) = Δv(s,ϕ) because the Laplace
operator is self-adjoint. Since v is differentiable with respect to t up to eventual blowup
and by uniqueness of weak solution, equality (2.4) shows that v ∈ C2(D) is a weak
solution of (2.2). �

In the development of this section we assume that the locally Lipschitz function
G : R → R+ satisfies

G(z) � Cz1+β , z > 0, (2.5)

where C,β > 0 are constants. Without loss of generality we assume, just like in [5],
that C = 1 in (2.5), i.e.

G(z) � z1+β , z > 0. (2.6)

For further use we also let

K(r, t) :=
∫ t

r
k2(s)ds, K(t) := K(0,t), (2.7)

J(r, t) :=
∫ t

r
κ2(s)ds, and J(t) := J(0, t), r,t � 0. (2.8)

In Proposition 2 we construct a random upper bound τ∗ for the blowup time of the
solution u of (1.3).
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PROPOSITION 2. Any solution u of (1.3) on the interval (0,τ∗) exhibits finite-
time blowup on the event {τ∗ < ∞} , where

τ∗ := inf
{
t � 0 :

∫ t

0
h(s)e−β (λ1K(s)+J(s))/2+βMs ds � 1

β
v(0,ψ)−β

}
. (2.9)

Proof. Since the Laplacian is self-adjoint, writting v(s,ψ) :=
∫
D v(s,x)ψ(x)dx we

have

Δv(s,ψ) = v(s,Δψ) =
∫

D
v(s,x)Δψ(x)dx = −λ1

∫
D

v(s,x)ψ(x)dx = −λ1v(s,ψ).

(2.10)

Moreover, it is well-known (cf. Corollary 3.3.7 of [3]) that ψ > 0 on D . Now, assump-
tion (2.6) and Jensen’s inequality give

G(eMv)(s,ψ) :=
∫

D
G
(
eMsv(s,x)

)
ψ(x)dx

�
∫

D

(
eMsv(s,x)

)1+β ψ(x)dx

� e(1+β )Ms

(∫
D

v(s,x)ψ(x)dx

)1+β

= e(1+β )Msv(s,ψ)1+β . (2.11)

From (2.4) we obtain, for any ε > 0,

v(t + ε,ψ)− v(t,ψ)
ε

=
1
2ε

(∫ t+ε

t
k2(s)v(s,Δψ)ds+2

∫ t+ε

t
h(s)e−MsG(eMv)(s,ψ)ds

−
∫ t+ε

t
κ2(s)v(s,ψ)ds

)

=
1
2ε

(
−λ1

∫ t+ε

t
k2(s)v(s,ψ)ds+2

∫ t+ε

t
h(s)e−MsG(eMv)(s,ψ)ds

−
∫ t+ε

t
κ2(s)v(s,ψ)ds

)

� 1
2ε

(
−λ1

∫ t+ε

t
k2(s)v(s,ψ)ds+2

∫ t+ε

t
h(s)eβMsv(s,ψ)1+β ds

−
∫ t+ε

t
κ2(s)v(s,ψ)ds

)
, (2.12)

where the second equality follows from (2.10), and inequality (2.12) arises from (2.11).
Letting ε → 0 in (2.12) shows that

dv
dt

(t,ψ) � −1
2

(
λ1k

2(t)+ κ2(t)
)
v(t,ψ)+h(t)eβMtv(t,ψ)1+β ,
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and by means of a comparison argument (see e.g. Theorem 1.3 of [18]) we get

v(t,ψ) � I(t), t � 0, (2.13)

where I(·) denotes the solution of the ODE

I′(t) = −1
2

(
λ1k

2(t)+ κ2(t)
)
I(t)+h(t)eβMt I(t)1+β , (2.14)

I(0) = v(0,ψ).

In order to solve (2.14) we use the substitution w = w(t) := I−β (t) to obtain

− 1
2

(
λ1k

2(t)+ κ2(t)
)
I(t)+h(t)eβMt I(t)1+β

= I′(t) =
dI
dw

dw
dt

= − 1
β

w−1−1/βw′(t),

which simplifies to the linear ODE⎧⎪⎨
⎪⎩

w′(t)− β
2

(
λ1k

2(t)+ κ2(t)
)
w(t) = −βh(t)eβMt , t � 0,

w(0) = v(0,ψ)−β .

(2.15)

Multiplying (2.15) by the integrating factor e−β (λ1K(t)+J(t))/2 we obtain

d
dt

(
e−β (λ1K(t)+J(t))/2w(t)

)
= −βh(t)e−β (λ1K(t)+J(t))/2+βMt ,

and integrating from 0 to t on both sides of this equality we get

e−β (λ1K(t)+J(t))/2w(t) = −β
∫ t

0
h(s)e−β (λ1K(s)+J(s))/2+βMsds+w(0),

and

w(t) = eβ (λ1K(t)+J(t))/2
(

w(0)−β
∫ t

0
h(s)e−β (λ1K(s)+J(s))/2+βMsds

)
,

hence

I(t) = e−(λ1K(t)+J(t))/2
(

v(0,ψ)−β −β
∫ t

0
h(s)e−β (λ1K(s)+J(s))/2+βMsds

)−1/β
(2.16)

for all 0 � t < τ∗ , where τ∗ is given by (2.9). Next, the inequality (2.13), i.e. I(·) �
v(·,ψ) , shows that τ∗ is an upper bound for the blowup time of v(·,ψ) , hence the
function

t 
→
∫

D
e−Mt u(t,x)ψ(x)dx

also explodes in finite time on the event {τ∗ < ∞} . Since
∫
D ψ(x)dx = 1 and t 
→ e−Mt

is bounded on [0,τ∗] if τ∗ is finite, it follows that the function t 
→ ‖u(t, ·)‖∞ cannot be
bounded on [0,τ∗] if τ∗ < ∞ . Therefore, u also blows up in finite time on {τ∗ < ∞} ,
and τ∗ is an upper bound for the blowup time of u . �
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REMARK 1. Setting κ(t)≡ 0 for all t � 0 in (2.9) renders an explosion condition
for the deterministic version of (1.3). That is, if we consider the PDE

∂u
∂ t

(t,x) =
1
2
k2(t)Δu(t,x)+h(t)G(u(t,x)),

with the same initial and boundary conditions, and the same assumptions on h,k and G
as for SPDE (1.3), then the solution u of this deterministic PDE is non-global provided
that ∫ ∞

0
h(s)e−β λ1K(s)/2 ds >

1
β

v(0,ψ)−β . (2.17)

Hence, if h(r)e−β λ1K(r)/2 ∈ L1([0,∞)) , u is non-global when

∫
D

f (x)ψ(x)dx >

(
β
∫ ∞

0
h(s)e−β λ1K(s)/2 ds

)−1/β
. (2.18)

If h(r)e−β λ1K(r)/2 /∈ L1([0,∞)) , u is always non-global except in the case of f ≡ 0.
If (2.18) holds and in addition k2 = h , then the condition

∫
D

f (x)ψ(x)dx >

(
λ1

2

)1/β (
1− e−(β λ1/2)

∫∞
0 k2(s)ds

)−1/β

also implies finite-time blowup of u .

3. Probability bounds for blowup

Throughout the development of this section we let ψ be an eigenfunction of norm∫
D ψ(x)dx = 1 associated with the first Dirichlet eigenvalue λ1 > 0. That is, we have

Δψ + λ1ψ = 0 on D and ψ |∂D = 0.
As a consequence of Proposition 2, in order to find the probability of finite time

blowup of u , we investigate I(·) defined by (2.16) instead. More specifically, we need
to investigate the law of the functional∫ ∞

0
h(s)e−β (λ1K(s)+J(s))/2+βMs ds.

In practice we will impose relations on h,k and κ so that the above functional reverts
to a functional whose law is known. Theorem 1 provides such a relation and computes
a lower bound for the probability of blowup of (1.3) in finite time.

THEOREM 1. Suppose that h,k,κ > 0 are continuous functions on R+ such that

h(t)
κ2(t)

e−β λ1(K(t)/2−J(t)/ν) � c, t ∈ R+, (3.1)

where c > 0 is a constant, ν ∈ (0,∞] is a parameter, and K(t) =
∫ t
0 k2(s)ds. Then the

probability that the solution of (1.3) blows up in finite time is lower bounded by

P(μ ,θ ) :=
γ(μ ,θ )
Γ
(
μ
) , (3.2)
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where μ := (2λ1 + ν)/(νβ ) , θ := 2cv(0,ψ)β /β and

γ(μ ,θ ) :=
∫ θ

0
yμ−1e−ydy

is the lower incomplete gamma function.

Proof. Observe that Mt =
∫ t
0 κ(s)dWs is a continuous martingale and so it can be writ-

ten as a time-changed Brownian motion Mt = BJ(t) , where J(t) =
[
M
]
(t) =

∫ t
0 κ2(s)ds

is the quadratic variation of M , cf. [7, page 174]. Denoting ρ := v(0,ψ)−β /β for
simplicity and using asssumption (3.1), we have from (2.9)

P(τ∗ = +∞) = P

(∫ t

0
h(s)e−β (λ1K(s)+J(s))/2+βMsds < ρ , t > 0

)
(3.3)

= P

(∫ ∞

0
h(s)e−β (λ1K(s)+J(s))/2+βBJ(s)ds � ρ

)

= P

(∫ ∞

0

h
(
J−1(s)

)
κ2
(
J−1(s)

)e−β λ1K(J−1(s))/2−β J(J−1(s))/2+βBJ(J−1(s))ds � ρ

)

� P

(∫ ∞

0
e−(β λ1/ν+β/2)s+βBsds � ρ/c

)
. (3.4)

By the change of variables s 
→ (β/2)2s the probability (3.4) simplifies to

P(τ∗ = +∞) � P

(
4

β 2

∫ ∞

0
e
−(4λ1/(νβ )+2/β )s+βB4s/β2ds � ρ/c

)
(3.5)

= P

(∫ ∞

0
e−2(2λ1+ν)s/(νβ )+2Bsds � β 2ρ

4c

)

= P

(∫ ∞

0
e2B

(−μ)
s ds � β 2ρ

4c

)
(3.6)

where μ := (2λ1 +ν)/(νβ ) , B(−μ)
s := Bs−μs , and to get the second line we used the

scaling property of Brownian motion. From [21, Cor. 1.2, pag. 95] and (3.6) we obtain

P(τ∗ = +∞) � P

(
1

2Zμ
� β 2ρ

4c

)
= 1− 1

Γ
(
μ
) ∫ 2c

β2ρ

0
yμ−1e−y dy = 1−P(μ ,θ ) (3.7)

where P(μ ,θ ) := γ(μ ,θ )/Γ(μ) and γ(μ ,θ ) is the lower incomplete gamma function
relative to θ := 2c

β 2ρ = 2cv(0,ψ)β /β and with parameter μ , cf. e.g. [1], Eq. 6.5.1.

and Eq. 6.5.2. By Proposition 2 we have τ � τ∗ whenever τ is the blowup time of u .
Hence, from (3.7) we have

P(τ < +∞) � P(τ∗ < +∞) = 1−P(τ∗ = +∞) � P(μ ,θ ), (3.8)

as needed. �
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In the next corollary we consider uniformly bounded coefficients h(t) and k(t)
with constant coefficient κ(t).

COROLLARY 1. Suppose that h(t) � a,k(t) � b and κ(t) = κ , where a,b,κ ∈
R+. Then the probability that the solution of (1.3) blows up in finite time is lower
bounded by P

(
μ ,θ

)
= γ
(
μ ,θ

)
/Γ(μ) , where γ

(
μ ,θ

)
is the lower incomplete gamma

function relative to θ := 2av(0,ψ)β/(κ2β ) and with parameter μ = (2λ1+κ2)/(κ2β ).

Proof. Using the assumptions we get

h(t)e−β λ1(K(t)/2−J(t)/ν) � ae−β λ1(b2/2−κ2/ν)t .

Hence, condition (3.1) in Theorem 1 is satisfied with ν = 2κ2/b2 and c = a/κ2. �

Next we recover the main blowup result in [5] for the case of constant coefficients.

COROLLARY 2. (see [5] Suppose that h(t) , k(t) and κ(t) are constant func-
tions with h(t) = 1 , k(t) =

√
2 and κ(t) = κ ∈ R+ for all t � 0. Then the probabil-

ity that the solution of (1.3) blows up in finite time is lower bounded by P
(
μ ,θ

)
=

γ
(
μ ,θ

)
/Γ(μ) , where γ

(
μ ,θ

)
is the lower incomplete gamma function relative to

θ := 2v(0,ψ)β /(κ2β ) and with parameter μ = (2λ1 + κ2)/(κ2β ).

Proof. This immediately follows from Corollary 1 by setting a = 1 and b =
√

2. Note
that for this case we have condition (3.1) as an equality. Hence, (3.4), (3.5), (3.7), as
well as the rightmost inequality in (3.8) will be equalities. �

4. Existence of positive global solutions

In this section we provide conditions for the existence of global solutions of (1.3)
using semigroup techniques. We consider again the random PDE in (2.2) and this time
assume that our locally Lipschitz function G : R+ →R+ satisfies G(0)= 0, z 
→G(z)/z
is increasing, and

G(z) � Λz1+β , z > 0, (4.1)

where Λ,β > 0 are constants. Let W̃t be a d -dimensional Brownian motion killed on
leaving D , and let us denote by (Sr,t)0�r�t∈R+ the semigroup of the process

Xr,t :=
∫ t

r
k(s)dW̃s, 0 � r � t.

Observe that for x ∈D and any f ∈C2(D) we have, by the d -dimensional Itô formula,

Sr,t f (x) = IE
[
f
(
x+Xr,t

)]
= IE

[
f (x)+

∫ t

r
k(s)〈∇ f

(
x+Xr,s

)
, dW̃s〉+ 1

2

∫ t

r
k2(s)Δ f

(
x+Xr,s

)
ds

]
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= f (x)+
1
2

∫ t

r
k2(s) IE

[
Δ f
(
x+Xr,s

)]
ds,

and so

∂
∂ t

Sr,t f (x) =
1
2
k2(t) IE

[
Δ f (x+Xr,t)

]
=

1
2
k2(t)Δ IE

[
f (x+Xr,t)

]
=

1
2
k2(t)ΔSr,t f (x).

This implies that Sr,t f solves the heat equation

∂
∂ t

u(t,x) =
1
2
k2(t)Δu(t,x)

with initial value u(0,x) = f (x) and Dirichlet boundary condition. In addition, the as-
sociated transition kernels of this semigroup are given by (PK(r,t)(x,y))0�r<t∈R+ , where
K(r,t) is defined in (2.7) and (Ps(x,y))0<s∈R+ are the transition densities of W̃t . Taking
k(t) =

√
2 with r � t in particular, we have a time homogeneous process Xr,t =

√
2W̃t−r

and its semigroup can alternatively be rewritten as Sr,t = S0,t−r or simply as St−r , which
in case of r = 0 gives the homogeneous semigroup St of the d -dimensional Brownian
motion with variance parameter 2 that was considered in [5].

Note that from the time-inhomogeneous Markov property we have

Sr,tS0,r = S0,rSr,t = S0,t , 0 � r � t. (4.2)

In the next Lemma we restate (2.2) as an integral equation.

LEMMA 1. Eq. (2.2) can be rewritten as

v(t,x) = e−J(t)/2S0,t f (x)+
∫ t

0
h(r)e−Mr−J(r,t)/2Sr,tG

(
eMr v(r, ·))(x)dr, (4.3)

t > 0 , x ∈ D.

Proof. Using the transformation w = w(t,x) = eJ(t)/2v(t,x) where J(t) is as defined
in (2.8), we get from (2.2) a non-homogeneous random PDE

∂w
∂ t

=
κ2(t)

2
eJ(t)/2v(t,x)+ eJ(t)/2 ∂v

∂ t
(t,x)

=
κ2(t)

2
eJ(t)/2v(t,x)

+ eJ(t)/2
(

1
2
k2(t)Δv(t,x)− κ2(t)

2
v(t,x)+h(t)e−MtG

(
eMt v(t,x)

))

=
1
2
k2(t)Δw(t,x)+h(t)e−Mt+J(t)/2G

(
eMt v(t,x)

)
, t � 0,

with boundary conditions w(0,x) = f (x) � 0 for x ∈ D and w(t,x) = 0 for x ∈ ∂D .
Consequently, any mild solution v of (2.2) satisfies

v(t,x) = e−J(t)/2w(t,x)
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= e−J(t)/2
(

S0,t f (x)+
∫ t

0
Sr,th(r)e−Mr+J(r)/2G

(
eMr v(r, ·))(x)dr

)

= e−J(t)/2S0,t f (x)+
∫ t

0
h(r)e−Mr−J(r,t)/2Sr,tG

(
eMrv(r, ·))(x)dr, (4.4)

where the second equality is due to [15, Def 2.3, page 106]. �

In the next Theorem we provide a lower bound τ∗ for the blowup time of the
solution u of (1.3).

THEOREM 2. Suppose G satisfies (4.1), G(0) = 0 and that z 
→ G(z)/z is in-
creasing. Let A(t) be defined by

A(t) :=
(

1−Λβ
∫ t

0
h(r)eβ (Mr−J(r)/2)‖S0,r f‖β

∞dr

)−1/β
(4.5)

for all 0 � t < τ∗ where

τ∗ := inf

{
t � 0 :

∫ t

0
h(r)eβ (Mr−J(r)/2)‖S0,r f‖β

∞dr � 1
Λβ

}
. (4.6)

Then equation (1.3) admits a solution u(t,x) that satisfies

0 � u(t,x) � A(t)eMt−J(t)/2S0,t f (x), x ∈ D, 0 � t < τ∗.

Proof. Taking the derivative of (4.5) with respect to t we obtain

dA
dt

(t) = Λh(t)eβ (Mt−J(t)/2)‖S0,t f‖β
∞A(t)1+β .

Integrating this equality from 0 to t and using the fact that A(0) = 1 we get

A(t) = 1+ Λ
∫ t

0
h(r)eβ (Mr−J(r)/2)‖S0,r f‖β

∞A(r)1+β dr. (4.7)

Suppose now that (t,x) 
→ Vt(x) � 0 is a continuous function such that for any t � 0
we have Vt(·) ∈C0(D) and

e−J(t)/2S0,t f (x) � Vt(x) � A(t)e−J(t)/2S0,t f (x), t � 0, x ∈ D. (4.8)

The last inequality in (4.8) implies that

Vt(x) = |Vt(x)| � ‖Vt‖∞ � A(t)e−J(t)/2‖S0,t f‖∞. (4.9)

Now let

R(V )(t,x) := e−J(t)/2S0,t f (x)+
∫ t

0
h(r)e−Mr−J(r,t)/2Sr,t

(
G
(
eMrVr(·)

))
(x)dr. (4.10)



214 ABNER ALVAREZ, JOSÉ ALFREDO LÓPEZ-MIMBELA AND NICOLAS PRIVAULT

Using (4.9) and the fact that z 
→G(z)/z is increasing, followed by inequality (4.1), we
obtain

R(V )(t,x)

= e−J(t)/2S0,t f (x)+
∫ t

0
h(r)e−J(r,t)/2Sr,t

(
G
(
eMrVr(·)

)
eMrVr(·) Vr(·)

)
(x)dr.

� e−J(t)/2S0,t f (x)+
∫ t

0
h(r)e−J(r,t)/2Sr,t

(
G
(
eMrA(r)e−J(r)/2‖S0,r f‖∞

)
eMrA(r)e−J(r)/2‖S0,r f‖∞

Vr(·)
)

(x)dr

� e−J(t)/2S0,t f (x)+
∫ t

0
h(r)e−J(r,t)/2Sr,t

(
Λ
(
eMrA(r)e−J(r)/2‖S0,r f‖∞

)β
Vr(·)

)
(x)dr.

Moreover, (4.8) together with equalities (4.2) and (4.7) give

R(V )(t,x) � e−J(t)/2S0,t f (x)+ Λ
∫ t

0
h(r)eβ

(
Mr−J(r)/2

)
A(r)β‖S0,r f‖β

∞

× e−J(r,t)/2Sr,t
(
A(r)e−J(r)/2S0,r f

)
(x)dr

= e−J(t)/2S0,t f (x)+ Λ
∫ t

0
h(r)eβ

(
Mr−J(r)/2

)
A(r)1+β‖S0,r f‖β

∞

× e−J(t)/2S0,t f (x)dr

= e−J(t)/2S0,t f (x)
[
1+ Λ

∫ t

0
h(r)eβ

(
Mr−J(r)/2

)
A(r)1+β‖S0,r f‖β

∞dr

]
= e−J(t)/2S0,t f (x)A(t). (4.11)

Let us now construct a sequence
{
vn
t (x)

}∞
n=0 of positive functions in the following way:

Set v0
t (x) := e−J(t)/2S0,t f (x) and vn+1

t (x) = R(vn)(t,x) for n = 0,1,2, . . . .

Clearly,
v0
t (x) � R(v0)(t,x) = v1

t (x).

Assume now that vn−1
t (x) � vn

t (x) for all n � 1, t � 0 and x ∈ D . Since z 
→G(z)/z is
increasing we have

G
(
eMrvn−1

r (·))=
G
(
eMrvn−1

r (·))
eMrvn−1

r (·) eMrvn−1
r (·) �

G
(
eMr vn

r (·)
)

eMr vn
r (·)

eMrvn
r (·) = G

(
eMr vn

r (·)
)
.

Consequently, from the construction above and by definition (4.10) we get

vn
t (x) = R(vn−1)(t,x) � R(vn)(t,x) = vn+1

t (x), t � 0,x ∈ D.

This shows, by induction, that the constructed sequence is monotonically increas-
ing. Furthermore, it is bounded above as shown in (4.11). Hence, by the monotone
convergence theorem the sequence

{
vn
t (x)

}∞
n=0 has a limit which we denote by v(t,x) ,



Differ. Equ. Appl. 7, No. 2 (2015), 201–219. 215

and the equality v(t,x) = R(v)(t,x) holds for all x∈D and t ∈ (0,τ∗) , so that v satisfies
(4.3) on (0,τ∗) . Also, this limit satisfies

0 � lim
n→∞

vn
t (x) = v(t,x) � A(t)e−J(t)/2S0,t f (x) < ∞,

for all 0 � t < τ∗. We conclude by applying Lemma 1 and (2.1). �

By virtue of Theorem 2 we now give a condition under which we have a global
positive solution of (1.3) with probability 1.

COROLLARY 3. Assume that f � 0 is such that

Λβ
∫ ∞

0
h(r)eβ (Mr−J(r)/2)‖S0,r f‖β

∞dr < 1. (4.12)

Then equation (1.3) admits a global solution u(t,x) that satisfies

0 � u(t,x) � eMt−J(t)/2S0,t f (x)(
1−Λβ

∫ t
0 h(r)eβ (Mr−J(r)/2)‖S0,r f‖β

∞ dr
)1/β , t � 0.

Proof. This immediately follows from Theorem 2 since τ∗ = ∞ by (4.6) and (4.12).
�

REMARK 2. Notice that, if

(i) ψ is an eigenfunction associated with the first eigenvalue λ1 of the Dirichlet eigen-

value problem for the Laplacian Δ on D , i.e. S0,rψ(x) = e−
λ1
2
∫ r
0 k2(s)dsψ(x) where

r � 0,x ∈ D , with
∫
D ψ(x)dx = 1,

(ii) C = Λ = 1 and

(iii) f (x) = pψ(x) , x ∈ D , where p > 0 is a parameter,

then τ∗ defined in (4.6) and τ∗ defined in (2.9) are given in terms of the same expo-
nential Brownian functional, namely:

τ∗ = inf

{
t � 0 :

∫ t

0
h(s)e−β (λ1K(s)+J(s))/2+βMsds � p−β

β
‖ψ‖−β

∞

}

τ∗ = inf

{
t � 0 :

∫ t

0
h(s)e−β (λ1K(s)+J(s))/2+βMsds � p−β

β

(∫
D

ψ2(x)dx

)−β
}

,

with τ∗ � τ∗ a.s. since
∫
D ψ2(x)dx �

∫
D ψ(x)‖ψ‖∞dx = ‖ψ‖∞.

As a consequence of Theorem 2 and in the special setting of Remark 2 we now give an
estimate for the probability of existence of global positive solution of (1.3).
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COROLLARY 4. Under the conditions (i)-(iii) in Remark 2 and assumption (3.1)
of Theorem 1, the probability that a global positive solution of (1.3) exists is upper
bounded by

Q(μ ,θ ) :=
Γ(μ ,θ )
Γ
(
μ
) ,

where μ := (2λ1 + ν)/(νβ ) , θ := 2c(p‖ψ‖∞)β /β and

Γ(μ ,θ ) :=
∫ ∞

θ
yμ−1e−ydy

is the upper incomplete gamma function.

Proof. Replacing ρ in (3.3) by p−β‖ψ‖−β
∞ /β and arguing as in the proof Theorem 1

while working with τ∗ defined in (4.6), we get P(τ∗ = +∞) � 1−P(μ ,θ ) = Q(μ ,θ )
with Q,μ and θ as above and P(μ ,θ ) defined in (3.2). We conclude using Theorem 2.

�
For further use in the proof of Theorem 4, we quote the following bounds for the

transition kernels given by Ouhabaz and Wang [12].

THEOREM 3. Let ψ > 0 be the first Dirichlet eigenfunction of the Laplacian on a
connected bounded C1,α -domain D⊂ R

d , where α > 0 and d � 1 , and let Pt(x,y) be
the corresponding Dirichlet heat kernel. There exists a constant ξ > 0 such that, for
any t > 0 ,

max

{
1,

1
ξ

t−(d+2)/2
}

� eλ1t sup
x,y∈D

Pt(x,y)
ψ(x)ψ(y)

� 1+ ξ (1∧ t)−(d+2)/2e−(λ2−λ1)t ,

where λ2 > λ1 are the first two Dirichlet eigenvalues. This estimate is sharp for both
short and long times.

We now give sufficient conditions for (4.12) using upper bounds derived from Theo-
rem 3 for the transition kernels (PK(r,t)(x,y))0�r<t∈R+ of the semigroup (Sr,t)0�r�t∈R+ ,
and the first Dirichlet eigenvalue λ1 > 0 with corresponding eigenfunction ψ .

THEOREM 4. Let G satisfy (4.1), G(0) = 0 and that z 
→ G(z)/z is increasing,
and let D be a connected bounded C1,α -domain in R

d , where α > 0 . If for some fixed
η with K(η) � 1 and constant m > 0 we have

f (y) � mS0,ηψ(y), y ∈ D (4.13)

and
∫ ∞

0
h(r)e−β (λ1K(r)+J(r))/2+βMrdr <

eλ1βK(η)

Λβ

(
m(1+ ξ )

(
sup
x∈D

ψ(x)
)2 ∫

D ψ(y)dy

)β

(4.14)
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where ξ > 0 is as given in Theorem 3, then (4.12) is satisfied and consequently the
solution of equation (1.3) is global.

Proof. Let f � 0 be chosen so that (4.13) is satisfied. Observe that for any t > 0,

S0,t f (x) � mS0,tS0,ηψ(x) = m
∫

D
PK(t)+K(η)(x,y)ψ(y)dy.

From the inequality above, Theorem 3 then gives

S0,t f (x)

� m
∫

D
eλ1

(
K(t)+K(η)

)PK(t)+K(η)(x,y)
ψ(x)ψ(y)

e−λ1

(
K(t)+K(η)

)
ψ(x)ψ(y)ψ(y)dy

� m
(

sup
x∈D

ψ(x)
)2 ∫

D
eλ1

(
K(t)+K(η)

)
sup

x,y∈D

PK(t)+K(η)(x,y)
ψ(x)ψ(y)

e−λ1

(
K(t)+K(η)

)
ψ(y)dy

� m
(

sup
x∈D

ψ(x)
)2 ∫

D

(
1+ ξ

[
1∧ (K(t)+K(η)

)]−(d+2)/2
e−(λ2−λ1)

(
K(t)+K(η)

))

× e−λ1

(
K(t)+K(η)

)
ψ(y)dy

= m
(

sup
x∈D

ψ(x)
)2 ∫

D

(
e−λ1

(
K(t)+K(η)

)
+ ξ e−λ2

(
K(t)+K(η)

))
ψ(y)dy

� m
(

sup
x∈D

ψ(x)
)2
(

e−λ1

(
K(t)+K(η)

)
+ ξ e−λ1

(
K(t)+K(η)

))∫
D

ψ(y)dy

= m
(
1+ ξ

)
e−λ1K(η)

(
sup
x∈D

ψ(x)
)2

e−λ1K(t)
∫

D
ψ(y)dy, (4.15)

which is independent of x . Inequality (4.15) implies that the map (t,x) 
→ S0,t f (x) is
uniformly bounded in x and so

‖S0,t f‖∞ � m
(
1+ ξ

)
e−λ1K(η)

(
sup
x∈D

ψ(x)
)2

e−λ1K(t)
∫

D
ψ(y)dy. (4.16)

Multiplying both sides of (4.16) by e−J(t)/2 we would have

e−J(t)/2‖S0,t f‖∞ � m
(
1+ ξ

)
e−λ1K(η)

(
sup
x∈D

ψ(x)
)2

e−λ1K(t)−J(t)/2
∫

D
ψ(y)dy

� m
(
1+ ξ

)
e−λ1K(η)

(
sup
x∈D

ψ(x)
)2

e−
(

λ1K(t)+J(t)
)
/2
∫

D
ψ(y)dy

(4.17)

Now from (4.14) and the last inequality in (4.17) we get

1 > Λβe−λ1βK(η)
(

m(1+ ξ )
(

sup
x∈D

ψ(x)
)2 ∫

D
ψ(y)dy

)β
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×
∫ ∞

0
h(r)e−β (λ1K(r)+J(r))/2+βMrdr

= Λβ
∫ ∞

0
h(r)eβMr

×
(

m(1+ ξ )e−λ1K(η)
(

sup
x∈D

ψ(x)
)2

e−
(

λ1K(r)+J(r)
)
/2
∫

D
ψ(y)dy

)β
dr

� Λβ
∫ ∞

0
h(r)eβ (Mr−J(r)/2)‖S0,r f ‖β

∞dr,

which is precisely (4.12). Global existence of solution to (1.3) now immediately follows
from Corollary 3. �

REMARK 3. Assuming both (2.5) and (4.1) with C = Λ = 1, i.e. G(z) = z1+β

and if D is a connected bounded C1,α -domain in R
d , the results of both Sections 3 and

4 can be applied to the solution of SPDE (1.3) by virtue of Proposition 1.
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