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Abstract. We consider the initial-boundary value problem for the modified Schrödinger equa-
tion, posed on positive half-line x > 0 :⎧⎨⎩ ut +Ku+ i|u|2u = 0, t � 0, x � 0;

u(x,0) = u0(x), x > 0
u(0,t) = h(t), t > 0.

where the operator K is defined as

K(u) = αuxx +λ |∂x|γu
with α ∈ C , λ > 0 and |∂x|γ is the module-fractional derivative operator defined by

|∂x|γu = Rγ ∂xu.

Here Rγ is the modified Riesz Potential

Rγu =
1

2
√

π sin
( π

4

) ∞∫
0

sign(x− y)√|x− y| u(y)dy.

We study the local and global existence in time of solutions to the initial-boundary value problem.

1. Introduction

We consider the initial-boundary value problemfor a modified Schrödinger equa-
tion with Landau damping on a half-line⎧⎨⎩

ut +Ku+ i|u|2u = 0, t � 0, x � 0;
u(x,0) = u0(x), x > 0
u(0,t) = h(t), t > 0.

(1.1)

where the operator K is defined as

K = αuxx + λ |∂x|γu (1.2)
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with α,λ ∈ C , γ ∈ R and |∂x|γ is the module-fractional derivative operator giben by
|∂x|γu = Rγ∂xu. Here Rγ is the modified Riesz Potential

Rγu =
1

2Γ(γ)sin
(π

2 γ
) ∞∫

0

sign(x− y)
|x− y|1−γ u(y)dy.

This paper is the first attempt to give a rigorous analysis of the initial-boundary value
problem (IBV problem) for the nonlinear Schrödinger equation with Landau damp-
ing possed on a half-line. It combines the quantum state equation with the fractional
derivative term that produce a wave damping.

Nowadays, both the theory as the applications of the partial differential equations
with fractional derivative are being widely studied. Fractional Schrödinger equation
with α = 0 and λ = i was discover by Laskin [15], he applied Feynman path integral
approach to the Levy-like quantum mechanical paths. Feynman path integral approach
to quantum mechanics is in fact integration over Brownian-like quantum mechanical
paths.

The Brownian motion is a special case of the Levy γ -stable random process, when
γ = 2 the Levy γ -stable distribution is transformed to the well-known Gaussian prob-
ability distribution or in other words, the Levy motion is transformed to the Brownian
motion. The fractional Schrödinger equation includes the space derivative of order γ
instead of the second order space derivative in the standar Schrödinger equation. Thus,
the fractional Quantum mechanical includes the standar quantum mechanial as a partic-
ular Gaussian case at γ = 2. Quantum mechanical paths integral over the Levy paths at
γ = 2 becomes the well known Feynmas path integral. Some physical applications of
the fractional Schrödinger equation are the energy spectrum for a hydrogen-like atom-
fractional “Bohr atom” and the energy spectrum of fractional oscilator in the semiclas-
sical approximation (see [15],[8]).

There exist many works in which has been researched the local and global ex-
istence in time of solutions to the Cauchy problem for nonlinear Scrödinger equation
(NLS), which are the most related to our problem. In the book [3] can us find a study
of several problems of local nature and global nature for the initial value problem for
NLS. In paper [12] showed the asymptotic behavior of small solutions to NLS with
cubic nonlinearity. In the case of the fractional NLS there few works about the well-
posedness of Cauchy problem. For example in [9], [10], [16], [18] the authors used
methods such as Strichartz estimates, Fourier analysis among others and the solutions
appear in the Sobolev spaces, where s is related to the nonlinearity studied in each case.

In spite of the importance to describe several physical problems and, in general,
in application to natural sciences, the study of IBV to linear and nonlinear PDE’s is
less extensive that Cauchy problem. The IBVP have serious analytical difficulties such
as the presence of unknown boundary values in the relevant equations. As far as we
knowthere are not results about the IBV problem for the fractional NLS. Also if we
consider IBV problem for the nonlinear Schrödinger equation the information concern-
ing to this problem is much less than those relating to Cauchy problem. In the paper [4]
the authors considered both linear and nonlinear integrable cases, and initial-boundary
value problems associated with the Schrödinger equation. They present a method of
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solution, which is based on the elimination of the unknown boundary values by proper
restrictions of the functional space and of the spectral variable complex domain. On the
other hand, Fokas [5], assuming that the solution of the nonlinear Schrödinger equation
on the half-line exists, showed that solution can be represented in terms of the solution
of a matrix Riemann Hilbert, and in [6] the authors prove that given appropriate ini-
tial and boundary conditions, the solution of the nonlinear Schrödinger equation exists
globally. In paper [14] was showed the existence of global in time solutions as well
as the asymptotic behavior of this solutions for a IBVP for NLS with boundary data of
Dirichlet type.

In this paper we study IBV-problem for nonlinear Schrödinger equation with Lan-
dau damping. In this case the symbol of the pseudodifferential operator K given by
(1.2) is

K(p) = α p2 + β |p|γ . (1.3)

For a general theory of the initial-boundary value problems for evolution equations
with pseudodifferential operators on a half-line you can see the book [11]. Also, we
can find a few number of publications have dealt with asymptotic representation of
solution to the boundary- initial value problem of nonlinear equation on a half-line, for
example [1], [2] and [13] where the authors have considered homogeneous boundary
value problem.

Since the symbol K given by (1.3) is nonanalytic in the right half plane, we can
not use method of the [11] directly. We adopt the analytic continuation method pro-
posed in the paper [13] to derive an integral representation for the solution of the linear
problem associated with (1.1) , reducing this linear problem with a corresponding Rie-
mann boundary value problem. We will show that only one boundary data is necessary
to put in the problem (1.1) for its solubility.

To state precisely the results of the present paper we give some notations. Direct
Laplace transformation is

û(p) = L u =
∞∫

0

e−pxu(x)dx,

and the inverse Laplace transformation L −1u is defined by

u(x) = L −1u =
1

2π i

∫
iR

epxû(p)dp.

Remembering the Weighted spaces:

Ls,μ (
R

+)= {φ : ‖φ‖Ls,μ < ∞} , ‖φ‖Ls,μ = ‖〈·〉μφ‖s .

We now introduce the space

Z :=L1,μ (
R

+)∩L∞ (
R

+) ,
where μ ∈ (0, 1

4

)
with the norm

‖φ‖Z = ‖φ‖L2 +‖φ‖L1,μ +‖φ‖L∞ ,
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and
Yβ :=

{
φ ∈ L1 : ‖φ‖Y < ∞

}
,

with β > 1 and the norm

‖φ‖Yβ
=
∥∥∥φ̂
∥∥∥

L1,1
+
∥∥∥φ̂
∥∥∥

L∞
+‖φ‖L1 +

∥∥∥〈t〉β φ
∥∥∥

L∞
.

Different positive constants we denote by the same letter C . For simplicity we put
α = i,λ = 1,γ = 1

2 in (1.2). Now we state the main results.

THEOREM 1. Suppose that u ∈ Z and h ∈ Yβ with ‖u0‖Z +‖h‖Yβ
� ε, where

ε > 0 is sufficiently small and β > 1 . Then there exist a unique global solution

u ∈ C
(
[0,∞) ;L2 (

R
+))∩C

(
(0,∞) ;L

2, 12 ( 1
2 +μ) (

R
+)∩L∞ (

R
+)) ,

with μ ∈ (0, 1
2

)
to the initial-boundary value problem (1.1) .

2. Preliminaries

We consider the following initial-boundary value problem⎧⎨⎩
ut +K(u) = 0, x � 0, t � 0.

u(x,0) = u0 (x) , x > 0,
u(0,x) = h(t), t > 0

(2.1)

where K was given in (1.2).
We define the operator P as

Pφ (z) = − 1
2π i

∫
iR

1
q− z

φ (q) dq, Re z �= 0,

for a function φ of the complex variable q , which obeys the Hölder condition for Re
q �= 0 and tends to 0 as q → ±i∞ . We can note that Pφ is a analytic function for Re
z �= 0. The boundary values of this function are given by

(Pφ)± (p) = lim
z→p, ±Re z>0

Pφ (z) .

We will show two important lemmas about this boundary values. (see [7])

LEMMA 1. Let φ be a function of complex variable z, which satisfies the Hölder
condition on iR . Then the boundary values of the function Pφ are such that

P
+φ (p)−P

−φ (p) = φ (p) , Re p = 0. (2.2)

The equality (2.2) is known as Sokhotski Plemelj formula.
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LEMMA 2. Index Zero Let φ a function of complex variable z, which satisfies
the Hölder condition on iR . If index of φ is equal to zero,

Ind φ =
∫

iR
d ln φ (q) = 0,

then, there exist a analytic function X on Re z �= 0 such that

φ (q) =
X+ (p)
X− (p)

, Re q = 0.

Moreover, this function is given, up to an arbitrary constant, by formula

X (z) = exp

[
1

2π i

∫
iR

lnφ (q)
q− z

dq

]
, Re z �= 0.

Proof of these Lemmas can be find in [7].
Setting

K (p) = ip2 +
√
|p|, K1 (p) = ip2 +

√
p. (2.3)

Here and below, we denote the inverse functions ϕ (ξ ) = K−1
1 (ξ ) . We define the

sectionally analytic function Y (z,ξ ) by the formula

Y (z,ξ ) = eΓ(z,ξ ), Re z �= 0, (2.4)

where

Γ(z,ξ ) =
1

2π i

∫
iR

1
q− z

ln

(
K (p)+ ξ
K1 (q)+ ξ

)
dq, Re ξ > 0. (2.5)

We introduce the Green operator

G (t)φ =
1

2π i

∞∫
0

G(x,y,t)φ (y)dy, (2.6)

where the function G(x,y,t) is given by formula

G(x,y,t) = L −2
tx

(
Y+ (p,ξ )
K (p)+ ξ

(ϕ (ξ )− p)I
−
p,ξ

(
e−(·)y

))
. (2.7)

where

Ip,ξ (φ) =
1

2π i

∫
iR

φ (q)
(ϕ (ξ )−q)(q− p)

1
Y+ (q,ξ )

dq. (2.8)

The boundary operator H (t) is defined as following

H (t)φ = L −2
tx

(
Y+ (p,ξ )
K (p)+ ξ

i [ϕ (ξ )− p]
(

Ip,ξ

(
q−1
√
|q|
)
−1
)

φ̂
)

. (2.9)

In the next proposition, we analyze the linear initial-boundary value problem (2.1) .
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PROPOSITION 1. Let the initial data u0 ∈L1 (R+) and boundary data h∈L1 (R+) .
Then the solution u(x,t) of the initial-boundary value problem (2.1) has the following
integral representation

u(x,t) = G (t)u0 +H (t)h, (2.10)

where the operators G (t) and H (t) are defined by (2.6) and (2.9) respectively.

Proof. To derive an integral representation for the solution of (2.1) problem we
adopt the analytic continuation method proposed in the paper [13]. We suppose that
exists a solution u(x,t) for the problem (2.1) , such that

u(x,t) = 0 for all x < 0.

Let Ψ(p, t) be a some complex function such that P
−{Ψ(·,ξ )} = 0 and |Ψ(p,ξ ) | <

C 〈p〉−δ , δ > 0. Applying the Laplace transforms with respect to space and time vari-
ables we obtain for the solution of (2.1)

̂̂u(p,ξ ) =
1

K (p)+ ξ

[
û0 (p)+

K (p)
p

û(0,ξ )+ iûx (0,ξ )+ Ψ̂(p,ξ )
]
, (2.11)

where ̂̂u(p,ξ ) , Ψ̂(p,ξ ) , û(0,ξ ) and ûx (0,ξ ) are Laplace transforms of u(x,t) ,
Ψ(p,t) , u(0, t) and ux (0,t) respectively. To find the unknown function Ψ we need to
solve the nonhomogeneous Riemann boundary value problem (see paper [13])

Ω+ (p,ξ ) =
K (p)+ ξ

ξ
Ω− (p,ξ )−K (z)Δ− (z,ξ ) , for Re p = 0, Re ξ > 0. (2.12)

with

Ω(z,ξ ) = P

(
K (·)

K (·)+ ξ
Ψ(·,ξ )

)
(z), (2.13)

Δ(z,ξ ) = P

(
1

K (·)+ ξ

(
û0 (·)+

K (·)
(·) û(0,ξ )+ iûx (0,ξ )

))
. (2.14)

We note that

Ind

(
K (p)+ ξ
K1 (p)+ ξ

)
=

1
2π i

∫
iR

dln

(
K (q)+ ξ
K1 (q)+ ξ

)
= 0.

Therefore, from Lemma 2 we infer

K (p)+ ξ
K1 (p)+ ξ

=
Y+ (p,ξ )
Y− (p,ξ )

. (2.15)

So we can rewrite the Riemann problem (2.12) as

Ω+ (p,ξ )
Y+ (p,ξ )

=
K1 (p)+ ξ

ξ
Ω− (p,ξ )
Y− (p,ξ )

− K (z)Δ− (z,ξ )
Y+ (p,ξ )

, (2.16)



Differ. Equ. Appl. 7, No. 2 (2015), 221–244. 227

Using the definition of Δ(p,ξ ) in (2.14) and via Sokhotski-Plemelj formula (2.2) , we
rewrite K (z)Δ− (z,ξ ) as

K (z)Δ− (z,ξ ) = (K (p)+ ξ )Δ− (p,ξ )+ ψ (p,ξ )− ξ Δ+ (p,ξ ) ,

where

ψ (p,ξ ) = û0 (p)+
K (p)

p
û(0,ξ )− iûx (0,ξ ) .

Replacing the last formula in equation (2.16) we reduce the nonhomogeneousRiemann
problem in the form

F+ (p,ξ )+U+ (p,ξ ) = F− (p,ξ )+U− (p,ξ ) , for Re p = 0, Re ξ > 0, (2.17)

where the sectionally analytic function U and the functions F+,F− are defined as

U (z,ξ ) = P

(
1

Y+ (·,ξ )

(
û0 (·)+

| · | 1
2

(·) û(0,ξ )

))
, (2.18)

F+ (z,ξ ) =
Ω(z,ξ )− ξ Δ(z,ξ )+ izû(0,ξ )+ iûx (0,ξ )

Y (z,ξ )
, Re z < 0,

F− (z,ξ ) =
K1 (z)+ ξ

ξ
Ω(z,ξ )− ξ Δ(z,ξ )

Y (z,ξ )
, Re z > 0.

The relation (2.17) indicates that the functions F+ +U+, F− +U− are branches of
a unique analytic function in the complex plane. Moreover, this function has a pole of
order one in infinity. So by the Liouville theorem this function is a polynomial of one
degree A(ξ ) p+B(ξ ) . Hence

Ω+ (p,ξ ) =Y+ (p,ξ )
(
A(ξ ) p+B(ξ )−U+(p,ξ )

)
+ ξ Δ+(p,ξ )− ipû(0,ξ )− iûx (0,ξ ) ,

Ω− (p,ξ ) =
ξ

K (p)+ ξ
Y− (p,ξ )

(
A(ξ ) p+B(ξ )−U− (p,ξ )

)
+ ξ Δ− (p,ξ ) .

However, by definition of the sectionally analytic function Ω given in (2.13) , Ω must
satisfy the Hölder condition in consequence this function vanishes at infinity, i.e

Resp=∞
{

p
(
Y+ (p,ξ )A(ξ )− iû(0,ξ )

)
+(B(ξ )− iûx (0,ξ ))

}
= 0, (2.19)

as Y (·,ξ ) is a Hölder continuous function, we have

lim
|p|→∞

Y± (p,ξ ) = 1. (2.20)

From (2.19) and (2.20) we conclude

A(ξ ) = iû(0,ξ ) y B(ξ ) = ûx (0,ξ ) .
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So we obtain

Ω+ (p,ξ ) = i(pû(0,ξ )+ ûx (0,ξ ))
(
Y+ (p,ξ )−1

)
−Y+ (p,ξ )U+ (p,ξ )+ ξ Δ+(p,ξ ) ,

Ω− (p,ξ ) =
ξ

K (p)+ ξ
Y− (p,ξ )

(
ipû(0,ξ )+ iûx (0,ξ )−U− (p,ξ )

)
+ ξ Δ− (p,ξ ) .

Via Sokhotski Plemelj formula (2.2) and (2.13) we have

Ψ(p,ξ ) =
K (p)+ ξ

ξ
(
Ω+ (p,ξ )−Ω− (p,ξ )

)
=

K (p)
ξ

Y+ (p,ξ )
[
ipû(0,ξ )+ iûx (0,ξ )−ψ (p,ξ )−U− (p,ξ )

]
.

Substituting the previous relation in (2.11) we get

̂̂u(p,ξ ) =
Y− (p,ξ )
K1 (p)+ ξ

[
ipû(o,ξ )+ iûx (0,ξ )−U− (p,ξ )

]
.

Note that the equality K1 (p)+ ξ = 0 have only one root ϕ (ξ ) in Re ξ > 0 such that
Re ϕ (ξ ) > 0. So, for the analyticity of the function ̂̂u in the right half-plane we must
to put the following condition

iϕ (ξ ) û(0,ξ )− iûx (0,ξ )−U− (ϕ (ξ ) ,ξ ) = 0. (2.21)

With this assumption we only need to put one boundary data in the initial boundary
value problem (2.1) . Thus, for example if we consider Dirichlet boundary condition,
u(0,ξ ) = h(t) another unknown boundary data ux (0,t) is completely determined by

ûx (0,ξ ) = h(ξ )ϕ (ξ )− iU− (ϕ (ξ ) ,ξ ) .

Finally, we obtain for solution of (2.1)

̂̂u(p,ξ ) =
Y− (p,ξ )
K1 (p)+ ξ

[
i(p−ϕ (ξ )) ĥ(ξ )+

(
U− (ϕ (ξ ) ,ξ )−U− (p,ξ )

)]
,

where K1 (p) , Y+ (p,ξ ) and U (p,ξ ) are defined by (2.3) , (2.4) and (2.18) respec-
tively. Taking inverse Laplace transform with respect to time and space variables, we
obtain (2.10) , so Proposition 1 has been proved.

3. Estimation for the Green operator and Boundary operator

The following inequalities will be important to prove some estimates for the Green
operator G (t) and the boundary operator H (t) :

• Let a,b ∈ C with a �= b and γ ∈ [0,1] then

1
|a−b| � 1

|a|1−γ
1
|b|γ . (3.1)
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• For Re z > 0 and η ∈ (0,1) we have

|e−z| � C |z|−η . (3.2)

• For z ∈ C with Re z > 0 and γ ∈ (0,1) we have∣∣e−z−1
∣∣� |z|γ . (3.3)

• Let be z ∈ C , Re z �= 0 and γ ∈ (0,1) . Then∫
iR

1
|q|γ |q− z|dq � 1

|z|γ . (3.4)

We defined the contours C j , j = 1,2, as

C1 =
{

ξ ∈
(

∞e−i( π
2 +ε1),0

)
∪
(
0,∞ei( π

2 +ε1)
)}

, (3.5)

C2 =
{

p ∈
(

∞e−i( π
2 +ε2),0

)
∪
(
0,∞ei( π

2 +ε2)
)}

.

We take the ε1, ε2 sufficiently small such that the functions ϕ (ξ ) and K (p) are ana-
lytic for ξ ∈ C1 and p ∈ C2 .

In the next lemma we obtain some estimates of the Green operator G (t) defined

by (2.6) in the spaces L2 and L2, 1
2 ( 1

2 +μ) .

LEMMA 3. The estimates are valid for μ ∈ (0, 1
2

)
, t > 0

1. ‖G (t)φ‖L2 � C (‖φ‖L1 +‖φ‖L∞) .

2. ‖G2 (t)φ‖
L

2, 12 ( 1
2 +μ) � C 〈t〉−( 1

2−μ)
(
‖φ‖L1 +‖φ‖

L
1, 12 ( 1

2 +μ)
)

,

provident that the right-hand sides are finite.

Proof. Applying the Sokhotzki-Plemelj formula and changing the contour of the
integration via Cauchy Theorem, we can rewrite the Green operator G (t) given in (2.6)
as G (t) = G1 (t)+G2 (t) , where the operators G j (t) , j = 1,2 are defined as following

G1 (t) =
∞∫

0

G1 (x,y,t)φ (y)dy,

G2 (t) =
∞∫

0

G2 (x− y,t)φ (y)dy.

with

G1 (x,y, t) =
( 1

2π i

)2 ∫
C1

eξ t
∫

C2

epx Y+ (p,ξ )
K (p)+ ξ

(p−ϕ (ξ )) Ip,ξ
(
e−qy) dpdξ , (3.6)
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G2 (r, t) =
1

2π i

∫
iR

epr−K(p)t dp. r ∈ R (3.7)

Here C1, C2 were given by (3.5) .

Estimation of G1 (t) : Since Re p < 0 by Cauchy Theorem and the equality
(2.15) , we rewrite the function Ip,ξ (e−qy) given by (2.8) in the next way

(p−ϕ (ξ ))Ip,ξ
(
e−qy) =

1
2π i

∫
iR

e−qy

q− p

[
1

Y+ (q,ξ )
− 1

Y− (q,ξ )

]
dq

+
1

2π i

∫
iR

e−qy

q−ϕ (ξ )
1

Y+ (q,ξ )
dq

=
1

2π i

∫
iR

e−qy

q− p
1

Y+ (q,ξ )

√
q−√|q|

K1 (q)+ ξ
dq

+
1

2π i

∫
iR

e−qy

q−ϕ (ξ )
1

Y+ (q,ξ )
dq

Therefore, we infer

G1 (x,y,t) = G11 (x,y,t)+G12 (x,y,t) , (3.8)

where

G11 (x,y, t) = C3
π

∫
C1

eξ t
∫

C2

epx Y+ (p,ξ )
K (p)+ ξ

∫
iR

e−qy

q− p
1

Y+ (q,ξ )

√
q−√|q|

K1 (q)+ ξ
dq dp dξ ,

G12 (x,y, t) = C3
π

∫
C1

eξ t
∫

C2

epx Y+ (p,ξ )
K (p)+ ξ

∫
iR

e−qy

q−ϕ (ξ )
1

Y+ (q,ξ )
dq dp dξ .

Since K1 (q)+ ξ �= 0 for ξ ∈ C1 via (3.1) we have∣∣∣∣∣
∫

iR

e−qy

(q− p)
1

Y+ (q,ξ )

√
q−√|q|

K1 (q)+ ξ
dq

∣∣∣∣∣� C
1

〈|ξ |〉γ
1

|p|α , with γ,α ∈ (0,1) , (3.9)

such that 3
2 −α −2γ > 0. Applying (3.9) and via estimate∥∥∥e−p(·)

∥∥∥
L2

� C
1

|p| 1
2

, Re p < 0,

the L2 (R+) norm of G11 (·,y,t) satisfies

‖G11 (·,y, t)‖L2 � C
∫

C1

1

〈|ξ |〉γ

∫
C2

1

|p| 1
2 +α

1
|K (p)+ ξ | d|p| d|ξ |,

since all integrals in the before expression converge, we get

‖G11 (·,y,t)‖L2 � C. (3.10)
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To calculate the L2 -norm of G12 (·,y,t) we have∣∣∣∣∫
iR

e−qy

q−ϕ (ξ )
1

Y+ (q,ξ )
dq

∣∣∣∣� Cy−η 1

|ξ | η
2
, η ∈

(
1
2
,1

)
.

Using that K (p)+ ξ �= 0 we use (3.1) with η ∈ ( 1
2 ,1
)

and the above inequality to
obtain

‖G12 (·,y, t)‖L2 � Cy−η
∫

C1

1

|ξ | η
2

∫
C2

1

|p| 1
2

1
|K (p)+ ξ |d|p| d|ξ | ,

in consequence
‖G12 (·,y,t)‖L2 � Cy−η . (3.11)

Hence by (3.8) , (3.10) and (3.11) we have

‖G1 (·,y,t)‖L2 � Cy−η .

Therefore

‖G1 (t)φ‖L2 �
∞∫

0

‖G1 (·,y,t)‖L2 |φ(y)| dy � C (‖φ‖L1 +‖φ‖L∞) . (3.12)

Estimation of G2 (t) : Applying the Plancherel theorem we have

‖G2(t)φ‖L2 =
∥∥∥e−pye−K(p)t φ̂

∥∥∥
L2

�
∥∥∥φ̂
∥∥∥

L2
� ‖φ‖L2 ,

and using the interpolation inequality

‖φ‖L2 � C‖φ‖
1
2
L∞ ‖φ‖

1
2
L1 � C (‖φ‖L1 +‖φ‖L∞) ,

we get
‖G2 (t)φ‖L2 � C (‖φ‖L1 +‖φ‖L∞) . (3.13)

From the estimates for G1 and G2 showing in (3.12) and (3.13) respectively one has
that

‖G (t)φ‖L2 � C (‖φ‖L1 +‖φ‖L∞) .

So the first estimates of Lemma 3 has been proved.

Now we prove the second estimation. Let us denote γ = 1
2

(
1
2 + μ

)
, μ ∈ (0, 1

2

)
.

Firstly we consider the case t < 1. By a similar procedure to made in the calculation
of L2 norm of G1 (t) we get

‖G1 (t)φ‖L2 � C‖φ‖L1 . (3.14)

On the other hand, we can rewrite the function G2 (r,t) in the form

G2(r, t) =
1

2π i

∫
iR

epr−ip2t e−
√

|p|t dp =
e−( r

2t )
2

2π i

∫
iR

e−it(p+ ir
2t )

2

e−
√

|p|t dp
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=
e−( r

2t )
2

2π i

∫
iR

e−it p2
e−t

√
|p− ir

2t | dp.

We can change the contour of the integration via the Cauchy theorem:

G2(r, t) =
e−( r

2t )
2

2π i

∫
C

e−it p2
e−t

√
|p− ir

2t | dp =
e−( r

2t )
2

2π i

∫
C

e−it(p+ ir
2t )

2

e−
√

|p|t dp, (3.15)

where the contour C is taken such that Re ip2 > 0 for all p ∈ C . So we infer

‖G(·,t)‖L2,γ � C

∥∥∥∥e−( r
2t )

2
∥∥∥∥

L2,γ

∫
C

e−|p|2t d |p| .

Since ∥∥∥∥e−( r
2t )

2
∥∥∥∥

L2,γ
� Ct

1
2 +γ for γ ∈ (0,

1
2
), (3.16)

and by the substitution w = p
√

t we have

‖G(·,t)‖L2,γ � C
√

t

∞∫
0

e−|p|2t d |p| � C

∞∫
0

e−|w|2d |w| ,

in consequence

‖G(·,t)‖L2,γ � C, for γ ∈ (0,
1
2
), t < 1. (3.17)

From the estimation
|x|γ � C |x− y|γ +C |y|γ ,

and the Young inequality we conclude

‖G2 (t)φ‖L2,γ � ‖G(·,t)‖L2,γ ‖φ‖L1 +‖G(·,t)‖L2 ‖φ‖L1,γ . (3.18)

By (3.17) and (3.18) we get

‖G2(t)φ‖L2,γ � C (‖φ‖L1 +‖φ‖L1,γ ) . (3.19)

Replacing γ = 1
2

( 1
2 + μ

)
in (3.19) we get

‖G2 (t)φ‖
L

2, 12( 1
2 +μ) � C

(
‖φ‖L1 +‖φ‖

L
1, 12( 1

2 +μ)
)

. (3.20)

Now, we consider the case t > 1. We express the function G1 as:

G1 (x,y,t) = J1 (x,y,t)+ J2 (x,y,t) ,

where

J1 (x,y, t) =
(

1
2π i

)3 ∫
C1

eξ t
∫

C2

epx Y+ (p,ξ )
K (p)+ ξ

∫
iR

e−qy

q− p
1

Y+ (q,ξ )
dq dp dξ ,
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J2 (x,y, t) =
(

1
2π i

)3 ∫
C1

eξ t
∫

C2

epx Y+ (p,ξ )
K (p)+ ξ

∫
iR

e−qy

q−ϕ (ξ )
1

Y+ (q,ξ )
dq dp dξ .

To calculate the L2,γ norm of J1 (·,y,t) we use (3.2) and (3.4) with η ∈ (0,1) to
obtain:

‖J1 (·,y, t)‖L2,γ � Cy−η
∫

C1

e−C|ξ |t
∫

C2

1

|p| 1
2 +γ

1
|K (p)+ ξ |

×
∫
iR

1
|q|η |q− p| d|q| d|p| d|ξ |

� Cy−η
∫

C1

e−C|ξ |t
∫

C2

1

|p| 1
2 +γ+η

1∣∣∣|p| 1
2 + ξ

∣∣∣ d|p| d|ξ |,

via the sustitution z = ξ t, z = pt2 we get

‖J1 (·,y,t)‖L2,γ � Cy−η t−(1−2γ−2η).

In a similar form to preceding we get

‖J2 (·,y,t)‖L2,γ � Cy−η t−(1−2γ−2η).

So, we obtain
‖G1 (·,y,t)‖L2,γ � Cy−η t−(1−2γ−2η).

Therefore for γ = 1
2

(
1
2 + μ

)
and η ∈ (0,1) we have

‖G1 (t)φ‖
L

1
2 ( 1

2 +μ) � Ct−( 1
2−μ)

(
‖φ‖L1 +‖φ‖

L
1, 12 ( 1

2 +μ)
)

. (3.21)

Moreover, from the integral representation of G2 in (3.15) and the inequality (3.16)
we get

‖G2 (·,t)‖L2,γ � Ct
1
2 +γ
∫

C
e−|p| 12 t d |p| .

Changing the variable: z = pt2 we conclude

‖G2 (·,t)‖L2,γ � Ct−(1−2γ), (3.22)

As consequence from the estimations (3.18) and (3.22) for γ = 1
2

( 1
2 + μ

)
we conclude

‖G2 (t)φ‖
L

1
2 ( 1

2 +μ) � t−( 1
2−μ)

(
‖φ‖L1 +‖φ‖

L
1, 12( 1

2 +μ)
)

. (3.23)

We deduce the second estimation from the inequalities (3.14) , (3.20) , (3.21) and
(3.23) . So the Lemma 3 has been proved.

In the next lemma we estimate the Green operator G (t) in the Lebesgue space
L∞ .
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LEMMA 4. The following estimates are true, provided that the right-hand sides
are finite:

‖G (t)φ‖L∞ � C{t}− 1
2 〈t〉−2 (‖φ‖L1 +‖φ‖L1,μ ) ,

for μ ∈ (0,1) .

Proof. We consider t > 1 and will denote γ = 1
2 + μ , with μ ∈ (0, 1

2

)
. By the

Cauchy theorem and the equations (3.6) and (3.7) we rewrite the Green function in
the next way

G(x,y,t) = G1 (x,y,t)+G2 (x,y,t) , (3.24)

with

G1 (x,y, t) = C2
π

∫
C1

eξ t
∫

C2

epxY+ (p,ξ )
p−ϕ (ξ )
K (p)+ ξ

Ip,ξ
(
e−qy−1

)
dp dξ , (3.25)

G2 (x,y, t) = Cπ

∫
iR

epx−K(p)t (e−py−1
)

dp. (3.26)

were C1 and C2 given by (3.5) and Cπ = 1
2π i .

Estimation of G1 (x,y,t) : Using the equality

p
(q− p)(q−ϕ (ξ ))

=
p

q(q− p)
+

ϕ (ξ )
(q− p)(q−ϕ (ξ ))

− ϕ (ξ )
q(q−ϕ (ξ ))

,

we rewrite G1 (x,y, t) as

G1 (x,y,t) = J1 (x,y,t)+ J2 (x,y,t) ,

where

J1 (x,y, t) = C3
π

∫
iR

eξ t
∫

C2

epxp
Y+ (p,ξ )
K (p)+ ξ

∫
iR

e−qy−1
q(q− p)

1
Y+ (q,ξ )

dq dp dξ .

J2 (x,y, t) = C3
π

∫
iR

eξ tϕ (ξ )
∫

C2

epx Y+ (p,ξ )
K (p)+ ξ

∫
iR

e−qy−1
q(q−ϕ (ξ ))

1
Y+ (q,ξ )

dq dp dξ .

Estimation of J1 (x,y,t) : Making the change of variables ξ = −K1 (z) we get

J1 (x,y, t) = C3
π

∫
C̃

e−K1(z)tK′
1 (z)

∫
C2

epxp
Y+ (p,−K1 (z))
K (p)−K1 (z)

×
∫

iR

e−qy−1
q(q− p)

1
Y+ (q,−K1 (z))

dq dp dz,

where C̃ = {z ∈ C : Re K1 (z) = 0} . Now, using Cauchy Theorem we obtain

J1 (x,y,t) = J11 (x,y,t)+ J12 (x,y, t) ,
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with

J11 (x,y, t) = C3
π

∫
iR

e−K1(z)tK′
1 (z)

∫
C2

epxp
Y+ (p,−K1 (z))
K (p)−K1 (z)

×
∫

iR

e−qy−1
q(q− p)

1
Y+ (q,−K1 (z))

dq dp dz.

J12 (x,y, t) = C2
π

∫
C2

epx−K(p)t pY+ (p,−K (p))
∫

iR

e−qy−1
q(q− p)

1
Y+ (q,−K (z))

dq dp.

We can note

J11 (x,y,t) =
5

∑
k=1

J11k (x,y,t) ,

where

J111 (x,y, t) = C3
π

∫
iR

e−
√

zt 1√
z

∫
C2

epxpY+ (p,0)

[
1

K (p)−K1 (z)
− 1

ip2 +
√|p|

]

×
∫

iR

e−qy−1
q(q− p)

1
Y+ (q,0)

dq dp dz.

J112 (x,y, t) = C3
π

∫
iR

e−
√

zt 1√
z

∫
C2

epxp
Y+ (p,−K1 (z))−Y+ (p,0)

K (p)−K1 (z)

×
∫

iR

e−qy−1
q(q− p)

1
Y+ (q,0)

dq dp dz.

J113 (x,y, t) = C3
π

∫
iR

e−
√

zt 1√
z

∫
C2

epxp
Y+ (p,−K1 (z))
K (p)−K1 (z)

×
∫

iR

e−qy−1
q(q− p)

[
1

Y+ (p,−K1 (z))
− 1

Y+ (q,0)

]
dq dp dz.

J114 (x,y, t) = C3
π

∫
iR

e−
√

zt(eiz2t −1)
1√
z

∫
C2

epxp
Y+ (p,−K1 (z))
K (p)−K1 (z)

×
∫

iR

e−qy−1
q(q− p)

1
Y+ (q,−K1 (z))

dq dp dz.

J115 (x,y, t) = C3
π

∫
iR

e−K1(z)t z
∫

C2

epxp
Y+ (p,−K1 (z))
K (p)−K1 (z)

×
∫

iR

e−qy−1
q(q− p)

1
Y+ (q,−K1 (z))

dq dp dz.

Using (3.3) for μ ∈ (0,1) we get

‖J111 (·,y, t)‖
L∞ � Cyμ

∫
iR

e−C
√

|z|t |K1 (z)|√|z|
∫

C2

|p|
|K (p)−K1 (z)|

∣∣∣p2 +
√|p|

∣∣∣
×
∫

iR

1
|q|1−μ |q− p| d|q| d|p| d|z|,
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therefore

‖J111 (·,y, t)‖
L∞ � Cyμ

∫
iR

e−C
√

|z|t(|z| 3
2 +1)

∫
C2

|p|∣∣∣p2 +
√|p|

∣∣∣2
×
∫

iR

1
|q|1−μ |q− p| d|q| d|p| d|z|,

taking w = zt2 we obtain

‖J111 (·,y,t)‖
L∞ � Cyμt−2. (3.27)

By Mean Value Theorem

‖J112 (·,y, t)‖
L∞ � Cyμ

∫
iR

e−
√

|z|t√|z|
∫

C2

|p|∣∣∣p2 +
√|p|

∣∣∣
×
∫

iR

1
|q|1−μ |q− p| d|q| d|p| d|z| � Cyμt−2. (3.28)

In a similar way we have

‖J113 (·,y,t)‖
L∞ � Cyμt−2. (3.29)

On the other hand, we note

‖J114 (·,y,t)‖
L∞ � Cyμt

∫
iR

e−
√

|z|t |z| 3
2

∫
C2

|p|∣∣∣p2 +
√|p|

∣∣∣
×
∫

iR

1
|q|1−μ |q− p| d|q| d|p| d|z| � Cyμt−2, (3.30)

Changing of variables w = zt2 we have

‖J115 (·,y,t)‖
L∞ � Cyμt−2. (3.31)

Moreover by analogy to (3.28) it easy to prove

‖J12 (·,y, t)‖
L∞ � Cyμ

∫
C2

e−
√

|p|t |p|
∫

iR

1
|q|1−μ |q− p| d|q| d|p| (3.32)

� Cyμ
∫

C2

e−
√

|p|t |p|μ d|p|

� Cyμt−2(1+μ).

Thus from (3.27) , (3.28) , (3.29) , (3.30) , (3.31) and (3.32) we get

‖J1 (·,y,t)‖
L∞ � Cyμt−2. (3.33)
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The calculation of L∞ norm of J2 (·,y,t) can be done in a similar way

‖J2 (·,y,t)‖
L∞ � Cyμt−2 (3.34)

Via (3.33) and (3.34) we infer

‖G1 (·,y,t)‖
L∞ � Cyμt−2. (3.35)

Estimation of G2 (x,y,t) : Via the definition of G2 given by (3.26) and the inequality
(3.3) for γ < 1, we conclude

‖G2 (·,y,t)‖L∞ � Cyγ
∫

iR
e−|p| 12 t pγd|p|.

Changing of variable w = pt2 we have

‖G2 (·,y,t)‖L∞ � Cyγt−2(1+γ). (3.36)

So, for t > 1 from (3.35) and (3.36) we have

‖G (t)φ‖L∞ � Ct−2 ‖φ‖L1,μ , for μ ∈ (0,1) . (3.37)

Now, for the case t < 1 we remember the representation of the Green function G as

G(x,y,t) = G1 (x,y,t)+G2 (x− y, t) ,

where the functions G1,G2 was defined (3.6) and (3.7) respectively. By a similar pro-
cedure to exhibited in the previous Lemma, we get that the function G1(x,y,t) satisfied
in this case that

‖G1(·,y,t)‖L∞ � C.

Moreover, reminding the definition of the function G2 :

G2(r,t) =
1

2π i

∫
C

epr−K(p)t dp,

where the contour C is taken such that Re pr < 0 and Re p2 < 0, making use of the
inequality

‖epr‖L∞ � C for p ∈ C ,

and by the sustitution z = pt
1
2 we get

‖G2(r,t)‖L∞ � C
∫

C
e−C|p|2t d|p| � Ct−

1
2 .

In consequence for t < 1 we obtain

‖G (t)φ‖L∞ � Ct−
1
2 ‖φ‖L1 . (3.38)

From (3.38) and (3.37) we deduce the estimation of the Green operator in L∞ space.
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LEMMA 5. Let us be h ∈ Y , then the following estimates are true

1. ‖H (t)h‖L2 � C ‖h‖Y .

2. ‖H (t)h‖
L

2, 12 ( 1
2 +μ)

x

� C‖h‖Y

3. ‖H (t)h‖L∞ � C 〈t〉−1 ‖h‖Y

where 0 � μ � 1
2 and t > 0 .

Proof. Remembering that the boundary operator H (t) is defined as

H (t)h = L −2
tx

(
Y+ (p,ξ )
K (p)+ ξ

i(ϕ (ξ )− p)
(
I−p,ξ

(
q−1
√
|q|
)
−1
)

ĥ(ξ )
)

.

We note that

H (t) =
4

∑
k=1

Hk (t) ,

where

H1(t)h =
(

1
2π i

)2 ∫
iR

eξ t ĥ(ξ )ϕ (ξ )
∫

C2

epx Y+ (p,ξ )
K (p)+ ξ

dp dξ ,

H2(t)h =
(

1
2π i

)2 ∫
iR

eξ t ĥ(ξ )
∫

C2

epxp
Y+ (p,ξ )
K (p)+ ξ

dp dξ ,

H3(t)h =
(

1
2π i

)2 ∫
iR

eξ t ĥ(ξ )ϕ (ξ )
∫

C2

e
Y+ (p,ξ )
K (p)+ ξ

×
∫
iR

√|q|
q(q− p)(q−ϕ (ξ ))

dq dp dξ ,

H4(t)h =
(

1
2π i

)2 ∫
iR

eξ t ĥ(ξ )
∫

C2

epxp
Y+ (p,ξ )
K (p)+ ξ

×
∫
iR

√|q|
q(q− p)(q−ϕ (ξ ))

dq dp dξ .

In this proof we only show the estimates for H1(t) . We can estimate the other operators
Hk(t) with k = 2,3,4 by a similar proceeding.

Applying Plancherel theorem we have

‖H1(t)h‖L2
x
= C

∥∥∥∥∫
iR

eξ t ĥ(ξ )
Y+ (p,ξ )
K (p)+ ξ

ϕ (ξ ) dξ
∥∥∥∥

L2
p

,

consequently for γ ∈ ( 1
2 ,1
)

we get

‖H1(t)h‖L2
x

� C
∫

iR

√
|ξ |
∣∣∣ĥ(ξ )

∣∣∣∥∥∥∥Y+ (p,ξ )
K (p)+ ξ

∥∥∥∥
L2

p

d|ξ |
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� C
∫

iR
|ξ | 1

2−γ
∣∣∣ĥ(ξ )

∣∣∣d|ξ |,
from which we conclude that

‖H1(t)h‖L2
x
� C

(∥∥∥ĥ∥∥∥
L∞

+
∥∥∥ĥ∥∥∥

L1

)
� C‖h‖Y . (3.39)

To prove the second estimation via a similar procedure to preceding we can obtain

‖H1(t)h‖
L

2, 12 ( 1
2 +μ)

x

� C‖h‖Y .

Now, we will study calculate the L∞
x norm of the operator H . First, we suppose that

t > 1. We note that

H (t)h =
∫ t

0
H (x,t− τ)h(τ)dτ, (3.40)

where
H(x,t) = H1(x,t)+H2(x,t), x > 0, t ∈ R,

with

H1(x, t) =
(

1
2π i

)2 ∫
iR

eξ t
∫

C2

epx Y+ (p,ξ )
K (p)+ ξ

(p−ϕ (ξ ))

×
∫

iR

√|q|
q(q− p)(q−ϕ (ξ ))

1
Y+ (q,ξ )

dq dp dξ .

H2(x, t) =
(

1
2π i

)2 ∫
iR

eξ t
∫

C2

epx Y+ (p,ξ )
K (p)+ ξ

(p−ϕ (ξ )) dp dξ .

We note that∫
iR

√|q|
q(q− p)(q−ϕ (ξ ))

1
Y+ (q,ξ )

dq =
∫

iR

K (q)+ ξ
q(q− p)(q−ϕ (ξ ))

1
Y+ (q,ξ )

dq

−
∫

iR

iq2 + ξ
q(q− p)(q−ϕ (ξ ))

1
Y+ (q,ξ )

.

Remembering that Re p > 0, Re ϕ (ξ ) > 0 and using (2.15)

K (p)+ ξ
Y+ (p,ξ )

=
K1 (p)+ ξ
Y− (p,ξ )

,

via the Cauchy theorem we have∫
iR

K (q)+ ξ
q(q− p)(q−ϕ (ξ ))

1
Y+ (q,ξ )

dq =
K (p)+ ξ

p(p−ϕ (ξ ))
1

Y+ (p,ξ )

+
1
2

ξ
pϕ (ξ )

1
Y+ (0,ξ )

− 1
2
,∫

iR

iq2 + ξ
q(q− p)(q−ϕ (ξ ))

1
Y+ (q,ξ )

dq =
1
2
− 1

2
ξ

pϕ (ξ )
1

Y+ (0,ξ )
.
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As consequence we obtain

∫
iR

√|q|
q(q− p)(q−ϕ (ξ ))

1
Y+ (q,ξ )

dq

=
K (p)+ ξ

p(p−ϕ (ξ ))
1

Y+ (p,ξ )
+

ξ
pϕ (ξ )

1
Y+ (0,ξ )

−1.

Thus making use of Cauchy Theorem we get

H(x, t) =
1

2π i

∫
iR

eξ t dξ

+
( 1

2π i

)2 ∫
C1

eξ t ξ
ϕ(ξ )

∫
C2

epxY
+(p,ξ )

Y−(0,ξ )
p−ϕ (ξ )

p(K (p)+ ξ )
dp dξ . (3.41)

where C1 , C2 are defined in (3.5) . Combining the equalities (3.40) , (3.41) and the
Cauchy Theorem we conclude

H (t)h = h(t)+ H̃(t)h, (3.42)

with

H̃(t)h =
t∫

0

H̃ (x,t − τ)h(τ)dτ,

Here
H̃ (x,t) = H̃1(x,t)+ H̃2(x,t)+ H̃3(x,t),

where by the Cauchy theorem

H̃1(x, t) =
1

2π i

∫
C2

epx−K(p)t K (p)
p

dp.

H̃2(x, t) =
(

1
2π i

)2 ∫
C1

eξ t ξ
ϕ (ξ )

∫
C2

epxY
+(p,ξ )

Y−(0,ξ )
1

K (p)+ ξ
dp dξ . (3.43)

H̃3(x, t) =
(

1
2π i

)2 ∫
C1

eξ tξ
∫

C2

epxY
+(p,ξ )−Y−(0,ξ )

Y−(0,ξ )
1

p(K (p)+ ξ )
dpdξ .

By directly calculation we obtain

∥∥∥H̃1(·,t)
∥∥∥

L∞
� C

∫
C2

e−
√

|p|t
(
|p|+ 1√|p|

)
dp � Ct−1. (3.44)

Now, using that ϕ (ξ ) =
√〈ξ 〉 and via the inequality (3.1) we have∥∥∥H̃2(·, t)

∥∥∥
L∞

� C
∫

C1

e−C|ξ |t |ξ |
∫

C2

1∣∣∣ip2 + |p| 1
2

∣∣∣ d|p| d|ξ |� Ct−2. (3.45)
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Since by Mean Value Theorem∣∣Y+(p,ξ )−Y−(0,ξ )
∣∣� C|p|,

and via the inequality (3.2) for δ ∈ (
0, 1

2

)
and mediantly the substitution w = ξ t we

infer ∥∥∥H̃3(·, t)
∥∥∥

L∞
� C

∫
C1

e−C|ξ |t |ξ |
∫

C2

1∣∣∣ip2 + |p| 1
2

∣∣∣ d|p| d|ξ |� Ct−2. (3.46)

From (3.44) ,(3.45) and (3.46) we conclude∥∥∥H̃(·,t)
∥∥∥

L∞
� Ct−1.

The above inequality, the equation (3.42) and the definition of Yβ norm imply that

‖H (t)h‖L∞ � ‖h(t)‖L∞ +
∥∥∥H̃(t)h

∥∥∥
L∞

� Ct−1 ‖h‖Yβ
, for t > 1. (3.47)

Moreover for 0 < t < 1 by analogy to (3.39) it easy to prove

‖H (t)h‖L∞ � C‖h‖Yβ
. (3.48)

From (3.47) and (3.48) it follows the Lemma 5.
In based to book [11] and the results presented in the previous Lemmas we can

infer the next result.

THEOREM 2. Let the initial data u0 ∈ Z and the boundary data h ∈ Yβ , where
‖u0‖Z +‖h‖Yβ

= ε, ε > 0 is sufficiently small and β > 1 . Then for some T > 0 there

exists a unique solution

u ∈C
(
[0,T ] ; L2(R+)

)∩C
(
(0,T ] ;L2,μ(R+)∩L∞ (

R
+)) ,

for the initial boundary-value problem (1.1) .

4. Proof of the Main Theorem

We introduce the spaces

Z := L2(R+) ∩ L1, 1
4 +μ(R+) ∩ L∞(R+),

where μ ∈ (0, 1
4

)
with the norm

‖φ‖Z = ‖φ‖L2 +‖φ‖
L1, 14 +μ +‖φ‖L∞ ,

and
Yβ :=

{
φ ∈ L1 : ‖φ‖Yβ

< ∞
}

,
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with
‖φ‖Yβ

:=
∥∥∥φ̂
∥∥∥

L1,1
+
∥∥∥φ̂
∥∥∥

L∞
+
∥∥∥〈t〉β φ

∥∥∥
L∞

.

Let us define the functional space

X :=
{

φ∈ C
(
[0,∞);L2(R+)

)∩ C
(
(0,∞);L2, 1

2 (1−μ)(R+)∩ L∞(R+)
)

: ‖φ‖X < ∞
}

,

where

‖φ‖X := sup
t�0

‖φ (t)‖L2 + sup
t>0

{t} 1
4 ( 1

2−μ) 〈t〉 1
2−μ ‖φ(t)‖

L
2, 12 ( 1

2 +μ) +{t} 1
2 〈t〉2 ‖φ‖L∞ .

By Proposition 1 where u0∈ Z, h ∈ Y are such that ‖u0‖Z + ‖h‖Y = ε is sufficiently
small. Let us define the operator

A u := G (t)u0−
∫ t

0
G (t− τ)N (u)(τ) dτ +H (t)h. (4.1)

We prove that A is a contraction mapping on a ball Xρ = {v∈ X : ‖v‖X � ρ } where
ρ = 2C (‖u0‖Z +‖h‖Y) . Firstly we need to prove that∥∥∥∥∥∥

t∫
0

G (t− τ)(|v|2v)dτ

∥∥∥∥∥∥
X

� C‖v‖3
X . (4.2)

Since for v∈ X∥∥|v|2v∥∥L1 � ‖v‖L∞ ‖v‖2
L2 � C{τ}− 1

2 〈τ〉−2‖v‖3
X ,

∥∥|v|2v∥∥L∞ � ‖v‖3
L∞ � C{τ}− 3

2 〈τ〉−6 ‖v‖3
X ,

∥∥|v|2v∥∥
L1, 12 +μ � C‖v‖L∞ ‖v‖2

L
2, 12 ( 1

2 +μ) � C{τ}− 1
2 ( 3

2−μ) 〈τ〉−(3−2μ)‖v‖3
X ,

∥∥|v|2v∥∥
L1, 12 ( 1

2 +μ) � C

(
‖v‖L∞ ‖v‖2

L2 +‖v‖L∞ ‖v‖2

L
2, 12 ( 1

2 +μ)

)
� C

(
{τ}− 1

2 〈τ〉−1 +{τ}− 1
2 ( 3

2−μ) 〈τ〉−(3−2μ)
)
‖v‖3

X .

Via Lemmas 3 and Lemma 4 we get∥∥∥∥ t∫
0

G (t− τ)(|v|2v)dτ
∥∥∥∥

L2
�

t∫
0

(∥∥|v|2v∥∥L1 +
∥∥|v|2v∥∥L∞

)
dτ

� C‖v‖3
X

∞∫
0

(
{τ}− 1

2 〈τ〉−1 +{τ}− 3
2 〈τ〉−6

)
dτ

� C‖v‖3
X .
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∥∥∥∥ t∫
0

G (t− τ)(|v|2v)dτ
∥∥∥∥

L2, 12( 1
2 +μ)

�
t∫

0

{t − τ}− 1
4 ( 1

2−μ) 〈t− τ〉−( 1
2−μ)

×
(∥∥|v|2v∥∥L1 +

∥∥|v|2v∥∥
L

1, 12 ( 1
2 +μ)

)
dτ

� C{t}− 1
4 ( 1

2−μ) 〈t〉−( 1
2−μ) ‖v‖3

X .

∥∥∥∥ t∫
0

G (t− τ)(|v|2v)dτ
∥∥∥∥

L∞

� C

t∫
0

{t− τ}− 1
2 〈t − τ〉−2

(∥∥|v|2v∥∥L1 +
∥∥|v|2v∥∥

L1, 12 +μ

)
dτ

� C 〈t〉−1‖v‖3
X .

Thus (4.2) is proved.
By the same way, we can prove that for all v, w∈ X is true∥∥∥∥ t∫

0

G (t− τ)(|v|2v−|w|2w)dτ
∥∥∥∥

X
� C‖v−w‖X (‖v‖X +‖w‖X)2 .

By Lemma 3 and Lemma 4 we have ‖G (t)u0‖X � C‖u0‖Z , and for the Lemma 5 we
have ‖H (t)h‖X � C‖h‖Y . In consequence for v ∈ Xρ we get

‖A (v)‖X � ‖G (t)u0‖X +
∥∥∥∥ t∫

0

G (t− τ)N(v)(τ)dτ
∥∥∥∥

X
+‖H (t)h‖X

� C
(
‖u0‖Z +‖v‖3

X +‖h‖Y

)
� ρ

2
+ ρ3

� ρ .

Therefore, the operator A transforms the ball Xρ into itself. In the same way, we
estimate the difference of two functions v, w ∈ Xρ

‖A (v)−A (w)‖X �
∥∥∥∥ t∫

0

G (t− τ)(N(v)(τ)−N(w)(τ))dτ
∥∥∥∥

X

� C‖v−w‖X (‖v‖X +‖w‖X)2

� Cρ2‖v−w‖X � 1
2
‖v−w‖X ,

where ρ > 0 is sufficient small. Therefore A is a contraction mapping in Xρ and thus
by fixed point theorem there exists a unique solution u∈ X to the initial boundary value
problem (1.1) . Hence the Theorem (1) is proved.
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