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Abstract. In this article, we study sufficient conditions for existence and uniqueness of positive
solutions to the following coupled system of fractional order differential equations with anti-
periodic boundary conditions{

cDα u(t)+ f (t,v(t),c Dα−1v(t)) = 0, cDβ v(t)+g(t,u(t),c Dβ−1u(t)) = 0, 0 < t < 1,

u(0) = −u(1),v(0) = −v(1), Dpu(0) = −Dpu(1), Dqv(0) = −Dqv(1),

where 1 < α ,β � 2,α − p � 1,β − q � 1 and 0 < p,q < 1, f , g : [0,1]×R×R → R are con-
tinuous functions and D stands for Caputo derivative. We use Banach and Schauder fixed point
theorems to develop sufficient conditions for existence and uniqueness of positive solutions. We
also study sufficient conditions for existence of multiple positive solutions and conditions for
non existence of solutions. We provide several examples to show the applicability of our results.
We also link our analysis for the problem to equivalent integral equations.

1. Introduction

The study of fractional differential equations has attracted the attention of many
researchers, because of their applications in various fields of science and engineer-
ing. Fractional differential equations arise in the field of physics, electrochemistry,
viscoelasticity, Control theory, image and signal processing.

Recently, the study of existence and uniqueness of solutions to boundary value
problems for fractional order differential equations has attracted the attentions of many
scientists and a number of research articles are available in the literature, we refer to
[1, 2, 3, 4, 5, 6, 7, 8, 9] and the reference therein for some of the recent development
in the theory. The study of fractional differential equations with periodic boundary
conditions has also attracted some attention, we refer to [8, 10].

In [10], the authors have studied existence and uniqueness of solutions for the
following anti-periodic boundary value problem

cDαy(t) = f (t,y(t),c Dα−1y(t)) f or t ∈ J = [0,b]

y(0) = −y(b),y
′
(0) = −y

′
(b)
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where cDα ,1 < α � 2 is the Caputo fractional derivative and f : J×R×R → R is
continuous function. Many problems in applied sciences can be modeled as coupled
system of differential equations with different type of boundary conditions. Bound-
ary values problems for coupled systems with ordinary derivatives are well studied,
however, coupled systems with fractional derivatives have attracted the attention quite
recently. For example Su [11] developed sufficient conditions for existence of solutions
for the coupled system with two point boundary conditions of the form

Dαu(t) = f (t,v(t),Dμv(t)), Dβ v(t) = g(t,u(t),Dvv(t)),0 < t < 1

u(0) = u(1) = v(0) = v(1) = 0,

where 1 < α,β < 2, μ ,v > 0, α − v � 1, β − μ � 1, f , g : [0,1]×R×R → R are
continuous and D is the standard Riemann-Liouville fractional derivative. B.Ahmad
and Neito [12] extended the results of [11] to a three-point boundary value problem for
the following coupled system of fractional differential equations

Dαu(t) = f (t,v(t),Dμv(t)), Dβ v(t) = g(t,u(t),Dνv(t)), 0 < t < 1

u(0) = 0, u(1) = γu(η), v(0) = 0, v(1) = γv(η),

where 1 < α,β < 2, μ ,ν,γ > 0, 0 < η < 1,α−ν � 1, β −μ � 1, γηα−1 < 1, γηβ−1 <
1, f ,g : [0,1]×R×R → R are continuous and D is standard Riemann-Liouville frac-
tional derivative. Wang et al. [13] studied existence and uniqueness of positive solutions
to a three-point boundary value problems for the coupled system

Dαu(t) = f (t,v(t)), Dβ v(t) = g(t,u(t)), 0 < t < 1

u(0) = 0 = v(0), u(1) = au(ξ ), v(1) = bv(ξ ),

where 1 < α, β < 2, 0 � a, b � 1,0 < ξ < 1, f ,g : I×R×R→ R are continuous and
D is the standard Riemann-Liouville fractional derivative.

Motivated by the above work, we study existence as well as non-existence of pos-
itive solutions to boundary value problems for the coupled system with anti-periodic
boundary conditions of the type

cDαu(t)+ f (t,v(t),cDα−1v(t)) = 0,

cDβ v(t)+g(t,u(t),cDβ−1u(t)) = 0, 0 < t < 1

u(0) = −u(1), v(0) = −v(1), Dpu(0) = −Dpu(1), Dqv(0) = −Dqv(1),

(1.1)

where 1 < α , β � 2, 0 < p,q < 1, and f , g ∈ C([0,1]× [0,∞), [0,∞)) are continu-
ous and cD is the Caputo fractional derivative. We apply Banach fixed point theorem,
Leray-Schauder fixed point theorem and fixed point theorems of cone expansion, to ob-
tain sufficient conditions for existence and non-existence of positive solutions of (1.1).
We also provide some examples to illustrate our main results.

2. Preliminaries

We recall some basic definitions and lemmas from fractional calculus [14, 15, 17].
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DEFINITION 1. The fractional integral of order q > 0 of a function u : (0,∞)→ R
is defined by

Iqu(t) =
1

Γ(q)

∫ t

0

u(s)
(t− s)1−q ds,

provided the integral converges.

DEFINITION 2. The Caputo fractional derivative of order q > 0 of a function u ∈
Cn[0,1] is defined by

cDq
0+u(t) =

1
Γ(n−q)

∫ t

0

un(s)
(t− s)q−n+1 ds, where n = �q�,

provided that the right side is point wise defined on (0,∞) .

The following results needed in the sequel.

LEMMA 1. [10], let α > 0 , then Iα cDαh(t) = h(t)+C0 +C1t + . . .+Cn−1tn−1

for arbitrary Ci ∈ R, i = 0,1,2, . . . ,n−1, n = [α]+1

LEMMA 2. [14], Let E be a Banach space with C ⊆ E closed and convex. Let
U be a relatively open subset of C with 0 ∈U and T : U → U be a continuous and
compact mapping. Then either

1. The mapping T has a fixed point in U or

2. There exist u ∈ ∂U and λ ∈ (0,1) with U = λTu

LEMMA 3. [16], Let P be a cone of real Banach space E and let Ω1 and Ω2 be
two bounded open sets in E such that 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2 . Let A : P∩ (Ω2 \Ω1) → P
be completely continuous operator. Suppose that one of the two conditions holds:

1. ‖Au‖ � ‖u‖ for all u ∈ P∩∂Ω1; ‖Au‖ � ‖u‖ , for all u ∈ P∩∂Ω2

2. ‖Au‖ � ‖u‖ for all u ∈ P∩∂Ω1; ‖Au‖ � ‖u‖ , for all u ∈ P∩∂Ω2 .

Then A has at least one fixed point in P∩ (Ω2 \Ω1) .

LEMMA 4. For y ∈C(0,1] , the boundary value problem

cDαu(t)+ y(t) = 0, 1 < α � 2, 0 < t < 1,

u(0) = −u(1), Dpu(0) = −Dpu(1), 0 < p < 1,
(2.1)

has a unique solution

u(t) =
1∫

0

Gα(t,s)y(s)ds
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where

Gα(t,s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
2Γα

(1− s)α−1 +
1

2Γ(α − p)
(2t−1)(1− s)α−p−1

− 1
Γα

(t − s)α−1 ,0 � s � t � 1,

1
2Γα

(1− s)α−1 +
1

2Γ(α − p)
(2t−1)(1− s)α−p−1 ,0 � t � s � 1.

Proof. In view of Lemma (1), we obtain Iα cDαu(t) = −Iαy(t) , that is,

u(t) = C0 +C1t− Iαy(t).

Using the boundary conditions u(0) =−u(1) and Dpu(0) =−Dpu(1) , we obtain C1 =
Iα−py(1) and C0 = Iα y(1)−Iα−py(1)

2 . Thus, we have

u(t) =
Iα

2
+

2t−1
2

Iα−py(1)− Iαy(t) =
1∫

0

Gα(t,s)y(s)ds, (2.2)

where

Gα(t,s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
2Γα

(1− s)α−1 +
1

2Γ(α − p)
(2t−1)(1− s)α−p−1

− 1
Γα

(t − s)α−1 ,0 � s � t � 1,

1
2Γα

(1− s)α−1 +
1

2Γ(α − p)
(2t−1)(1− s)α−p−1 ,0 � t � s � 1.

(2.3)
Now, define G(t,s) = (Gα(t,s), Gβ (t,s)) , then G(t,s) is the Green’s function

corresponding to the system of BVP (1.1). It is easy to verify the following lemma:

LEMMA 5. The Green’s function G(t,s) has the following properties

• (P1) G(t,s) � 0 for all t,s ∈ [0,1] and G(t,s) > 0 for all t,s ∈ (0,1);

• (P2) max
0�t�1

G(t,s) = G(s,s),s ∈ [0,1];

• (P3) min
1
4 �t� 3

4

G(t,s) � γ(s)G(s,s) for s ∈ [0,1] .

3. Existence of positive solutions

In this section we investigate the existence of positive solution for boundary value
problem (1.1). Let us define X = {u(t) : u(t) ∈C[0,1]} and Y = {v(t) : v(t) ∈C[0,1]}
endowed with the norm

‖u‖ = max
t∈[0,1]

|u(t)|+ max
t∈[0,1]

|cDα−1u(t)| and , ‖v‖ = max
t∈[0,1]

|v(t)|+ max
t∈[0,1]

|cDβ−1v(t)|.
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The product space X ×Y is a Banach space under the norm ‖(u,v)‖= max{‖u‖,‖v‖} .

Define a cone P = {(u, v) ∈ X ×Y : u(t) � 0, v(t) � 0} , Take J = [
1
4
,
3
4
] and subsets

B = {(u,v) ∈ P, min
t∈J

u(t) � γα‖u‖, min
t∈J

v(t) � γβ‖v‖},
Br = {(u,v) ∈ B : ‖(u,v)‖ � r}, ∂Br = {(u,v) ∈ B : ‖(u,v)‖ = r}.

In view of Lemma (4), we can write the system of BVP (1.1) as an equivalent system
of integral equations⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
u(t) =

1∫
0

Gα(t,s) f (s,v(s),c Dα−1v(s))ds, 0 � t � 1,

v(t) =
1∫
0

Gβ (t,s)g(s,u(s),c Dβ−1u(s))ds, 0 � t � 1,

(3.1)

where f and g are continuous, then (u,v)∈X×Y is a solution of BVP (1.1) if and only
if (u,v)∈ X×Y is a solution of the above integral equations. Define T : X×Y →X×Y
as follows

T (u,v)(t)

=
( 1∫

0

(Gα(t,s) f (s,v(s), cDα−1v(s))ds,

1∫
0

(Gβ (t,s)g(s,u(s),c Dβ−1u(s))ds

)

= (T1v(t),T2u(t)). (3.2)

Then the fixed point of operator T coincide with the solution of system BVP (1.1).

THEOREM 1. Let f ,g : [0,1]× [0,∞)→ [0,∞) be continuous, then T : P→ P and
T : B → B defined by (3.2) are completely continuous.

Proof. From the continuity of f , g , it follows that T is continuous. Let D ⊆ P be
bounded set, that is, there exist a positive constant l > 0 such that ‖(u,v)‖ � � for all
(u,v) ∈ D . Let

M = max{| f (t,v(t),c Dα−1v(t))|+1 : 0 � t � 1, 0 � v � h},
N = max{|g(t,u(t),cDβ−1u(t))|+1 : 0 � t � 1, 0 � u � h}.

Then we have

|T1v(t)| = |
1∫

0

Gα(t,s) f (s,v(s),c Dα−1v(s))ds|

�
1∫

0

Gα(t,s)| f (s,v(s)),c Dα−1v(s)|ds � M

1∫
0

Gα(s,s)ds
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and |T2u(t)| � N
1∫
0

Gβ (s,s)ds . Hence, it follows that

‖T (u,v)‖ = ‖(T1v,T2u)‖ � max{(M
1∫

0

Gα(s,s)ds,N

1∫
0

Gβ (s,s)ds)} = A,

that is, T (D) is bounded so is uniformly bounded. From the uniform continuity of
G(t,s) on [0,1]× [0,1] it follows that for a fixed s ∈ [0,1] and ε > 0, there exist a
constant δ > 0 such that for |t2− t1| < δ we have

|Gα(t2,s)−Gα(t1,s)| < ε
M

and |Gβ (t2,s)−Gβ (t1,s)| < ε
N

.

It follows that

|T1v(t2)−T1v(t1)| � M

1∫
0

|Gα(t2,s)−Gα(t1,s)|ds < M
ε
M

= ε.

Similarly, we have
|T2u(t2)−T2u(t1)| < ε.

For Euclidean distance d on R2 , if 0 � t1,t2 � 1 are such that |t2 − t1| < δ , then

d(T (u,v)t2,T (u,v)t1) =
√
|T1v(t2)−T1v(t1)|2 + |T2u(t2)−T2u(t1)|2)

<
√

2ε2 =
√

2ε,

which implies that T (P) is equi-continuous. By Arzela Ascoli’s theorem, T : P → P is
completely continuous.

THEOREM 2. Let there exist two positive constants Kα and Kβ such that the
following hold for t ∈ [0,1] , u1,u2,v1,v2 ∈ [0,∞):

(A1) | f (t,u2,v2)− f (t,u1,v1)| � Kα(|u2−u1|+ |v2− v1|) ,
(A2) |g(t,u2,v2)−g(t,u1,v1)| � Kβ (|u2−u1|+ |v2− v1| .

Then the system (1.1) has a unique positive solution if

max{2G∗
αKα ,2Kα

(1+ Γ(3−α)Γ(α − p+1)
Γ(3−α)Γ(α − p+1)

)} < 1,

max{2G∗
βKβ ,2Kβ

(1+ Γ(3−β )Γ(β −q+1)
Γ(3−β )Γ(β −q+1)

)} < 1.

Proof. Before proving the above result, since f ,g are continuous and Tu(t),Tv(t)
and cDα−1Tu(t), cDβ−1v(t) are continuous on [0,1]× [0,∞)→ [0,∞) .
For v, v ∈ Y and each t ∈ [0,1] , we have

|T1v(t)−T1v(t)|� max
t∈[0,1]

1∫
0

|Gα(t,s)|[| f (s,v(s),c Dα−1v(s))− f (s, v(s),c Dα−1v(s))|]ds
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which implies that

|T1v(t)−T1v(t)| � G∗
αKα{|v− v|+ |cDα−1v−c Dα−1v|}

� G∗
αKα max{‖v− v‖∞, ‖Dα−1v−Dα−1v‖∞}

= 2G∗
αKα‖v− v‖, (3.3)

where G∗
α = maxt∈[0,1]

1∫
0
|Gα(t,s)|ds . Further, using the following relation

cDα−1T1v(t)

=
t2−α

Γ(3−α)Γ(α − p+1)

1∫
0

(1− s)α−p+1 f (s,v(s),c Dα−1v(s))ds

−
t∫

0

f (s,v(s),c Dα−1v(s))ds,

we obtain

|Dα−1T1v(t)−Dα−1T1v(t)| � 2Kα
(1+ Γ(3−α)Γ(α − p+1)

Γ(3−α)Γ(α − p+1)
)||v− v|| (3.4)

Choose

ρ1 = max
{

2G∗
αKα ,2Kα

(1+ Γ(3−α)Γ(α − p+1)
Γ(3−α)Γ(α − p+1)

)}
,

then from (3.3) and (3.4), it follows that

|T1v(t)−T1v(t)| � ρ1||v− v||, (3.5)

which implies that T1 is a contraction as ρ1 < 1. Similarly we can show that

|T2u(t)−T2u(t)| � ρ2‖u− u‖ (3.6)

where

ρ2 = max
{

2G∗
β Kβ ,2Kβ 2Kβ

(1+ Γ(3−β )Γ(β −q+1)
Γ(3−β )Γ(β −q+1)

)}
< 1

and

G∗
β = max

t∈[0,1]

1∫
0

|Gβ (t,s)|ds,

that is, T2 is a contraction. From (3.5) and (3.6), we have

‖T (u2,v2)−T(u1,v1)‖ � max(ρ1,ρ2)‖(u2,v2)− (u1,v1)‖ � L‖(u2,v2)− (u1,v1)‖
where L = max(ρ1,ρ2) < 1. By Banach contraction theorem T has a unique fixed
point which is unique positive solution of system of BVP (1.1).
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THEOREM 3. Assume that f and g are continuous on [0,1]× [0,∞)→ [0,∞) and
satisfying

(A3) | f (t,v(t), cDα−1v(t))| � c1(t)+ c2(t)(|v(t)|+ |cDα−1v(t)|)
(A4) |g(t,u(t), cDβ−1u(t))| � d1(t)+d2(t)(|u(t)|+ |cDβ−1u(t)|)

(A5) C1 =
1∫
0

Gα(s,s)c1(s)ds < 1, D1 =
1∫
0

Gα(s,s)d1(s)ds < ∞

(A6) C2 =
1∫
0

Gβ (s,s)d2(s)ds < 1, D2 =
1∫
0

Gβ (s,s)d1(s)ds < ∞ .

Then the system (1.1) has at least one positive solution (u,v) in

S =
{

(u,v) ∈ P

∣∣∣∣‖(u,v)‖ < min

(
D1

1−C1
,

D2

1−C2

)}
.

Proof. Choose r = min

(
D1

1−C1
,

D2

1−C2

)
and define

S = {(u,v) ∈ P|‖(u,v)‖ < r}.
For (u,v) ∈ S , we have consider

‖T1v‖ = max
t∈[0,1]

∣∣∣∣∣∣
1∫

0

Gα(t,s) f (s),v(s), cDα−1v(s)ds

∣∣∣∣∣∣
�

1∫
0

Gα(s,s)(c1t)+ c2(t)(|v(t)|+ |Dα−1v(t)|)ds � D1 +C1‖v‖ � r.

Similarly, we obtain ‖T2u‖ � r . Hence, ‖T (u,v)‖ � r which implies that T (u,v) ∈ S .
Further, T : S → S is completely continuous. Let (u,v) ∈ S such that

(u,v) = λT (u,v),0 < λ < 1, (3.7)

then, we have

‖u‖ = ‖λT1v‖ = λ max
t∈[0,1]

∣∣∣∣∣∣
1∫

0

Gα(t,s) f (s,v(s), cDα−1v(s))ds

∣∣∣∣∣∣
<

1∫
0

Gα(s,s)(c1(t))+ c2(t)(|v(t)|+ |cDα−1v(t)|)ds � D+C1‖v‖ � r,

which implies that ‖u‖ < r . Similarly, ‖v‖ < r . Hence, ‖(u,v)‖ < r which implies
that (u,v) /∈ ∂S . Thus T has a fixed point in S . �

Now, we introduce the following assumptions and notations.
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(B1) f , g : [0,1]× [0,∞)× [0,∞)→ [0,∞) and f (t,0,0) = g(t,0,0) = 0 are uniformly
continuous with respect to t on [0,1] .

(B2) Let f0 = lim
u→0

f (u)
u

, g0 = lim
u→0

g(u)
u

, f∞ = lim
u→∞

f (u)
u

and g∞ = lim
u→∞

g(u)
u

.

THEOREM 4. In addition to the assumptions (B1) and (B2) , suppose that one of
the following conditions holds.

(C1) f−1
0 < γ2

α

3
4∫
1
4

Gα(s,s)ds, ( f ∞)−1 > G∗
α , g−1

0 < γ2
β

3
4∫
1
4

Gβ (s,s)ds and (g∞)−1 > G∗
β ;

(C2) there exist four constants a, A, b, B with 0 < a � A and 0 < b � B such that
f (t,v(t),c Dα−1v(t)) and g(t,u(t),c Dα−1u(t)) are non decreasing on [0,1]× [0,A]×
[0,B] , f (t,A,B) � (A+B)/G∗

α , g(t,A,B) � (A+B)/G∗
β , for all t ∈ [0,1] and

f−1(t,γαa,γαb) < γ2
α

3
4∫

1
4

Gα(s,s)ds, g−1(t,γβ a,γβ b) < γ2
β

3
4∫

1
4

Gβ (s,s)ds.

Then the boundary value problem (1.1) has at least one positive solution.

Proof. Case 1: Assume that (C1) holds. Since,

f−1
0 < γ2

α

3
4∫

1
4

Gα(s,s)ds,

it follows that there exists a1 > 0 such that f (t,v, cDα−1v(t) � ( f0 − ε1 − ε2)v for all
t ∈ [0,1], v ∈ [0,a1] where ε1,ε2 > 0 are such that

( f0 − ε1− ε2)γ2
α

3
4∫

1
4

Gα(s,s)ds � 1.

Hence, for (u,v) ∈ ∂Sr , we have

T1v(t) =
1∫

0

Gα(t,s) f (s,v(s), cDα−1v(s))ds

� γα

1∫
0

Gα(s,s) f (s,v(s), Dα−1v(s))ds

� γα

1∫
0

Gα(s,s)( f0 − ε1− ε2)v(s)ds
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� ( f0 − ε1− ε2)γ2
α

1∫
0

Gα(s,s)‖v‖ds � ‖v‖.

Similarly, we obtain T2u(t) � ‖u‖ . Hence,

‖T (u,v)‖ � ‖(u,v)‖ for (u,v) ∈ ∂Sr. (3.8)

On the other hand for ( f ∞)−1 > G∗
α , there exist A > 0 such that f (t,v,c Dα−1v(t)) �

( f ∞ + ε ′
1 + ε ′

2)v, for t ∈ [0,1],v ∈ (A,∞) , where ε ′
1,ε

′
2 > 0 satisfies G∗

α( f ∞ + ε ′
1 +

ε ′
2)

−1 � 1, . Put
Z = max

t∈[0,1],v∈[0,A]
f (t,v(t),c Dα−1v(t),

then f (t,v(t),c Dα−1) � Z +( f ∞ + ε ′
1 + ε ′

2)v choosing

A > max{a,A,ZG∗
α(1−G∗

α)( f ∞ + ε
′
1 + ε

′
2)

−1}.
Then for t ∈ [0,1],(u,v) ∈ ∂SA , we get

T1v(t) =
1∫

0

Gα(t,s) f (s,v(s), cDα−1v(s)ds)

�
1∫

0

Gα(s,s) f (s,v(s), cDα−1v(s))ds

�
1∫

0

Gα(s,s)(Z +( f ∞ + ε
′
1 + ε

′
2)v(s))ds

� Z

1∫
0

Gα(s,s)ds+( f ∞ + ε
′
1 + ε

′
2)

1∫
0

(s,s)‖v‖ds

< A−G∗
α( f ∞ + ε

′
1 + ε

′
2)A+( f ∞ + ε

′
1 + ε

′
2)G

∗
α‖v‖ � A.

Similarly we have T2u(t) < A , that is

(u,v) ∈ ∂SA ⇒‖T (u,v)‖ < ‖(u,v)‖. (3.9)

Case 2: In view of (C2) for (u,v) ∈ S and from the definitions of S , we obtain that

min
t∈[ 1

4 , 3
4 ]

u(t) � γα‖u‖and min
t∈[ 1

4 , 3
4 ]

v(t) � βα‖u‖.

Therefore for (u,v) ∈ ∂Sb, we have ‖(u,v)‖ = b, for t ∈ [ 1
4 , 3

4 ] . From (C2) we have

T1v(t) =
1∫

0

Gα(t,s) f (s,v(s), cDα−1v(s))ds
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� γα

3
4∫

1
4

Gα(s,s) f (s,v(s), cDα−1v(s))ds

� γα
b

γα
∫
1
4

3
4 Gα(s,s)ds

3
4∫

1
4

Gα(s,s)ds = b

Similarly, we obtain T2u(t) � b , which implies that

‖T (u,v)‖ � ‖(u,v)‖ for (u,v) ∈ ∂Sb. (3.10)

On the other hand for (u,v) ∈ ∂KB , we have that ‖(u,v)‖ = B and using (C2) , we get

T1v(t) =
1∫

0

Gα(t,s) f (s,v(s), cDα−1v(t))ds

�
1∫

0

Gα(s,s) f (s,v(s), cDα−1v(s))ds

� B
G∗

α

1∫
0

Gα(s,s)ds = B.

Similarly, T2u(t) � B , hence,

‖T (u,v)‖ � ‖(u,v)‖ for (u,v) ∈ ∂SB. (3.11)

Thus (1.1) has at least one positive solution.

THEOREM 5. Suppose that (B1)-(B2) hold and let the following conditions are
satisfied:

(C3) ( f 0)−1 > G∗
α and f−1

∞ < γ2
α

3
4∫
1
4

Gα(s,s)ds, specially f 0 = 0 and f∞ = ∞;

(C4) (g0)−1 > G∗
β and g−1

∞ < γ2
β

3
4∫
1
4

Gβ (s,s)ds, specially g0 = 0 and g∞ = ∞.

Then the boundary value problem (1.1) has at least one positive solution.

Proof. The proof is similar to that of Theorem 4 and we omit it.

THEOREM 6. Suppose (C1)-(C3) holds and also let the following two conditions
are satisfied:
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(C5) f−1
∞ and f−1

0 < γ2
α

3
4∫
1
4

Gα(s,s)ds, particularly f0 = f∞ = ∞ and

g−1
∞ and g−1

0 < γ2
β

3
4∫

1
4

Gα(s,s)ds, particularly g0 = g∞ = ∞ .

(C6) There exist d > 0 such that

max
0�t�1,(u,v)∈∂Sd

f (t,v,Dα−1v(t)) <
d

G∗
α

, and max
0�t�1,(u,v)∈∂Sd

g(t,u, cDα−1u(t)) <
d

G∗
β
.

Then boundary value problem (1.1) has at least two positive solution (u1,v1) and
(u2,v2) which obey

0 < ‖(u1,v1)‖ < b < ‖(u2,v2)‖. (3.12)

Proof. Case 1: Consider (C4) , selecting 0 < a < d < A, if

f−1
0 < γ2

α

3
4∫

1
4

Gα(s,s)ds and g−1
0 < γ2

β

3
4∫

1
4

Gβ (s,s)ds.

Then we have
‖T (u,v‖) � ‖(u,v)‖, for (u,v) ∈ ∂Sr. (3.13)

If

f−1
∞ < γ2

α

3
4∫

1
4

Gα(s,s)ds and g−1
∞ < γ2

β

3
4∫

1
4

Gβ (s,s)ds,

then we have
‖T (u,v‖) � ‖(u,v)‖, for (u,v) ∈ ∂SA. (3.14)

Case 2: From (C6) and (u,v) ∈ ∂Sb we have

T1v(t) =
1∫

0

Gα(t,s) f (s,v(s), cDα−1v(s))ds

�
1∫

0

Gα(s,s) f (s,v(s), cDα−1v(s))ds

<
b

G∗
α

1∫
0

Gα(s,s)ds = b,

that implies T1v(t) < b . Similarly T2u(t) < b. It implies that (u,v) ∈ ∂Kb which gives

‖T (u,v)‖ < ‖(u,v)‖. (3.15)
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REMARK 1. By applying lemma (3) to (3.8) and (3.9) or (3.10) and (3.11) which
yields that T has a fixed point (u,v) ∈ Sa,A or (u,v) in Sai,Ai (i = 1,2) with u(t) �
γα‖u‖ > 0 and v(t) � γβ‖v‖ > 0, t ∈ [0,1].

Thus BVP (1.1) has a positive solution (u,v) which complete the proof of Theo-
rem 4.

REMARK 2. By applying lemma (3) to (3.8) and (3.12) or (3.13) and (3.15) yields
that T has a fixed point (u1,v1) ∈ ∂Sa,b and a fixed point (u2,v2) ∈ ∂Sb,A .

Thus BVP (1.1) has at least two positive solutions (u1,v1) and (u2,v2) . By as-
suming ‖(u1,v1)‖ �= b and ‖(u2,v2)‖ �= b holds, and thus proof of Theorem 6 is com-
pleted. �

Going on above fashion we have the following result as in [16].

THEOREM 7. Let (B1) and (B2) holds and suppose that the following condition
hold.

(C7) ( f 0)−1 and (g∞)−1 < G∗
α , (g0)−1 and (g∞)−1 < G∗

β ;

(C8) There exist E > 0 constant such that:

max
1
4 �t� 3

4 , (u,v)∈∂SE

f (t,v(t)cDα−1v(t)) > B

(
γα

3
4∫

1
4

Gα(s,s)ds

)−1

,

max
1
4 �t� 3

4 ,(u,v)∈∂SE

g(t,u,c Dβ−1u(t)) > B

(
γβ

3
4∫

1
4

Gβ (s,s)ds

)−1

.

Then the BVP(1.1) has at least two positive solutions (u1,u2) and (u2,v2) which obey

0 < ‖(u1,v1)‖ < E < ‖(u2,v2)‖. (3.16)

THEOREM 8. Let (B1)-(B3) hold. If there exist 2n positive numbers �k,Lk, k =
1,2 . . .n, with

�1 < γαL1 < L1 < �2 < γαL2 < L2 . . .dn < γαDn < Dn

�1 < γβ L1 < L1 < �2 < γβ L2 < L2 . . .dn < γβ Dn < Dn,

such that

(C9) f � dk(γα
1∫
0

Gα(s,s)ds)−1 , for (t,v) ∈ [0,1]× [γα�k, �k],

f � (G∗
α)−1Dk , for (t,v) ∈ [0,1]× [γαLk,Lk],k = 1,2 . . .n,

g � dk(γβ
1∫
0

Gβ (s,s)ds)−1 , for (t,u) ∈ [0,1]× [γβ�k, �k],

g � (G∗
β )−1Dk for (t,u) ∈ [0,1]× [γβLk,Lk], k = 1,2 . . .n.
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Then the BVP (1.1) has at least n positive solutions (uk,vk) obeying �k � ‖(uk,vk)‖ �
Lk, k = 1,2 . . .n.

THEOREM 9. Suppose that (B1)− (B3) holds. If there exist 2n positive numbers
�k,Lk, k = 1,2 . . .n with �1 < L1 < �2 < L2 . . . < �n < Ln, such that

(C10) f and g are non-decreasing on [0,Ln], for all t ∈ [0,1],

(C11) f (t, ·) � �k(γα

3
4∫
1
4

Gα(s,s)ds)−1 , f (t, ·) � Dk

G∗
α

, k = 1,2 . . .n,

and g(t, ·) � �k(γβ

3
4∫
1
4

Gβ (s,s)ds)−1 , g(t, ·) � Dk

G∗
β

, k = 1,2 . . .n.

Then the BVP (1.1) has at least n positive solutions (uk,vk) obeying �k � ‖(uk,vk)‖ �
Lk, v = 1,2 . . .n.

4. Some examples

EXAMPLE 1. Consider the coupled system as follow⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

cD
3
2 u(t) = −1

24et+8

(
1

1+|v(t)|+|cD 1
2 v(t)|

)
, t ∈ [0,1],

cD
5
2 v(t) = −1

24et+8

(
1

1+|u(t)|+|cD 3
2 u(t)|

)
, t ∈ [0,1],

u(0) = −u(1), D
1
2 u(0) = −D

1
2 u(1),

v(0) = −v(1), D
1
2 v(0) = −D

1
2 v(1),

where

f (t,v(t),c D
1
2 v(t)) =

−1

(24et +8)(1+ |v(t)|+c |D 1
2 v(t)|)

,

g(t,u(t),cD
3
2 u(t)) =

−1

(24et +8)(1+ |u(t)|+c |D 3
2 u(t)|)

.

Then

| f (t,v2,
c D

1
2 v2)− f (t1,v1,

c D
1
2 v1)| � 2

32
|v2− v1| = 1

16
|v2− v1|,

and

|g(t,u2,
c D

3
2 u2)−g(t1,u1,

c D
1
2 u2)| � 1

16
|u2−u1|,

where

G∗
α � 1

2Γ 3
2

1∫
0

(1− s)
1
2 ds+

1

2Γ( 3
2 − 1

2 )

1∫
0

(1− s)
3
2− 1

2−1ds

which implies that G∗
α � 0.876126, where Kα = 1

16 . Similarly G∗
β � 0.475675, where

Kβ = 1
16 .
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Now let

max{2G∗
αKα ,2Kα

(1+ Γ(3−α)Γ(α − p+1)
Γ(3−α)Γ(α − p+1)

)},
where: α = 3

2 , p = 1
2 , ρ1 = max{.10951575, .26611}= .26611 < 1 and

max{2G∗
βKβ ,2Kβ

(1+ Γ(3−β )Γ(β − p+1)
Γ(3−β )Γ(β −q+1)

)} = ρ2.

Putting β = 5
2 ,q = 1

2 , we get

ρ2 = max{.05945, .160270}= .160270 < 1.

Since ρ1 < 1 and ρ2 < 1. Thus by the use of Theorem 2, BVP (1) has a unique positive
solution.

EXAMPLE 2. Consider the system of non-linear fractional differential equations.

⎧⎪⎨
⎪⎩

cD
3
2 u(t)+

√
v(t) = 0, cD

5
2 v(t)+

√
u(t) = 0, 0 < t < 1,

u(0) = −u(1) and v(0) = −v(1),
D

1
2 u(0) = −D

1
2 u(1) and D

1
2 v(0) = −D

1
2 v(1).

Let f =
√

v and g =
√

u. Now f 0 = lim
v→0

f (v)
v

= ∞ , g0 = ∞, f ∞ = 0 = g∞ , thus

clearly we can see that

0 <

1∫
0

G 3
2
(s,s)ds < ∞ and 0 <

1∫
0

G 5
2
(s,s)ds < ∞.

Thus by (C1) f 0 = ∞ and f ∞ = 0 and g0 = ∞ and g∞ = 0. Hence by Theorem 5,
BVP (2) has a positive solution.

EXAMPLE 3. Consider the following boundary value problem as

⎧⎪⎪⎨
⎪⎪⎩

cD
5
2 u(t)+ [v(t)]100 = 0, cD

7
2 v(t)+ [u(t)]1000 = 0, 0 < t < 1

u(0) = −u(1), cD
1
2 u(0) = −cD

1
2 u(1),

v(0) = −v(1), cD
1
2 v(0) = −cD

1
2 v(1).

Clearly (B1) and (B2) holds as f 0 = g0 = 0 and f ∞ = g∞ = ∞ . Thus by (C3) and
using Theorem 6, the BVP (3) has a positive solution.
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5. Non-existence of positive solution

In this section we discuss the non-existence criteria for positive solution and present
an example for the illustration of our result.

THEOREM 10. Suppose (B1) and (B2) hold true and f < v
G∗

α
and g < u

G∗
β
, for

all t ∈ [0,1],u > 0,v > 0, then the BVP (1.1) has no positive solution.

Proof. On contrary let (u,v) be the positive solution of (1.1). Then (u,v)∈B,u(t)
and v(t) both are positive for 0 < t < 1 and

‖u‖ = max
t∈[0,1]

|u(t)|+ max
t∈[0,1]

|cDα−1u(t)| = max
t∈[0,1]

|
1∫

0

Gα(t,s) f (s,v(s),c Dα−1v(s)|ds

implies

‖u‖ �
1∫

0

Gα(s,s) f (s,v(s),c Dα−1v(s))ds <

1∫
0

Gα(s,s)
‖v‖
G∗

α
ds = ‖v‖.

Similarly ‖v‖ < ‖u‖ which is acontradiction. So BVP (1.1) has no positive solution.
Hence proof is completed. �

THEOREM 11. Let (B1) and (B2) holds and

f (t,v(t),c Dα−1v(t)) > v

(
γ2

α

3
4∫

1
4

Gα(s,s)ds

)−1

g(t,u(t),cDβ−1u(t)) > u

(
γ2

β

3
4∫

1
4

Gβ (s,s)ds

)−1

for all t ∈ [0,1],u > 0 and v > 0, then BVP (1.1) has no positive solution.

Proof. Proof is just like Theorem 11 so we omit it.

EXAMPLE 4. Consider the system of non linear fractional differential equations:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

cD
5
2 u(t)+

(2v2(t)+ v(t))(20+ cosv(t))
v(t)+1

= 0, t ∈ [0,1],

cD
5
2 v(t)+

(2u2(t)+u(t))(20+ cosu(t))
u(t)+1

= 0, t ∈ [0,1],

u(0) = −u(1) and cD
1
2 u(0) = −cD

1
2 u(1),

v(0) = −v(1) and cD
1
2 v(0) = −cD

1
2 v(1).
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Since (B1) and (B2) holds and also f 0 = g0 = 20, f ∞ = g∞ = 43, and

20v < f (t,v(t),c D
1
2 v(t)) < 43v

20u < g(t,u(t),cD
1
2 u(t)) < 43u

f (t,v(t),c D
1
2 u(t)) < 43v <

v
G∗

α
,

where G∗
α ≈ 0.876126 and G∗

β ≈ .475675. Now

f (t,v(t),D
1
2 v(t)) <

v
G∗

α
≈ 1.1413v

implies
⇒ f (t, ·) < 43v≈ 1.1413v and g(t, ·) < 43u ≈ 2.1022u .

Thus by Theorem 10, BVP (4) has no positive solution.
(ii) Also

f (t, ·) > 20v > v(γ2
α

3
4∫

1
4

Gα(s,s)ds)−1 ≈ 15.8688v

and

g(t, ·) > 2u > u(γ2
β

3
4∫

1
4

Gβ (s,s)ds)−1 ≈ 12.678u.

Then by Theorem 11, BVP (4) has no solution.
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