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Abstract. We study a semilinear system of the form

∂ui(t,x)
∂ t

= ki(t)Aiui(t,x)+uβi
i′ (t,x), t > 0, x ∈ D,

ui(0,x) = fi(x), x ∈ D, ui|Dc ≡ 0,

where D ⊂ R
d is a bounded open domain, ki : [0,∞) → [0,∞) is continuous, Ai is the in-

finitesimal generator of a symmetric jump-type process Zi ≡ {Zi(t)}t�0 , βi > 1 , i ∈ {1,2} and
i′ = 3− i . Under some assumptions on the infinitesimal generator A D

i of the subprocess Zi

killed upon leaving D , i = 1,2 , we give sufficient conditions for global existence or finite-time
blow-up of the positive mild solutions of our system. This paper can be considered as a continu-
ation of the article [16].

1. Introduction

After the pioneeringwork of Fujita [7], many authors have studied global existence
vs. blow-up in finite time of positive solutions for semilinear problems of the form

∂u
∂ t

= k(t)A u+h(t)uβ ,

u(0) = f ,

where k,h : [0,∞) → [0,∞) are not identically zero, the initial condition f is nonneg-
ative, β is a positive constant and A is the infinitesimal generator of a Lévy process.
The articles [5, 14, 15, 18, 20], are only a few examples for the autonomous (k ≡ 1)
and nonautonomous (k not identically zero) cases with initial value problems or initial-
boundary value problems for the above prototype when A is the Laplacian Δ , the
fractional Laplacian Δα ≡ −(−Δ)α/2 , 0 < α � 2 or the fractional Laplacian with
gradient perturbation Δα + b ·∇ , where the symbol ∇ is the gradient in x ∈ R

d and
b(x) :=

(
b1(x), . . . ,bd(x)

)
is an R

d -valued function on R
d .
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The dichotomy global existence vs blow up in finite time for weakly coupled sys-
tems of the form

∂ui

∂ t
= ki(t)Aiui +hi(t)u

βi
i′

ui(0) = fi � 0,

i ∈ {1,2} and i′ = 3− i , was initially considered by Escobedo and Herrero [6] for the
case when ki,hi ≡ 1, and Ai = Δ , i = 1,2, is the Laplacian operator. More general
cases for initial value ploblems involving Ai = Δαi , 0 < αi � 2 and even systems
with fractional derivatives in space and time, and cases for the initial-boundary value
problems for Laplacians, can be found for instance in [8, 9, 11, 12, 13, 19, 23] and
references therein. In this paper we have considered the nonautonomous semilinear
system with Dirichlet boundary conditions

∂ui(t,x)
∂ t

= ki(t)Aiui(t,x)+uβi
i′ (t,x), t > 0, x ∈ D, (1.1)

ui(0,x) = fi(x), x ∈ D, ui|Dc ≡ 0,

i ∈ {1,2} and i′ = 3− i , where D is a C1,1 bounded open domain of R
d with d � 1,

ki : [0,∞) → [0,∞) is continuos and not identically zero, βi > 1 is constant, the initial
condition fi is a nonnegative function in the space C0(D) of continuous functions on
D vanishing on Dc , i = 1,2 and Ai is the infinitesimal generator of a Lévy process Zi

whose corresponding subprocesses Zi
D killed upon leaving D satisfies some conditions

given below and that are satisfied by many Lévy processes with theoretical and applied
importance, such as, for example, symmetric α -stable processes, mixed symmetric
stable processes and relativistic α -stable processes. The infinitesimal generator of a
relativistic α -stable process is of the form

m− (
m2/α −Δ

)α/2
, 0 < α � 2 and m > 0;

when α = 1, this operator corresponds to the kinetic energy of a relativistic particle
with mass m and when m = 1 it is just the Bessel potential kernel. Of course, when

m ↓ 0, m−(
m2/α −Δ

)α/2
converges (in the distributional sense) to the fractional Lapla-

cian Δα ≡ (−Δ
)α/2

. Moreover the results of this paper are also worth for mixed sym-
metric stable processes with infinitesimal generator Δα +aΔβ with 0 < β < α < 2 and
0 � a � 1. Mixed symmetric stable processes are the independent sum of a symmet-
ric α -stable process and a symmetric β -stable process with weight a ; a such Lévy
process runs on two different scales: on the small spatial scale, the α component dom-
inates, while on the large one the β component takes over. Since both components play
essential roles, these type of processes can not be considered as a perturbation of the
α -stable process or the β -stable process (see [2, 4]).

This work can be considered as a continuation of the article [16]. In [16] system
(1.1) was studied with k1 = k2 ≡ k and A1 = A2 ≡A being the infinitesimal generator
of a symmetric Lévy processes Z ; it is shown that the positive mild solution of (1.1)



Differ. Equ. Appl. 7, No. 2 (2015), 263–276. 265

blows up in finite time for any initial conditions f1, f2 in the space C0(D) of continuous
functions on D vanishing on Dc provided that

min
i∈{1,2}

∫
D

fi(x)ϕ0(x)dx

> max
i∈{1,2}

[(β1β2−1
βi +1

)( βi +1
βi′ +1

) βi
βi+1

∫ ∞

0
min

i∈{1,2}

(e−λ0K(r,0)

‖ϕ0‖1

)βi−1
dr

] βi+1
1−β1β2

,

where ϕ0 is the eigenfunction corresponding to the first eigenvalue of A on D , and

K(t,s) =
∫ t

s
k(r)dr, 0 � s � t.

On the other hand, in [16] was also proved that the positive mild solution for this case
is global if

(βi−1)
∫ ∞

0
‖SD

(
K(t,0)

)
g‖βi−1

∞ dt < 1, i = 1,2,

where {SD(t)}t�0 is the semigroup with generator AD . The results that we are going
to present in this paper extend and are consistent with the above results.

System (1.1) can be used as a model to describe heat and burning in a two-
component media with temporary-inhomogeneous thermal conductivity, where u1 and
u2 represent the temperatures of the two reactant components. Unlike article [16], in
our case, the thermal conductivity may be different for each substance.

2. Killed additive process and assumptions

Throughout this paper we assume that D is a C1,1 bounded open domain of R
d

with d � 1, ki : [0,∞) → [0,∞) is continuous and not identically zero and Ai is the
infinitesimal generator of a symmetric jump process Zi in R

d , i = 1,2. Letting

Ki(t,s) =
∫ t

s
ki(r)dr, 0 � s � t, (2.1)

it is known (see [16], p.3 and 4) that the time-inhomogeneous Markov process Wi ≡
{Wi(t)}t�0 , where Wi(t)

D= Zi
(
Ki(t,0)

)
(here

D= means equality in distribution) has the
transition probability

Pi(s,x,t,B) = Pr
[
Zi

(
Ki(t,s)

) ∈ B− x
]

=
(
Si

(
Ki(t,s)

)
1B

)
(x),

where {Si(t)}t�0 denotes the semigroup with generator Ai , i = 1,2 and 1B is the
indicator function of B . Moreover, the function (t,x) 	→ Si

(
Ki(t,s)

)
f (x) , (t,x) ∈

[s,∞)×R
d , is the unique solution of

∂w(t,x)
∂ t

= ki(t)Aiw(t,x), t > s, x ∈ R
d ,
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w(s,x) = f (x), f ∈C0(Rd),

i∈ {1,2} . For this reason we call {Wi(t)}t�0 the time-inhomogeneousMarkov process
corresponding to the family of generators {ki(t)Ai}t�0 . Letting

pi(s,x,t,y) = pi
(
Ki(t,s),x,y

)
, 0 � s � t, x,y ∈ R

d ,

we see that pi(s,x, t,y) is a transition density function for the process {Wi(t)}t�0 . We
define

τ i
D = inf{t > 0 : Wi(t) /∈ D} and τ̂ i

D = inf{t > 0 : Zi(t) /∈ D}.
Using that Wi(t)

D= Zi
(
Ki(t,0)

)
we get

τ̂ i
D = Ki

(
τ i
D,0

)
. (2.2)

Let us consider the Zi
D process killed on leaving D , which is given by

Zi
D(t) =

{
Zi(t) on {t < τ̂ i

D},
∂ on {t � τ̂ i

D},

where ∂ is a cemetery state. The state space of {Zi
D(t)}t�0 is the set D∂ = D∪{∂}

and its transition probability is

Pi
D(t,x,Γ) = Pi

x

[
Zi(t) ∈ Γ;t < τ̂ i

D

]
, 0 < t, x ∈ D, Γ ∈ B(D),

where B(D) denotes the Borel σ -field on D . Here and in the sequel Pi
x and Ei

x denote,
respectively, the distribution and expectation with respect to the process {x+Zi(t)}t�0

starting in x ∈ R
d , but we use the same symbol {Zi(t)}t�0 for the resulting process.

Let {Si
D(t)}t�0 be the semigroup associated to the process {Zi(t)}t�0 killed on

exiting D , and let pi
D(t,x,y) be the transition density function of {Si

D(t)}t�0 , i.e.

Si
D(t) f (x) = Ei

x

[
f
(
Zi(t)

)
;t < τ̂ i

D

]
=

∫
D

f (y)pi
D(t,x,y)dy, x ∈ D, t > 0, f ∈ B

+(Rd),

where B
+(

R
d
)

is the space of nonnegative bounded measurable functions on R
d .

Throughout the remainder of this paper, we assume that pi
D(t,x,y) is a strictly pos-

itive and continuous function on (0,∞)×D×D such that pi
D(t,x,y) = pi

D(t,y,x) for
all t > 0 and x,y ∈ D . We also assume that {Si

D(t)}t�0 is a strongly continuous semi-
group of contractions on the space L2(D) such that Si

D(t) ∈C0(D) for any f ∈C0(D) ,
i.e, we suppose that {Si

D(t)}t�0 is a Feller semigroup. We suppose also that the linear
operators Si

D(t) , t � 0 are compact, and that there exists an orthonormal basis of eigen-

functions {ϕ i
n}∞

n=0 of the operator Si
D(t) with corresponding eigenvalues {e−λ i

nt}∞
n=0

satisfying 0 < λ i
0 < λ i

1 � λ i
2 . . . , and lim

n→∞
λ i

n = ∞ , such that all eigenfunctions ϕ i
n are

continuous and real-valued and that the eigenfunction ϕ i
0 is strictly positive on D .

Moreover, we assume that {Si
D(t)}t�0 is an intrinsically ultracontractive semigroup.

The infinitesimal generators Δα ≡−(−Δ)α/2 , 0 < α < 2, Δα +aΔβ , 0 < β < α < 2,
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0 � a � 1 and m−(
m2/α −Δ

)α/2
, 0 < α < 2, m > 0 are examples of generators such

that their semigroups generated by their corresponding processes killed on exiting D
satisfies the above properties (see [1, 2, 3, 10, 21]).

Finally, we assume that there exist constants c1 > 0 and c2 > 0 such that

c1ϕ1
0 (x) � ϕ2

0 (x) � c2ϕ1
0 (x), x ∈ D. (2.3)

This property holds, for example, when

Ai = mi−
(
m2/α

i −Δ
)α/2

, mi > 0, i = 1,2

or
Ai = Δα +aΔβi

, 0 � a � 1 and 0 < βi < α, i = 1,2

or even, if A1 = m− (
m2/α − Δ

)α/2
, m > 0 and A2 = Δα + aΔβ , 0 � a � 1 and

0 < β < α < 2. In fact, when A1 and A2 are the infinitesimal generators of relativistic
α -stable processes with mass m1 > 0 and m2 > 0, respectively, are obtained from [1],
Theorem 1.1(ii), constants b1 > 0 and b2 > 0 such that for all x ∈ D ,

b1p1
D(1,x,x) � p2

D(1,x,x) � b2p1
D(1,x,x). (2.4)

Now, by the intrinsic ultracontractive property of Si
D(t) , i = 1,2 (see [21], p. 11) there

exist constants Bi
1 > 0 and Bi

2 > 0 such that for all x ∈ D ,

Bi
1

(
ϕ i

0(x)
)2 � pi

D(1,x,x) � Bi
2

(
ϕ i

0(x)
)2

, i = 1,2. (2.5)

Finally, (2.3) it follows easily from (2.4), (2.5) and the fact that ϕ i
0 is strictly positive

on D , i = 1,2. The proof of (2.3) for Ai = Δα +aiΔβi
, 0 < βi < α < 2, 0 � ai � 1,

i = 1,2 follows in a similar form using Theorem 1.1(ii) of [2] and the validity for the
last case it follows from Theorem 1.1(ii) of [1] and Theorem 1.1(ii) of [2].

Let us consider now the additive process {Wi(t)}t�0 killed on exiting D , namely

Wi
D(t) =

{
Wi(t) on {t < τ i

D},
∂ on {t � τ i

D}.

The transition function of {Wi
D(t)}t�0 is given by

Pi
D(s,x, t,Γ) = Pi

x

[
Zi

(
Ki(t,s)

) ∈ Γ;Ki(t,s) < τ̂ i
D

]
, 0 � s < t, x ∈ D, Γ ∈ B(D).

Hence the transition density function of {Wi
D(t)}t�0 is given by pi

D(s,x, t,y) =
pi

D

(
Ki(t,s),x,y

)
and thus, for every f ∈ L2(D) ,

Ui
D(t,s) f (x) ≡

∫
D

f (y)pi
D(s,x,t,y)dy = Si

D

(
Ki(t,s)

)
f (x), 0 � s < t, x ∈ D. (2.6)

PROPOSITION 1. The function pi
D(s,x,t,y) is a density of Pi

D(s,x, t,Γ) , which is
strictly positive and continuous for 0 < s < t < ∞ and x,y ∈ D.
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Proof. This follows easily from the fact that pi
D(t,x,y) is a density of Pi

D(t,x,Γ) ,
which is strictly positive and continuous on (0,∞)×D×D . �

Using (2.6) and the fact that {Si
D(t)}t�0 is a strongly continuous semigroup of

contractions on L2(D) , we obtain that {Ui
D(t,s)}t�s�0 is an evolution family of con-

tractions on L2(D) .

3. Local existence of a mild solution

A solution of the integral system

ui(t,x) =Ui
D(t,0) fi(x)+

∫ t

0
Ui

D(t,r)uβi
i′ (r,x)dr, t � 0, x ∈ D, (3.1)

is called a mild solution of (1.1); here and in the sequel, i ∈ {1,2} and i′ = 3− i .
We are going to assume that f1 and f2 are nonnegative functions in L∞(D) , where

L∞(D) is the space of real-valued essentially bounded functions defined on D .
Since the evolution system {Ui

D(t,s)}t�s�0 preserves positivity (due to (2.6)) we
have that

ui,0(t,x) ≡Ui
D(t,0) fi(x) � 0, t � 0, x ∈ D. (3.2)

Define
ui,n+1(t,x) = Fiui,n(t,x), t � 0, x ∈ D, n = 0,1, . . . , (3.3)

where Fi is given by

Fivi(t,x) = Ui
D(t,0) fi(x)+

∫ t

0
Ui

D(t,r)vβi
i′ (r,x)dr (3.4)

for any nonnegative vi ∈ L∞(D) , i = 1,2. Therefore ui,0(t,x) � ui,1(t,x) for all t � 0,
x ∈ D . Using again that {Ui

D(t,s)}t�s�0 preserves positivity it follows by induction
that ui,n(t,x) � ui,n+1(t,x) for n = 0,1, . . . , i = 1,2. Hence the limit

ui(t,x) ≡ limsup
n→∞

ui,n(t,x), i = 1,2, (3.5)

exists for all t � 0 and x ∈ D , i = 1,2. From the monotone convergence theorem we
conclude that ui(t,x) satisfies (3.1). This shows that if the integral system (3.1) has a
solution, such solution is given by the increasing limit (3.5).

Our proof of the existence of local solutions follows closely the proof of Theorem
2 in [16], see also [22]. For any constant τ > 0 let

Eτ ≡ {(u1,u2) : [0,τ] → L∞(D)×L∞(D), |||(u1,u2)||| < ∞},
where

|||(u1,u2)||| ≡ sup
0�t�τ

{‖u1(t, ·)‖∞ +‖u2(t, ·)‖∞}.

The couple
(
Eτ , ||| · |||

)
is a Banach space and Pτ ≡ {(u1,u2) ∈ Eτ : u1 � 0,u2 � 0}

and CR ≡ {(u1,u2) ∈ Eτ : |||(u1,u2)||| � R} , R > 0, are closed subsets of Eτ .
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THEOREM 1. Let fi : D → [0,∞) be in L∞(D) , i = 1,2 . There exists a constant
τ = τ(‖ f1‖∞,‖ f2‖∞) > 0 such that the integral system (3.1) possesses a unique non-
negative local solution in L∞([0,τ]×D)×L∞([0,τ]×D)∩CR .

Proof. Let us define the operator Ψ on CR ∩Pτ by

Ψ
(
u1,u2

)
(t,x) =

(
U1

D(t,0) f1(x),U2
D(t,0) f2(x)

)
+

(∫ t

0
U1

D(t,r)uβ1
2 (r,x)dr,

∫ t

0
U2

D(t,r)uβ2
1 (r,x)dr

)
.

We are going to show that Ψ is a contraction on CR∩Pτ for suitably chosen R > 0 and
τ > 0. In fact, if (u1,u2),(ũ1, ũ2) ∈CR ∩Pτ , then

|||Ψ(
u1,u2

)−Ψ
(
ũ1, ũ2

)|||
� sup

0�t�τ

∫ t

0
‖uβ1

2 (r, ·)− ũβ1
2 (r, ·)‖∞dr+ sup

0�t�τ

∫ t

0
‖uβ2

1 (r, ·)− ũβ2
1 (r, ·)‖∞dr,

and using the elementary inequality |ap−bp|� p(a∨b)p−1|a−b| , which holds for all
a,b > 0 and p � 1, we get

|||Ψ(
u1,u2

)−Ψ
(
ũ1, ũ2

)||| � β1R
β1−1

∫ τ

0
‖u2(r, ·)− ũ2(r, ·)‖∞dr

+ β2R
β2−1

∫ τ

0
‖u1(r, ·)− ũ1(r, ·)‖∞dr

� (β1R
β1−1∨β2R

β2−1)|||(u1,u2)− (ũ1, ũ2)|||τ. (3.6)

Noticing that
|||Ψ(

u1,u2
)||| � ‖ f1‖∞ +‖ f2‖∞ + τ

(
Rβ1 +Rβ2

)
,

and taking R > 0 big enough and τ > 0 sufficiently small we get from (3.6) that Ψ is
a contraction mapping on CR ∩Pτ . Thus, the Banach fixed-point theorem implies that
(3.1) posesses a unique solution (u1,u2) such that ui � 0, i = 1,2. �

4. Global existence of the mild solution

Here we suppose again that fi ∈ L∞(D) , i = 1,2. Our proof of the next theorem
follows closely the proof of Theorem 3 in [16], see also Theorem 2.2 in [17].

THEOREM 2. Let f1, f2 be nonnegative. If

(βi −1)
∫ ∞

0
‖Ui

D(t,0) fi‖βi−1
∞ dt < 1, i = 1,2,

then the solution of the integral system (3.1) is global.
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Proof. If f1, f2 are identically zero, the nonnegative solution of (3.1) is clearly
(u1,u2) ≡ (0,0) , which is global. Now, if f1, f2 are not identically zero, putting

Bi(t) =
[
1− (βi−1)

∫ t

0
‖Ui

D(r,0) fi‖βi−1
∞ dr

]− 1
βi−1

we get Bi(0) = 1 and

d
dt

Bi(t)

= − 1
βi−1

[
1− (βi−1)

∫ t

0
‖Ui

D(r,0) fi‖βi−1
∞ dr

]− 1
βi−1−1[− (βi−1)‖Ui

D(t,0) fi‖βi−1
∞

]
= ‖Ui

D(t,0) fi‖βi−1
∞ Bβi

i (t),

which gives

Bi(t) = 1+
∫ t

0
‖Ui

D(r,0)g‖βi−1
∞ Bβi

i (r)dr, i = 1,2. (4.1)

Since the evolution system {Ui
D(t,s)}t�s�0 is positivity-preserving we can choose two

continuous functions vi : [0,∞)×D→ [0,∞) , i = 1,2, such that vi(t, ·) ∈Cb(D) for all
t � 0 and

0 � vi(t,x) � min{B1(t)U1
D(t,0) f1(x),B2(t)U2

D(t,0) f2(x)}, t � 0, i = 1,2.

Let us define Fi on the space of nonnegative functions in L∞(D) as in (3.4). Then

0 � Fivi(t,x) � Ui
D(t,0) fi(x)+

∫ t

0
Bβi

i (r)Ui
D(t,r)

(
Ui

D(r,0) fi(x)
)βidr

� Ui
D(t,0) fi(x)+

∫ t

0
Bβi

i (r)Ui
D(t,r)Ui

D(r,0) fi(x)‖Ui
D(r,0) fi‖βi−1

∞ dr

= Ui
D(t,0) fi(x)

[
1+

∫ t

0
‖Ui

D(r,0) fi‖βi−1
∞ Bβi

i (r)dr
]

= Bi(t)Ui
D(t,0) fi(x),

where we used (4.1) in the last equality. Therefore,

0 � Fivi(t,x) � max{B1(t)U1
D(t,0) f1(x),B2(t)U2

D(t,0) f2(x)}, t � 0, x ∈ D.

Defining now the sequence {ui,n(t,x)}∞
n=0 as in (3.2) and (3.3) it is follows as in Section

3 that ui,n(t,x) � ui,n+1(t,x) , n � 0. Hence

ui(t,x) ≡ limsup
n→∞

ui,n(t,x) � max{B1(t)U1
D(t,0) f1(x),B2(t)U2

D(t,0) f2(x)} < ∞

for all t � 0 and x ∈ D . Therefore (u1,u2) is a global mild solution of (1.1). �
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5. Blow up in finite time of the positive mild solution

Recall that ϕ i
0 is the eigenfunction corresponding to the first eigenvalue λ i

0 of
the infinitesimal generator of the semigroup {Si

D(t)}t�0 , i = 1,2. Arguing as in the
case of Brownian motion in a bounded domain (see [18], p. 287), it can be shown that(
ϕ i

0

)2(x)dx is the unique invariant measure of the semigroup {Qi(t)}t�0 given by

Qi(t)g(x) =
eλ i

0t

ϕ i
0(x)

Si
D(t)

(
gϕ i

0

)
(x), x ∈ D, g ∈Cb (D) , t � 0.

Thus, defining

Ei[h] :=
∫

h(x)
(
ϕ i

0

)2(x)dx, h ∈Cb(D),

and

Ti(t,s)g(x) =
eλ i

0Ki(t,s)

ϕ i
0(x)

Si
D

(
Ki(t,s)

)(
gϕ i

0

)
(x), x ∈ D, g ∈Cb (D) , t � s � 0,

we have that for any t � s � 0 and g ∈Cb(D) ,

Ei[Qi(t)g] = Ei[g] and Ti(t,s)g = Qi(Ki(t,s))g. (5.1)

LEMMA 1. For any t � s � 0 and gi ∈Cb(D) , i = 1,2 ,

Ei[Ti(t,s)gi] = Ei[gi], i = 1,2.

Proof. This is a direct consequence of (5.1). �

THEOREM 3. Let fi = giϕ i
0 , where gi ∈Cb(D) is nonnegative and not identically

zero, i = 1,2 . If

min
i∈{1,2}

〈
fi,ϕ i

0

〉
> max

i∈{1,2}

[(β1β2−1
βi +1

)( βi +1
βi′ +1

) βi
βi+1

×
∫ ∞

0
min

i∈{1,2}

{
Ci

e−λ i′
0 Ki′ (r,0)βieλ i

0Ki(r,0)

‖ϕ i′
0 ‖βi−1

i

}
dr

] βi+1
1−β1β2

, (5.2)

where C1 =
(
1/c2

)(
c1/c2

)β1 and C2 = c1
(
c1/c2

)β2 , then the mild solution of (1.1)
blows up in finite time.

Proof. Notice that
〈
fi,ϕ i

0

〉
= Ei[gi] > 0, i = 1,2. We define

wi(t,x) =
eλ i

0Ki(t,0)ui(t,x)
ϕ i

0(x)
, i = 1,2,
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where (u1,u2) is the mild solution of (1.1), i.e., (u1,u2) solves the integral system

(3.1). Multiplying both sides of (3.1) by ϕ1
0 (x)−1

exp
(
λ 1

0 K1(t,0)
)

we get

w1(t,x)

= T1(t,0)g1(x)+
∫ t

0

eλ 1
0 K1(t,0)

ϕ1
0 (x)

U1
D(t,r)uβ1

2 (r,x)dr

= T1(t,0)g1(x)+
∫ t

0

eλ 1
0 K1(t,0)

ϕ1
0 (x)

U1
D(t,r)

(
uβ1

2 (r,x)(
ϕ1

0

)β1−1
(x)

(
ϕ1

0

)β1−1

(x)
)

dr

= T1(t,0)g1(x)+
∫ t

0
eλ 1

0 K1(r,0) e
λ 1

0 K1(t,r)

ϕ1
0 (x)

U1
D(t,r)

(
uβ1

2 (r,x)(
ϕ1

0

)β1−1(x)

(
ϕ1

0

)β1−1(x)
)

dr

= T1(t,0)g1(x)+
∫ t

0
eλ 1

0 K1(r,0)T1(t,r)
(

uβ1
2 (r,x)(

ϕ1
0

)β1(x)

(
ϕ1

0

)β1−1(x)
)

dr

= T1(t,0)g1(x)+
∫ t

0
T1(t,r)

(
eλ 2

0 K2(r,0)β1uβ1
2 (r,x)(

ϕ1
0

)β1(x)

)
e−λ 2

0 K2(r,0)β1

· eλ 1
0 K1(r,0)(ϕ1

0

)β1−1(x)dr.

The last equality renders

E1[w1(t, ·)] = E1[T1(t,0)g1]

+
∫ t

0
E1

[
T1(t,r)

(
eλ 2

0 K2(r,0)β1uβ1
2 (r, ·)(

ϕ1
0

)β1(·)

)
e−λ 2

0 K2(r,0)β1eλ 1
0 K1(r,0)(ϕ1

0

)β1−1(·)
]
dr,

and due to Lemma 1,

E1[w1(t, ·)] = E1[g1]

+
∫ t

0
E1

[(
eλ 2

0 K2(r,0)β1uβ1
2 (r, ·)(

ϕ1
0

)β1(·)

)
e−λ 2

0 K2(r,0)β1eλ 1
0 K1(r,0)(ϕ1

0

)β1−1(·)
]
dr.

It follows that for any ε > 0,

E1[w1(t + ε, ·)]−E1[w1(t, ·)]

=
∫ t+ε

t
E1

[(
eλ 2

0 K2(r,0)β1uβ1
2 (r, ·)(

ϕ1
0

)β1(·)

)
e−λ 2

0 K2(r,0)β1eλ 1
0 K1(r,0)(ϕ1

0

)β1−1(·)
]
dr. (5.3)

Using (2.3) we obtain

E1

[(
eλ 2

0 K2(r,0)β1uβ1
2 (r, ·)(

ϕ1
0

)β1(·)

)
e−λ 2

0 K2(r,0)β1eλ 1
0 K1(r,0)(ϕ1

0

)β1−1(·)
]
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� E1

[(
eλ 2

0 K2(r,0)β1uβ1
2 (r, ·)( 1

c1
ϕ2

0 (·))β1

)
e−λ 2

0 K2(r,0)β1eλ 1
0 K1(r,0)( 1

c2
ϕ2

0 (·))β1−1
]

� c1

(c1

c2

)β1−1
E1

[(
eλ 2

0 K2(r,0)β1uβ1
2 (r, ·)(

ϕ2
0 (·))β1

)
e−λ 2

0 K2(r,0)β1eλ 1
0 K1(r,0)(ϕ2

0 (·))β1−1
]

= c1

(c1

c2

)β1−1
E1

[
w2(s, ·)β1e−λ 2

0 K2(r,0)β1eλ 1
0 K1(r,0)(ϕ2

0 (·))β1−1
]

= c1

(c1

c2

)β1−1
e−λ 2

0 K2(r,0)β1eλ 1
0 K1(r,0)E1

[
w2(s, ·)β1

(
ϕ2

0 (·))β1−1
]

= c1

(c1

c2

)β1−1
e−λ 2

0 K2(r,0)β1eλ 1
0 K1(r,0)

∫
w2(s,x)β1

(
ϕ2

0 (x)
)β1−1(ϕ1

0 (x)
)2

dx.

From here, using again (2.3) we get

E1

[(
eλ 2

0 K2(r,0)β1uβ1
2 (r, ·)(

ϕ1
0

)β1(·)

)
e−λ 2

0 K2(r,0)β1eλ 1
0 K1(r,0)(ϕ1

0

)β1−1(·)
]

� c1

(c1

c2

)β1−1
e−λ 2

0 K2(r,0)β1eλ 1
0 K1(r,0)

∫
w2(r,x)β1

(
ϕ2

0 (x)
)β1−1

( 1
c2

ϕ2
0 (x)

)2
dx

=
1
c2

(c1

c2

)β1
e−λ 2

0 K2(r,0)β1eλ 1
0 K1(r,0)‖ϕ2

0‖1

∫ [
w2(r,x)ϕ2

0 (x)
]β1 ϕ2

0 (x)
‖ϕ2

0‖1
dx

� 1
c2

(c1

c2

)β1
e−λ 2

0 K2(r,0)β1eλ 1
0 K1(r,0)‖ϕ2

0‖1

(∫
w2(r,x)

(
ϕ2

0

)2(x)
‖ϕ2

0‖1
dx

)β1

=
1
c2

(c1

c2

)β1 e−λ 2
0 K2(r,0)β1eλ 1

0 K1(r,0)

‖ϕ2
0‖β1−1

1

E2
[
w2(r, ·)

]β1 , (5.4)

where we have used Jensen’s inequality with respect to the probability measure
‖ϕ2

0‖−1
1 ϕ2

0 (x)dx . Let hi(t) := Ei[wi(t, ·)] , i = 1,2. Plugging (5.4) into (5.3), and after-
ward multiplying the resulting inequality by ε−1 with ε → 0, we obtain that

h′1(t) � C1
e−λ 2

0 K2(t,0)β1eλ 1
0 K1(t,0)

‖ϕ2
0‖β1−1

1

hβ1
2 (t), h1(0) = 〈 f1,ϕ1

0 〉. (5.5)

Now, multiplying both sides of (3.1) (with i = 2) by ϕ2
0 (x)−1

exp
(
λ 2

0 K2(t,0)
)
, it

can be obtained, similarly as above, that

h′2(t) � C2
e−λ 1

0 K1(t,0)β2eλ 2
0 K2(t,0)

‖ϕ1
0‖β2−1

1

hβ2
1 (t), h2(0) = 〈 f2,ϕ2

0 〉. (5.6)

Let

c(t) = min
i∈{1,2}

{
Ci

e−λ i′
0 Ki′ (t,0)βi eλ i

0Ki(t,0)

‖ϕ i′
0 ‖βi−1

1

}
, N = min

i∈{1,2}
{〈 fi,ϕ i

0〉
}

> 0,
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and consider the ordinary differential system

p′1(t) = c(t)pβ1
2 (t), p′2(t) = c(t)pβ2

1 (t), pi(0) = N, i = 1,2. (5.7)

It follows that
∫ t
0 pβ2

1 (r)p′1(r)dr =
∫ t
0 pβ1

2 (r)p′2(r)dr, and

1
β2 +1

[
pβ2+1

1 (t)−Nβ2+1
]

=
1

β1 +1

[
pβ1+1

2 (t)−Nβ1+1
]
.

Notice that if N �
((

β2 +1
)
/
(
β1 +1

))1/(β2+1)
N(β1+1)/(β2+1) , then

1
β2 +1

pβ2+1
1 (t) � 1

β1 +1
pβ1+1

2 (t) (5.8)

and, if N �
((

β2 +1
)
/
(
β1 +1

))1/(β2+1)
N(β1+1)/(β2+1) , then

1
β2 +1

pβ2+1
1 (t) � 1

β1 +1
pβ1+1

2 (t). (5.9)

If (5.8) holds, then

p2(t) �
(

β1 +1
β2 +1

) 1
β1+1

p
β2+1
β1+1

1 (t).

Substituting this into the first equation of (5.7), we get

p′1(t) � c(t)
(

β1 +1
β2 +1

) β1
β1+1

p
β1(β2+1)

β1+1

1 (t),

which is the same as

p
− β1(β2+1)

β1+1

1 (t)p′1(t) � c(t)
(

β1 +1
β2 +1

) β1
β1+1

.

Integrating both sides of the above inequality from 0 to t yields

β1 +1
1−β1β2

[
p

1−β1β2
β1+1

1 (t)−N
1−β1β2

β1+1

]
�

(
β1 +1
β2 +1

) β1
β1+1

∫ t

0
c(r)dr.

Thus, in view of β1,β2 > 1,

p1(t) �
[
N

1−β1β2
β1+1 −

(β1β2−1
β1 +1

)(β1 +1
β2 +1

) β1
β1+1

∫ t

0
c(r)dr

] β1+1
1−β1β2

. (5.10)

Similarly, if (5.9) holds, we can show that

p2(t) �
[
N

1−β1β2
β2+1 −

(β1β2−1
β2 +1

)(β2 +1
β1 +1

) β2
β2+1

∫ t

0
c(r)dr

] β2+1
1−β1β2

. (5.11)
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Since the function
∫ t
0 c(r)dr is continuous and increases to

∫ ∞
0 c(r)dr , (5.10) and (5.11)

imply that for some 0 < t0 < ∞ ,

lim
t↑t0

‖wi(t, ·)‖∞ � lim
t↑t0

pi(t) = ∞ for i = 1 o i = 2,

whenever

min
i∈{1,2}

〈 fi,ϕ i
0〉 >

max
i∈{1,2}

[(β1β2−1
βi +1

)( βi +1
βi′ +1

) βi
βi+1

∫ ∞

0
min

i∈{1,2}

{
Ci

e−λ i′
0 Ki′ (r,0)βieλ i

0Ki(r,0)

‖ϕ i′
0 ‖βi−1

i

}
dr

] βi+1
1−β1β2

.

�
Using the intrinsic ultracontractivity of the semigroups {Si

D(t)}t�0 , i = 1,2, the
proof of the following theorem follows in exactly the same form as in Theorem 6 of
[16] with appropiate changes in the notations.

THEOREM 4. Let f1, f2 ∈ C0(D) be two nonnegative functions which are not
identically zero. If Condition (5.2) holds, then the mild solution of (1.1) blows up
in finite time.
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