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HILLE AND NEHARI TYPE OSCILLATION CRITERIA FOR

HIGHER ORDER DYNAMIC EQUATIONS ON TIME SCALES
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(Communicated by Aǧacik Zafer)

Abstract. In this paper, we consider the higher order dynamic equation of the form

(a(t)(r(t)xΔn−2
(t))Δ)Δ + p(t)x(t) = 0, t � t0 > 0,

where n is an arbitrary positive integer with n � 3 , t is defined on an arbitrary time scale T

with supT = ∞ . By Riccari transformation technique and comparison theorem, some Hille and
Nehari type oscillation criteria are established. The main results are illustrated by examples.

1. Introduction

In this paper we consider the higher order dynamic equation of the form

(a(t)(r(t)xΔn−2
(t))Δ)Δ + p(t)x(t) = 0, t � t0 > 0, (1.1)

where t is defined on an arbitrary time scale T with supT = ∞ , n is an arbitrary posi-
tive integer with n � 3, a(·) ∈C2

rd(T,R+) , r(·) ∈C1
rd(T,R+) and p(·) ∈Crd(T,R+) ,

where notation Cn
rd mains the set of n th-order delta differentiable rd-continuous func-

tions. Otherwise, assume that a(t) and r(t) satisfy the condition

∫ ∞

t0

Δt
a(t)

=
∫ ∞

t0

Δt
r(t)

= ∞. (1.2)

Recent two decades, time-scale calculus theory has received a lot of attention,
which was introduced by Hilger [1], in order to unify continuous and discrete analysis.
A time scale T is an arbitrary nonempty closed subset of the reals. When T = R

or T = Z , it means the classical theories of differential or difference. Furthermore it
includes many other interesting time scales, e.g., when T = qN0 = {qt : t ∈ N0} , where
q > 1, it represents the so-called q-difference theory. Time-scale calculus has a plenty
of applications, e.g., the population dynamic models, and for the detailed applications,
we refer the reader to see [2].
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In continuous case, the research for the oscillation of nth order ordinary differential
equations with the research of third order differential equations, and certain results have
been known for a long time. In 1911, Birkhoff [3] pioneered the study of separation
and comparison theorems for equations of order exceeding two with his paper on third
order equations. Ten years later Reynolds [4] extended some of Birkhoff’s results to
equations of arbitrary order n , and can be seen the original work for the oscillation
theory of higher order equations.

In 1921 Reynolds [4] obtained separation and comparison theorems for the nth
order equation

u(n) +
n

∑
i=2

ai(x)u(n−1) = 0, α � x � β , (1.3)

where ai (i = 2,3, . . . ,n) is a real-valued continuous function of class L
(n−i)[α,β ] . And

he get some oscillation criteria with comparison theorem on the interval α � x � β for
equation (1.3).

In 1962 Kiguradze [5] obtained the theorem below for the differential equation

u(n) + c(x)u = 0, n � 2, x ∈ [0,∞), (1.4)

where c is continuous on [0,∞) . He obtained the theorem that:

THEOREM A. Let Q be an absolutely continuous function in [0,∞) with the prop-
erties Q(x) > 0 , Q′(x) � 0 (where it exists), and

∫ ∞

0
[xQ(x)]−1dx < ∞.

Then

(1) If ∫ ∞

0
xn−1|c(x)|dx < ∞,

equation (1.4) is nonoscillatory;

(2) If ∫ ∞

0
xn−1c(x)Q−1(x)dx = ∞, and c(x) � 0,

then equation (1.4) has an oscillatory solution and every nonoscillatory solution tends
monotonically to zero as x → ∞;

(3) If ∫ ∞

0
xn−1|c(x)|Q−1(x)dx = ∞, and c(x) � 0,

there exists a fundamental set of [3 + (−1)n]/2 nonosdilatory solutions and n− [3 +
(−1)n]/2 oscillatory solutions, n � 3 .

Glazman gave the following conditions, any one of which is sufficient for (1.4) to
be oscillatory (when n = 2m) [6, 7]:

(1) (−1)m ∫ ∞
0 c(x)dx = −∞ (where no assumption is made on the sign of c(x));
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(2) (−1)mc(x) � 0 for large x and

lim
x→∞

supx2m−1
∫ ∞

x
|x(t)|dt > A2

m,

where

A−1
m =

(2m−1)1/2

(m−1)!

m

∑
k=1

(−1)k−1

2m− k

(
m−1
k−1

)
;

(3) f (x) ≡ (−1)mc(x)+ α2
mx−2m � 0 and

lim
r→∞

sup logr
∫ ∞

r
x2m−1| f (x)|dx = ∞.

Anan’eva and Balaganskii [8] under the assumptions that c(x) > 0 and replaced
condition (2) of Theorem A when Q(x) = x with

∫ ∞

0
xn−2c(x)dx = ∞,

then, for even n every nontrivial solution of (1.4) is oscillatory, and for odd n every
solution which is not oscillatory has the property that u(k)(x) → 0 as x → ∞ (k =
0,1, . . . ,n− 1) . Anan’eva and Balaganskiǐ give an example to show that this theorem
is false under the weaker assumption

∫ ∞

0
xn−1c(x)dx = ∞.

A classical result of Kneser [9] gives the same conclusions under the stronger assump-
tion lim

x→∞
c(x) > 0.

In 2007, Erbe et al. [10] considered a third-order dynamic equation

xΔΔΔ(t)+ p(t)x(t) = 0, (1.5)

where p is a positive real-valued rd-continuous function defined on a time scale T .
They established Hille and Nehari type oscillation criteria for dynamic equation on
time scales like that: under the condition

∫ ∞

t0

∫ ∞

z

∫ ∞

u
p(s)ΔsΔuΔz = ∞, (1.6)

every solution x of (1.5) is oscillatory or satisfies lim
t→∞

x(t) = 0 if

liminf
t→∞

t
∫ ∞

t

h2(s,t0)
σ(s)

p(s)Δs >
1
4
, (1.7)

or

liminf
t→∞

1
t

∫ ∞

t
σ(s)h2(σ(s),t0)p(s)Δs >

l∗

1+ l∗
(1.8)
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where h2(t,s) is the Taylor monomial of degree 2, l∗ := limsup
t→∞

σ(t)
t . And they also

provided some continuous and discrete examples for their results.
In 2011, Saker [11] investigated a third-order functional dynamic equation

(p(t)[(r(t)xΔ(t))Δ]γ)Δ +q(t) f (x(τ(t))) = 0 for t � t0, (1.9)

on a time scale T , where γ > 0 is the quotient of odd positive integers, p , r , τ and q
are positive rd-continuous functions defined on the time scale T . In this paper, some
Hille and Nehari type oscillation criteria for (1.9) have been established: when pΔ(t) �
0, if x(t) is a solution of (1.9) and assume that

liminf
t→∞

tγ

p(t)

∫ t

τ

sγ+1

p(s)
Q(s)Δs >

1

lγ(γ+1) , (1.10)

where

P(t,T ) : =
∫ t

T

(
1

p(τ)

) 1
γ
Δτ > 0, R(τ,t) :=

∫ τ(t)

t

(
1

r(s)

)
Δs,

Q(t) : = Kq(t)
(

p
1
γ R(τ,t)P(t,T )

p
1
γ P(t,T )+ σ(t)− t

)γ

and l := liminf
t→∞

t
σ(t) , then x(t) is oscillatory or satisfies lim

t→∞
x(t) = 0.

In [12], Agarwal and Li et al. studied a third order delay dynamic equation

(a(rxΔ)Δ)Δ(t)+ p(t)x(τ(t)) = 0, (1.11)

and presented new Hille and Nehari type asymptotic criteria for (1.11). For one, under
the condition ∫ ∞

t0

1
r(z)

∫ ∞

z

1
a(u)

∫ ∞

u
p(s)ΔsΔuΔz = ∞, (1.12)

They obtained that if

liminf
t→∞

∫ t

t0

Δs
a(s)

∫ ∞

t

∫ τ(s)
t2

∫ v
t1

(Δu/a(u))
r(v)∫ σ(s)

t1
(Δu/a(u))

p(s)Δs >
1
4
, (1.13)

then every solution x of (1.11) is oscillatory or satisfies lim
t→∞

x(t) = 0.

To the best of our knowledge, there are a few papers that consider the higher order
dynamic equations with Hille and Nehari type oscillation criteria. So in this paper,
we will establish Hille and Nehari type oscillation criteria for higher order dynamic
equation (1.1). The results extend Erbe et al. [10] and Agarwal et al. [12]’s work which
established for the third-order dynamic equations to a kind of higher order dynamic
equation. Using Riccari transformation technique and comparison theorem, some new
Hille and Nehari type oscillation conditions are obtained. And the new ones have many
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difference towards Erbe et al. and Agarwal et al.’s oscillation criteria which established
for the third-order dynamic equations.

The paper is organized as follows. In the next section, we give some preliminary
notations and lemmas, including the Taylor monomial and well-known Kiguradze’s
lemma about higher order derivatives on time scales. In Section 3, firstly, we give
some new Hille and Nehari type oscillation conditions for equation (1.1) under the
assumptions: ∫ ∞

t0

1
r(z)

∫ z

t0

1
a(u)

∫ ∞

u
p(s)ΔsΔuΔz = ∞,

and ∫ ∞

t0

1
r(z)

∫ ∞

z

1
a(u)

∫ ∞

u
p(s)ΔsΔuΔz = ∞.

Secondly, using comparison theorem, we establish some other oscillation criteria for
(1.1) considering the case:

∫ ∞

t0

1
r(z)

∫ z

t0

1
a(u)

∫ ∞

u
p(s)ΔsΔuΔz < ∞,

and ∫ ∞

t0

1
r(z)

∫ ∞

z

1
a(u)

∫ ∞

u
p(s)ΔsΔuΔz < ∞.

In the last section, we present some examples to illustrate our results.

2. Some preliminary lemmas

For completeness, we recall the following concepts related to the notion of time
scales. On any time scale, we defined the forward and backward jump operators by
σ(t) := inf{s ∈ T : s > t} and ρ(t) := inf{s ∈ T : s < t} , where inf /0 := supT and
sup /0 := infT , /0 denotes the empty set. A point t ∈T is said to be left-dense if ρ(t) = t
and t > infT , right-dense if σ(t) = t and t < supT , left-scattered if ρ(t) < t and right-
scattered if σ(t) > t . The graininess μ of the time scale is defined by μ(t) := σ(t)− t .
A function g : T → R is said to be right-dense continuous (rd-continuous) provided g
is continuous at right-dense points and at left-dense points in T , left-hand limits exist
and are finite. The set of all such rd-continuous functions is denoted by Crd(T) .

Next, we introduce the definitions of differential and integral on time-scale calcu-
lus. For a function f : T → R , and is continuous at t . If t is right-scattered, the (delta)
derivative is defined by

f Δ(t) =
f (σ(t))− f (t)

σ(t)− t
.

If t is right-dense, the derivative is defined by

f Δ(t) = lim
s→t+

f (t)− f (s)
t− s

.

Note that if T = R , then the delta derivative is just the standard derivative, and when
T = Z the delta derivative is just the forward difference operator.
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We also use the following product and quotient rules for the derivative of the prod-
uct f (t)g(t) and the quotient f (t)/g(t) of two delta-differentiable functions f and g :

( f (t)g(t))Δ = f Δ(t)g(t)+ f (σ(t))gΔ(t) = f (t)gΔ(t)+ f Δ(t)g(σ(t)),( f (t)
g(t)

)Δ
=

f Δ(t)g(t)− f (t)gΔ(t)
g(t)g(σ(t))

if ggσ �= 0.

For b,c ∈ T and a delta-differentiable function f , the Cauchy integral of f Δ is defined
by ∫ c

b
f Δ(t)Δt = f (c)− f (b).

The integration by parts formula reads
∫ c

b
f Δ(t)g(t)Δt = f (c)g(c)− f (b)g(b)−

∫ c

b
f σ (t)gΔ(t)Δt,

and infinite integrals are defined by
∫ ∞

b
f (s)Δs = lim

t→∞

∫ t

b
f (s)Δs.

For more details on the calculus on time scales, see for example [2, 13].
Next, we introduce the generalization of Taylor’s formula defined on time scales:

DEFINITION 1. (see [2, Section 1.6]) The Taylor monomials on time-scale calcu-
lus recursively as follows:

hn(t,s) =

⎧⎨
⎩

1, n = 0,

∫ t
s hn−1(τ,s)Δτ, n ∈ N0 := {N\ {0}},

for s,t ∈ T.

It is clear that h1(t,s) = t− s for any time scales, but simple formulas in general do not
hold for n � 2.

DEFINITION 2. (see [2, Lemma 2]) An alternative definition of hn(t,s) is:

hn(t,s) =

⎧⎨
⎩

1, n = 0,

∫ t
s hn−1(t,σ(τ))Δτ, n ∈ N0 := {N\ {0}},

for s, t ∈ T.

LEMMA 1. (Taylor’s formula [2, Theorem 1.113]) If we suppose that n∈N, s,t ∈
T and f ∈Cn

rd(T,R) , where T is an arbitrary time scale, then

f (t) =
n−1

∑
k=0

hk(t,s) f Δk
(s)+

∫ t

s
hn−1(t,σ(τ)) f Δn

(τ)Δτ

where hn(t,s) is defined as above.
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In the sequel, we present the dynamic generalization for well-known Kiguradze’s
lemma on time scales.

LEMMA 2. (Kiguradze’s Lemma [14, Theorem 5]) Let suppose that n ∈ N , f ∈
Cn

rd(T,R+) and supT = ∞ . Suppose that f is either positive or negative on [t0,∞)T

and f Δn
is not identically zero and is either nonnegative or nonpositive on [t0,∞)T for

some t0 ∈T . Then, there exist t1 ∈ [t0,∞)T , m∈ [0,n]Z with m+n even for f Δn
(t) � 0 ,

or m+n odd for f Δn
(t) � 0 such that:

(i) f Δ j
(t) > 0 holds for all t ∈ [t1,∞)T and all j ∈ [0,m)Z ;

(ii) (−1)m+ j f Δ j
(t) > 0 holds for all t ∈ [t1,∞)T and all j ∈ [m,n)Z .

3. Hille and Nehari type oscillation criteria for higher order dynamic equations

First, we assume that
∫ ∞

t0

1
r(z)

∫ z

t0

1
a(u)

∫ ∞

u
p(s)ΔsΔuΔz = ∞, (3.1)

∫ ∞

t0

1
r(z)

∫ ∞

z

1
a(u)

∫ ∞

u
p(s)ΔsΔuΔz = ∞ (3.2)

hold.

LEMMA 3. If x is an eventually positive solution of equation (1.1). Then there
exists t1 ∈ [t0,∞)T such that

(a(t)(r(t)xΔn−2
(t))Δ)Δ < 0, (r(t)xΔn−2

(t))Δ > 0

for t ∈ [t1,∞)T .

Proof. Suppose that x(t) is a positive solution of (1.1) on [T,∞)T . From (1.1) we
get that

(a(t)(r(t)xΔn−2
(t))Δ)Δ = −p(t)x(t) < 0,

Thus a(t)(r(t)xΔn−2
(t))Δ is strictly decreasing on [T,∞)T and has one sign eventually.

We claim that a(t)(r(t)xΔn−2
(t))Δ > 0 eventually. Assume not, then there is a t1 ∈

[T,∞)T such that

a(t)(r(t)xΔn−2
(t))Δ < 0, t ∈ [t1,∞)T.

Then we can choose a positive constant c and for t ∈ [t2,∞)T ⊂ [t1,∞)T such that

a(t)(r(t)xΔn−2
(t))Δ � −c < 0.

Dividing by a(t) and integrating from t2 to t , we obtain

r(t)xΔn−2
(t) � r(t2)xΔn−2

(t2)− c
∫ t

t2

Δs
a(s)

.
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Letting t →∞ , from (1.2) we have r(t)xΔn−2
(t)→−∞ . Thus, we can find a t3 ∈ [t2,∞)T

such that for t ∈ [t3,∞)T

r(t)xΔn−2
(t) � r(t3)xΔn−2

(t3) < 0.

Dividing by r(t) and integrating from t3 to t , we obtain

xΔn−3
(t)− xΔn−3

(t3) � r(t3)xΔn−2
(t3)

∫ t

t3

Δs
r(s)

,

which implies that xΔn−3
(t) →−∞ as t → ∞ by (1.2). It means that xΔi

(t) → −∞ as
t → ∞ for each i � n− 3. So x(t) → −∞ as t → ∞ , and this contradicts x(t) > 0.
Hence we have

(r(t)xΔn−2
(t))Δ > 0, t ∈ [t1,∞)T. (3.3)

The proof is complete. �

LEMMA 4. Suppose that (3.1) and (3.2) hold. If x is an eventually positive so-
lution of (1.1). Then there exist only two cases for t ∈ [t1,∞)T ⊆ [t0,∞)T where t1 is
sufficiently large:

Case 1. xΔi
(t) > 0 for each i ∈ [0,n−2]N ;

Case 2. (−1)ixΔi
(t) > 0 , for each i ∈ [0,n−2]N .

Proof. Suppose that x(t) is a positive solution of (1.1). From Lemma 3 we know
there exists t1 such that (r(t)xΔn−2

(t))Δ > 0 for t ∈ [t1,∞)T . Then r(t)xΔn−2
(t) is

strictly increasing on [t1,∞)T and thus xΔn−2
(t) is eventually of one sign. We discuss

in two cases.
Case i. There exists sufficiently large t2 such that xΔn−2

(t) > 0 on [t2,∞)T . Since
x is eventually positive, by Kiguradze’s lemma there exist t3 ∈ [t2,∞)T , m ∈ [0,n−2]Z
with m+n even for f Δn

(t) � 0, or m+n odd for f Δn
(t) � 0 such that

(I) f Δ j
(t) > 0 holds for all t ∈ [t3,∞)T and all j ∈ [0,m)Z ;

(II) (−1)m+ j f Δ j
(t) > 0 holds for all t ∈ [t3,∞)T and all j ∈ [m,n−2)Z .

We claim m = n− 2 or m = 0. Assume not, it means m ∈ [1,n− 3]Z and each order
derivative of x satisfies:

xΔn−2
(t) > 0, xΔn−3

(t) < 0,...,xΔm
(t) > 0, xΔm−1

(t) > 0,...,xΔ(t) > 0, x(t) > 0
for t ∈ [t3,∞)T . Now, integrating both sides of (1.1) from t to u and letting u → ∞ we
get

lim
u→∞

a(u)(r(u)xΔn−2
(u))Δ −a(t)(r(t)xΔn−2

(t))Δ = −
∫ ∞

t
p(s)x(s)Δs.

Due to x(t) is strictly increasing on [t3,∞)T , setting b = x(t3) , also from (3.3) the
above equation can become

a(t)(r(t)xΔn−2
(t))Δ � b

∫ ∞

t
p(s)Δs, t ∈ [t1,∞)T.
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Dividing by a(t) and integrating from t3 to t , we obtain

r(t)xΔn−2
(t)− r(t3)xΔn−2

(t3) � b
∫ t

t3

1
a(u)

∫ ∞

u
p(s)ΔsΔu.

Since xΔn−2
(t) > 0 on [t3,∞)T we get

r(t)xΔn−2
(t) � b

∫ t

t3

1
a(u)

∫ ∞

u
p(s)ΔsΔu.

Dividing by r(t) and integrating from t3 to t , we obtain

xΔn−3
(t)− xΔn−3

(t3) � b
∫ t

t3

1
r(z)

∫ z

t3

1
a(u)

∫ ∞

u
p(s)ΔsΔuΔz.

From Kiguradze’s lemma, n−2+m is even, which implies m �= n−3. So xΔn−3
(t) < 0

on [t1,∞)T and the above inequality becomes

−xΔn−3
(t3) � b

∫ t

t3

1
r(z)

∫ z

t3

1
a(u)

∫ ∞

u
p(s)ΔsΔuΔz.

Letting t → ∞ , the last inequality contradicts (3.1). So m = n− 2 or m = 0, which
implies Case 1 or Case 2 holds.

Case ii. There exists sufficiently large t2 such that xΔn−2
(t) < 0 on [t2,∞)T . Also

from Kiguradze’s lemma can get a m ∈ [0,n−2]Z with m+n even for f Δn
(t) � 0, or

m+n odd for f Δn
(t) � 0 such that

(I) f Δ j
(t) > 0 holds for all t ∈ [t3,∞)T and all j ∈ [0,m)Z ;

(II) (−1)m+ j f Δ j
(t) > 0 holds for all t ∈ [t3,∞)T and all j ∈ [m,n−2)Z .

If m �= 0, n−2, each order derivative of x must contain the following form:
xΔn−2

(t) < 0, xΔn−3
(t) > 0,...,xΔm

(t) > 0, xΔm−1
(t) > 0,...,xΔ(t) > 0, x(t) > 0

for t ∈ [t3,∞)T . Integrating (1.1) from t to u and letting u → ∞ , from (3.3) we get

a(t)(r(t)xΔn−2
(t))Δ � b

∫ ∞

t
p(s)Δs, t ∈ [t1,∞)T.

Dividing by a(t) and integrating from t to v and letting v → ∞ we get

lim
v→∞

r(v)xΔn−2
(v)− r(t)xΔn−2

(t) � b
∫ ∞

t

1
a(u)

∫ ∞

u
p(s)ΔsΔu.

Since xΔn−2
(t) < 0, we obtain that

−r(t)xΔn−2
(t) � b

∫ ∞

t

1
a(u)

∫ ∞

u
p(s)ΔsΔu.

Dividing by r(t) and integrating from t1 to t , we obtain

xΔn−3
(t1)− xΔn−3

(t) � b
∫ t

t1

1
r(z)

∫ ∞

z

1
a(u)

∫ ∞

u
p(s)ΔsΔuΔz.
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For xΔn−3
(t) > 0 on [t1,∞)T it becomes

xΔn−3
(t1) � b

∫ t

t1

1
r(z)

∫ ∞

z

1
a(u)

∫ ∞

u
p(s)ΔsΔuΔz.

Letting t → ∞ , the last inequality contradicts (3.2). So m = n− 2 or m = 0, which
implies Case 1 or Case 2 holds.The proof is complete. �

REMARK 1. Indeed, we have not limited the parity of n , and in Lemma 4, if we
know that xΔn−2

(t) > 0 and n is even, then only Case 1 occurs. Also if xΔn−2
(t) < 0

and n is odd, still only Case 1 occurs.

LEMMA 5. Assume that (3.1) and (3.2) hold, and x is a positive solution of (1.1)
which satisfies Case 2 of Lemma 4. Then lim

t→∞
x(t) = 0 .

Proof. Since x satisfies Case 2 of Lemma 4, obviously xΔ(t) < 0. So x(t) is
strictly decreasing and has finite limit on t ∈ [t1,∞)T . We claim that lim

t→∞
x(t) = 0.

Assume not, there exists a positive constant c such that for t ∈ [t1,∞)T ,

lim
t→∞

x(t) = c > 0.

Hence there exits t2 ∈ [t1,∞)T such that for t ∈ [t2,∞)T , x(t) > c/2. Since we do not
know the sign of xΔn−2

(t) . First we assume xΔn−2
(t) > 0, as the proof of Lemma 4, we

can also get that

−xΔn−3
(t2) � c

2

∫ t

t1

1
r(z)

∫ z

t1

1
a(u)

∫ ∞

u
p(s)ΔsΔuΔz

for t ∈ [t2,∞)T . Letting t → ∞ , this contradicts (3.1). If xΔn−2
(t) < 0, using a similar

method we can get a contradiction to (3.2). The proof is complete. �

LEMMA 6. Assume that x satisfies Case 1 of Lemma 4. Then

x(t) � r(t)xΔn−2
(t)∫ t

t1
Δs
a(s)

∫ t

t1

hn−3(t,σ(τ))
∫ τ
t1

Δs
a(s)

r(τ)
Δτ (3.4)

for t ∈ [t1,∞)T and r(t)xΔn−2
(t)/

∫ t
t1

Δs
a(s) is nonincreasing eventually.

Proof. Since x satisfies Case 1 of Lemma 4. There exists t1 such that

(a(t)(r(t)xΔn−2
(t))Δ)Δ < 0, (r(t)xΔn−2

(t))Δ > 0, xΔi
> 0, i ∈ [0,n−2]N, t ∈ [t1,∞)T.
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So a(t)(r(t)xΔn−2
(t))Δ is strictly decreasing and positive on [t1,∞)T , and we can deduce

that

r(t)xΔn−2
(t)− r(t1)xΔn−2

(t1) =
∫ t

t1
(r(s)xΔn−2

(s))ΔΔs

=
∫ t

t1

a(s)(r(s)xΔn−2
(s))Δ

a(s)
Δs

� a(t)(r(t)xΔn−2
(t))Δ

∫ t

t1

Δs
a(s)

.

Thus

r(t)xΔn−2
(t) � a(t)(r(t)xΔn−2

(t))Δ
∫ t

t1

Δs
a(s)

. (3.5)

By rules for derivative of quotient on time scales, we know that

(
r(t)xΔn−2

(t)∫ t
t1

Δs
a(s)

)Δ
=

(r(t)xΔn−2
(t))Δ ∫ t

t1
Δs

a(s) − 1
a(t) r(t)x

Δn−2
(t)

∫ t
t1

Δs
a(s)

∫ σ(t)
t1

Δs
a(s)

.

Substituting (3.5) in this equality we have

(
r(t)xΔn−2

(t)∫ t
t1

Δs
a(s)

)Δ
� 0. (3.6)

So r(t)xΔn−2
(t)/

∫ t
t1

Δs
a(s) is nonincreasing on [t1,∞)T .

Next we expand x(t) by Taylor’s formula from Lemma 1 and since xΔi
> 0 for

i ∈ [0,n−2]N and the nonincreasing property of r(t)xΔn−2
(t)/

∫ t
t1

Δs
a(s) , we get

x(t) =
n−3

∑
k=0

hk(t,t1)xΔk
(s)+

∫ t

t1
hn−3(t,σ(τ))xΔn−2

(τ)Δτ

�
∫ t

t1
hn−3(t,σ(τ))xΔn−2

(τ)Δτ

=
∫ t

t1
hn−3(t,σ(τ))

r(τ)
∫ τ
t1

Δs
a(s)x

Δn−2
(τ)

r(τ)
∫ τ
t1

Δs
a(s)

Δτ

� r(t)xΔn−2
(t)∫ t

t1
Δs

a(s)

∫ t

t1

hn−3(t,σ(τ))
∫ τ
t1

Δs
a(s)

r(τ)
Δτ. (3.7)

This completes the proof. �

Now we give some oscillation criteria for (1.1) based on the previous lemmas.
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THEOREM 1. Suppose that (3.1) and (3.2) hold and let x be a solution of (1.1).
If

p∗ := liminf
t→∞

∫ t

t1

Δs
a(s)

∫ ∞

t

∫ s
t1

hn−3(s,σ(τ))
∫ τ
t1

Δv
a(v)

r(τ) Δτ
∫ σ(s)
t1

Δu
a(u)

p(s)Δs >
1
4
, (3.8)

then x is oscillatory or satisfies lim
t→∞

x(t) = 0 .

Proof. For the contrary, suppose that x is a nonoscillatory solution of (1.1). With-
out loss of generality, we may assume that x(t) > 0 for t ∈ [T,∞)T . From Lemma 4, x
satisfies Case 1 or Case 2. If x satisfies Case 2, by Lemma 5, lim

t→∞
x(t) = 0.

Otherwise, x satisfies Case 1 of Lemma 4, which means there exists a sufficiently
large t1 ∈ T such that for t ∈ [t1,∞)T

xΔi
(t) > 0 for i ∈ [0,n−2]N.

Define the Riccati transformation by

w(t) :=
a(t)(r(t)xΔn−2

(t))Δ

r(t)xΔn−2(t)
. (3.9)

Taking the derivative of w(t) we get that

wΔ(t) =
(

a(t)(r(t)xΔn−2
(t))Δ

r(t)xΔn−2(t)

)Δ

=
(a(t)(r(t)xΔn−2

(t))Δ)Δr(t)xΔn−2
(t)−a(t)(r(t)xΔn−2

(t))Δ(r(t)xΔn−2
(t))Δ

r(t)xΔn−2(t)rσ (t)xΔn−2(σ(t))

= − x(t)
rσ (t)xΔn−2(σ(t))

p(t)− (r(t)xΔn−2
(t))Δ

rσ (t)xΔn−2(σ(t))
w(t). (3.10)

Since a(t)(r(t)xΔn−2
(t))Δ is decreasing, we have that

(r(t)xΔn−2
(t))Δ

rσ (t)xΔn−2(σ(t))
=

a(t)[(r(t)xΔn−2
(t))Δ]

a(t)[rσ (t)xΔn−2(σ(t))]
� aσ (t)(rσ (t)xΔn−2

(σ(t)))Δ

a(t)rσ (t)xΔn−2(σ(t))
=

wσ (t)
a(t)

.

Thus we obtain

wΔ(t) � − x(t)
rσ (t)xΔn−2(σ(t))

p(t)− w(t)wσ (t)
a(t)

(3.11)

for t ∈ [t1,∞)T . Then from Lemma 6, we have

x(t)
rσ (t)xΔn−2(σ(t))

=
x(t)

r(t)xΔn−2(t)
r(t)xΔn−2

(t)
rσ (t)xΔn−2(σ(t))
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�
∫ t
t1

hn−3(t,σ(τ))
∫ τ
t1

Δs
a(s)

r(τ) Δτ∫ t
t1

Δs
a(s)

∫ t
t1

Δs
a(s)∫ σ(t)

t1
Δs

a(s)

=

∫ t
t1

hn−3(t,σ(τ))
∫ τ
t1

Δs
a(s)

r(τ) Δτ
∫ σ(t)
t1

Δs
a(s)

.

And (3.11) becomes

wΔ(t)+

∫ t
t1

hn−3(t,σ(τ))
∫ τ
t1

Δs
a(s)

r(τ) Δτ
∫ σ(t)
t1

Δs
a(s)

p(t)+
w(t)wσ (t)

a(t)
� 0. (3.12)

Next we claim that lim
t→∞

w(t) = 0 and w(t)
∫ t
t1

Δs
a(s) � 1 for t ∈ [t1,∞)T . From (3.12)

we can get that

wΔ(t) � −w(t)wσ (t)
a(t)

for t ∈ [t1,∞)T , and so

(
− 1

w

)Δ
(t) =

wΔ(t)
w(t)wσ (t)

� − 1
a(t)

.

Integrating both sides from t1 to t we have

∫ t

t1

(
− 1

w

)Δ
(s)Δs � −

∫ t

t1

Δs
a(s)

.

That is

− 1
w(t)

+
1

w(t1)
� −

∫ t

t1

Δs
a(s)

,

Since w(t) > 0, we have that
1

w(t)
�

∫ t

t1

Δs
a(s)

From the condition (1.2), it is easy to see lim
t→∞

w(t) = 0 and w(t)
∫ t
t1

Δs
a(s) � 1 on t ∈

[t1,∞)T .
Then we define r∗ by

r∗ := liminf
t→∞

w(t)
∫ t

t1

Δs
a(s)

. (3.13)

It is clear to see 0 � r∗ � 1. Now we claim that

r∗ � p∗ + r2
∗,
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where p∗ is defined as in (3.8). Integrating (3.12) from t to ∞ , and from lim
t→∞

w(t) = 0

we have that

w(t) �
∫ ∞

t

∫ s
t1

hn−3(s,σ(τ))
∫ τ
t1

Δv
a(v)

r(τ) Δτ
∫ σ(s)
t1

Δu
a(u)

p(s)Δs+
∫ ∞

t

wσ (s)w(s)
a(s)

Δs. (3.14)

Multiplying (3.14) by
∫ t
t1

Δs
a(s) , we obtain

w(t)
∫ t

t1

Δs
a(s)

�
∫ t

t1

Δs
a(s)

∫ ∞

t

∫ s
t1

hn−3(s,σ(τ))
∫ τ
t1

Δv
a(v)

r(τ) Δτ
∫ σ(s)
t1

Δu
a(u)

p(s)Δs

+
∫ t

t1

Δs
a(s)

∫ ∞

t

wσ (s)w(s)
a(s)

Δs

=
∫ t

t1

Δs
a(s)

∫ ∞

t

∫ s
t1

hn−3(s,σ(τ))
∫ τ
t1

Δv
a(v)

r(τ) Δτ
∫ σ(s)
t1

Δu
a(u)

p(s)Δs

+
∫ t

t1

Δs
a(s)

∫ ∞

t

w(s)
∫ s
t1

Δu
a(u)w

σ (s)
∫ σ(s)
t1

Δu
a(u)

a(s)
∫ s
t1

Δu
a(u)

∫ σ(s)
t1

Δu
a(u)

Δs. (3.15)

Now for any ε > 0, from the definition of r∗ , there exists t2 ∈ [t1,∞)T such that for all
t ∈ [t2,∞)T

w(t)
∫ t

t1

Δs
a(s)

� r∗ − ε.

Taking this into (3.15) we get

w(t)
∫ t

t1

Δs
a(s)

�
∫ t

t1

Δs
a(s)

∫ ∞

t

∫ s
t1

hn−3(s,σ(τ))
∫ τ
t1

Δv
a(v)

r(τ) Δτ
∫ σ(s)
t1

Δu
a(u)

p(s)Δs

+(r∗− ε)2
∫ t

t1

Δs
a(s)

∫ ∞

t

1

a(s)
∫ s
t1

Δu
a(u)

∫ σ(s)
t1

Δu
a(u)

Δs

=
∫ t

t1

Δs
a(s)

∫ ∞

t

∫ s
t1

hn−3(s,σ(τ))
∫ τ
t1

Δv
a(v)

r(τ) Δτ
∫ σ(s)
t1

Δu
a(u)

p(s)Δs

+(r∗− ε)2
∫ t

t1

Δs
a(s)

∫ ∞

t

(
1∫ s

t1
Δu

a(u)

)Δ
Δs

=
∫ t

t1

Δs
a(s)

∫ ∞

t

∫ s
t1

hn−3(s,σ(τ))
∫ τ
t1

Δv
a(v)

r(τ) Δτ
∫ σ(s)
t1

Δu
a(u)

p(s)Δs+(r∗ − ε)2 (3.16)
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for t ∈ [t2,∞)T . Therefore, taking the limit inferior of both sides of (3.16) gives

r∗ � p∗ +(r∗ − ε)2.

Since ε > 0 is arbitrary, we have

r∗ � p∗ + r2
∗.

Then we obtain that

p∗ � r∗ − r2
∗ =

1
4
− (r∗ − 1

2
)2 � 1

4
,

This contradicts (3.8). The proof is complete. �

REMARK 2. If n = 3, this result becomes Theorem 2.8 in [12]. If n = 3 and
a ≡ 1, r ≡ 1, this result is Theorem 2 in [10]. So our research extends Erbe et al. [10]
and Agarwal et al. [12]’s work.

THEOREM 2. Assume that (3.1) and (3.2) hold and let x be a solution of (1.1).
Define w(t) as in Theorem 3.1, and

R∗ := limsup
t→∞

w(t)
∫ t

t1

Δs
a(s)

, l∗ := limsup
t→∞

∫ σ(t)
t1

Δs
a(s)∫ t

t1
Δs
a(s)

.

If

q∗ := liminf
t→∞

∫ t
t2

∫ σ(s)
t1

Δu
a(u)

∫ s
t1

hn−3(s,σ(τ))
∫ τ
t1

Δv
a(v)

r(τ) Δτ p(s)Δs∫ t
t1

Δs
a(s)

>
l∗

1+ l∗
, (3.17)

then x is oscillatory or satisfies lim
t→∞

x(t) = 0 .

Proof. For the contrary, suppose that x is a nonoscillatory solution of (1.1). With-
out loss of generality, we may assume that x(t) > 0 for t ∈ [t0,∞)T . Then if x satisfies
Case 2 of Lemma 4, by Lemma 5, lim

t→∞
x(t) = 0. Next we consider the nonoscillatory

positive solution x which satisfies Case 1 of Lemma 4, then from the proof of Theorem
3.1 we get that (3.10) holds. Since

(r(t)xΔn−2
(t))Δ

rσ (t)xΔn−2(σ(t))
w(t) =

(r(t)xΔn−2
(t))Δ

r(t)xΔn−2(t)
r(t)xΔn−2

(t)
rσ (t)xΔn−2(σ(t))

w(t)

=
w2(t)
a(t)

r(t)xΔn−2
(t)

r(t)xΔn−2(t)+ μ(t)(r(t)xΔn−2(t))Δ

=
w2(t)
a(t)

1

1+ μ(t)w(t)
a(t)

=
w2(t)

a(t)+ μ(t)w(t)
.
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We get another Ricatti inequality of the form

wΔ(t)+

∫ t
t1

hn−3(t,σ(τ))
∫ τ
t1

Δs
a(s)

r(τ) Δτ
∫ σ(t)
t1

Δs
a(s)

p(t)+
w2(t)

a(t)+ μ(t)w(t)
� 0. (3.18)

Multiplying (3.18) by
(∫ σ(t)

t1
Δs
a(s)

)2
and integrating the resulting inequality from t2 ∈

(t1,∞)T to t , we see that

∫ t

t2

(∫ σ(s)

t1

Δu
a(u)

)2
wΔ(s)Δs+

∫ t

t2

∫ σ(s)

t1

Δu
a(u)

∫ s

t1

hn−3(s,σ(τ))
∫ τ
t1

Δv
a(v)

r(τ)
Δτ p(s)Δs

+
∫ t

t2

(∫ σ(s)

t1

Δu
a(u)

)2 w2(s)
a(s)+ μ(s)w(s)

Δs � 0. (3.19)

Integrating by part for (3.19) yields

(∫ t

t1

Δs
a(s)

)2
w(t)−

(∫ t2

t1

Δs
a(s)

)2
w(t2)−

∫ t

t2

((∫ s

t1

Δu
a(u)

)2
)Δ

w(s)Δs

+
∫ t

t2

∫ σ(s)

t1

Δu
a(u)

∫ s

t1

hn−3(s,σ(τ))
∫ τ
t1

Δv
a(v)

r(τ)
Δτ p(s)Δs

+
∫ t

t2

(∫ σ(s)

t1

Δu
a(u)

)2 w2(s)
a(s)+ μ(s)w(s)

Δs � 0.

Since((∫ s

t1

Δu
a(u)

)2
)Δ

=
1

a(s)

[∫ s

t1

Δu
a(u)

+
∫ σ(s)

t1

Δu
a(u)

]
=

1
a(s)

[
2

∫ σ(s)

t1

Δu
a(u)

− μ(s)
a(s)

]
,

taking this into the above inequality, after rearranging we get

(∫ t

t1

Δs
a(s)

)2
w(t) �

(∫ t2

t1

Δs
a(s)

)2
w(t2)

−
∫ t

t2

∫ σ(s)

t1

Δu
a(u)

∫ s

t1

hn−3(s,σ(τ))
∫ τ
t1

Δv
a(v)

r(τ)
Δτ p(s)Δs+

∫ t

t2
H(s,w(s))Δs, (3.20)

where H(s,w(s)) := 1
a(s)

[
2

∫ σ(s)
t1

Δu
a(u) − μ(s)

a(s)

]
w(s)−

(∫ σ(s)
t1

Δu
a(u)

)2 w2(s)
a(s)+μ(s)w(s) . In [12,

Lemma 2.7], the author proved that H(s,w(s)) � 1/a(s) , when w(s) > 0 for t ∈
[t1,∞)T , and we do not repeat here. So we get

∫ t

t2
H(s,w(s))Δs �

∫ t

t2

Δs
a(s)

.

Substituting this inequality into (3.20) and dividing by
∫ t
t1

Δs
a(s) , we have
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w(t)
∫ t

t1

Δs
a(s)

�

(∫ t2
t1

Δs
a(s)

)2
w(t2)∫ t

t1
Δs
a(s)

−
∫ t
t2

∫ σ(s)
t1

Δu
a(u)

∫ s
t1

hn−3(s,σ(τ))
∫ τ
t1

Δv
a(v)

r(τ) Δτ p(s)Δs∫ t
t1

Δs
a(s)

+

∫ t
t2

Δs
a(s)∫ t

t1
Δs

a(s)

. (3.21)

If we take the superior limits of both sides of (3.21), we get

R∗ � 1−q∗. (3.22)

Next we give another Ricatti inequality. Using Lemma 6 we get that

(r(t)xΔn−2
(t))Δ

rσ (t)xΔn−2(σ(t))
=

(r(t)xΔn−2
(t))Δ

r(t)xΔn−2(t)
r(t)xΔn−2

(t)
rσ (t)xΔn−2(σ(t))

=
w(t)
a(t)

r(t)xΔn−2
(t)

rσ (t)xΔn−2(σ(t))
� w(t)

a(t)

∫ t
t1

Δs
a(s)∫ σ(t)

t1
Δs

a(s)

.

Thus from (3.10) we obtain

wΔ(t)+

∫ t
t1

hn−3(t,σ(τ))
∫ τ
t1

Δs
a(s)

r(τ) Δτ
∫ σ(t)
t1

Δs
a(s)

p(t)+
w2(t)
a(t)

∫ t
t1

Δs
a(s)∫ σ(t)

t1
Δs
a(s)

� 0. (3.23)

If ε > 0 is given arbitrary, then there exists t2 ∈ (t1,∞)T such that

r∗ − ε � w(t)
∫ t

t1

Δs
a(s)

� R∗ + ε for t ∈ [t2,∞)T

where r∗ is defined as in Theorem 3.1. And

∫ σ(t)
t1

Δs
a(s)∫ t

t1
Δs

a(s)

� l∗ + ε for t ∈ [t2,∞)T.

Using (3.23) and a similar proceeding operating on (3.18), we have

(∫ t

t1

Δs
a(s)

)2
w(t) �

(∫ t2

t1

Δs
a(s)

)2
w(t2)+

∫ t

t2

[∫ s
t1

Δu
a(u) +

∫ σ(s)
t1

Δu
a(u)

]
w(s)

a(s)
Δs

−
∫ t

t2

∫ σ(s)

t1

Δu
a(u)

∫ s

t1

hn−3(s,σ(τ))
∫ τ
t1

Δv
a(v)

r(τ)
Δτ p(s)Δs

−
∫ t

t2

(∫ σ(s)

t1

Δu
a(u)

)2 w2(s)
a(s)

∫ s
t1

Δu
a(u)∫ σ(s)

t1
Δu
a(u)

Δs,
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Then

w(t)
∫ t

t1

Δs
a(s)

�
(∫ t2

t1
Δs
a(s)

)2
w(t2)∫ t

t1
Δs
a(s)

+

∫ t
t2

1
a(s)

[∫ s
t1

Δu
a(u) +

∫ σ(s)
t1

Δu
a(u)

]
w(s)Δs∫ t

t1
Δs

a(s)

−
∫ t
t2

∫ σ(s)
t1

Δu
a(u)

∫ s
t1

hn−3(s,σ(τ))
∫ τ
t1

Δv
a(v)

r(τ) Δτ p(s)Δs∫ t
t1

Δs
a(s)

−
∫ t
t2

(∫ s
t1

Δu
a(u)

)2 w2(s)
a(s) Δs∫ t

t1
Δs

a(s)

,

That is

w(t)
∫ t

t1

Δs
a(s)

�
(∫ t2

t1
Δs
a(s)

)2
w(t2)∫ t

t1
Δs

a(s)

+

∫ t
t2

1
a(s)

[∫ s
t1

Δu
a(u) +

∫ σ(s)
t1

Δu
a(u)

][
w(s)

∫ s
t1

Δs
a(s)

]
∫ s
t1

Δs
a(s)

Δs

∫ t
t1

Δs
a(s)

−
∫ t
t2

∫ σ(s)
t1

Δu
a(u)

∫ s
t1

hn−3(s,σ(τ))
∫ τ
t1

Δv
a(v)

r(τ) Δτ p(s)Δs∫ t
t1

Δs
a(s)

−
∫ t
t2

(∫ s
t1

Δu
a(u)

)2 w2(s)
a(s) Δs∫ t

t1
Δs
a(s)

�
(∫ t2

t1
Δs
a(s)

)2
w(t2)∫ t

t1
Δs

a(s)

+ (R∗ + ε)(1+ l∗+ ε)

∫ t
t2

Δs
a(s)∫ t

t1
Δs
a(s)

−q∗− (r∗ − ε)2

∫ t
t2

Δs
a(s)∫ t

t1
Δs

a(s)

.

Taking the superior limits of both sides of this inequality, since ε > 0 is arbitrary, we
get

R∗ � R∗(1+ l∗)− r2
∗ −q∗,

that is
q∗ � R∗l∗ − r2

∗.

Now substituting (3.22) into this inequality we have that

q∗ � l∗ − l∗q∗,

q∗ � l∗

1+ l∗
,

which contradicts condition (3.17). The proof is complete. �
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REMARK 3. When n = 3 and a ≡ 1, r ≡ 1, this result is Theorem 3 in [10]. So
this result also extends Erbe et al. [10]’s work.

REMARK 4. Assertions of Theorems 3.1 and 3.2 are that any non-trivial solution
of given equation is either oscillatory or vanishes at infinity. This properties for ODE
are usually called “Property A” and “Property B” and were introduced in earlier 60s
of 20th century by Kondratiev and Kiguradze. More detail about “Property A” and
“Property B” can be found in the book [15].

Next, we consider the case:
∫ ∞

t0

1
r(z)

∫ z

t0

1
a(u)

∫ ∞

u
p(s)ΔsΔuΔz < ∞, (3.24)

∫ ∞

t0

1
r(z)

∫ ∞

z

1
a(u)

∫ ∞

u
p(s)ΔsΔuΔz < ∞ (3.25)

hold. For convenience we define that

q(t) :=
∫ ∞

t

1
r(u)

∫ ∞

u

1
a(s)

∫ ∞

s

p(τ)hm(τ,t1)
h1(τ,t1)

ΔτΔsΔu;

q∗(t) :=
∫ ∞

t

1
r(u)h1(u,t1)

∫ u

t1

h1(s,t1)
a(s)

∫ ∞

s

p(τ)hm(τ,t1)
h1(τ,t1)

ΔτΔsΔu,

and

Qm(t) :=
∫ ∞

t

∫ ∞

un−m−5

· · ·
∫ ∞

u1

q(u)Δu · · ·Δun−m−6Δun−m−5;

Q∗
m(t) :=

∫ ∞

t

∫ ∞

un−m−5

· · ·
∫ ∞

u1

q∗(u)Δu · · ·Δun−m−6Δun−m−5,

where hm(τ, t1) is the Taylor monomial defined in preliminary section, especially for
h1(τ, t1) = τ − t1 .

LEMMA 7. (see [16, Lemma 2.2]) If the inequality

xΔΔ +Q(t)x � 0, (3.26)

where Q is a positive real-valued, rd-continuous function on T , has an eventually
positive solution, then the equation

xΔΔ +Q(t)x = 0 (3.27)

also has an eventually positive solution.

THEOREM 3. Suppose that there is a positive integer k ∈ [0,n−2) such that

∫ ∞

t0

∫ ∞

un−k+1

· · ·
∫ ∞

u4

1
r(u3)

∫ ∞

u3

1
a(u2)

∫ ∞

u2

p(u1)Δu1Δu2 · · ·Δun−k+1 = ∞, (3.28)
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and
∫ ∞

t0

∫ ∞

un−k+1

· · ·
∫ ∞

u4

1
r(u3)

∫ u3

t1

1
a(u2)

∫ ∞

u2

p(u1)Δu1Δu2 · · ·Δun−k+1 = ∞ (3.29)

hold. If the second order dynamic equations

yΔΔ(t)+Qm(t)y(t) = 0, (3.30)

and
yΔΔ(t)+Q∗

m(t)y(t) = 0 (3.31)

are oscillatory for every m ∈ {k,k + 1, . . . ,n− 3} . Then every solution x of (1.1) is
oscillatory or satisfies lim

t→∞
x(t) = 0 .

Proof. For the contrary, we assume that x is an eventually positive solution of
(1.1), and without loss of generality let x(t) > 0 on t ∈ [T,∞)T . By Lemma 3 we have

(a(t)(r(t)xΔn−2
(t))Δ)Δ < 0, (r(t)xΔn−2

(t))Δ > 0,

for t ∈ [T,∞)T and r(t)xΔn−2
(t) is strictly increasing and has eventually one sign, then

xΔn−2
(t) has eventually one sign and satisfies Kiguradze’s lemma. By Kiguradze’s

lemma there exist t1 > T and m ∈ [0,n−2]N with n−2+m even for xΔn−2
(t) > 0, or

n−2+m odd for xΔn−2
(t) < 0 such that for t ∈ [t1,∞)T

(−1) j+mxΔ j
> 0 for j ∈ [m,n−2)N,

xΔ j
> 0 for j ∈ [0,m)N.

First we prove that if lim
t→∞

x(t) �= 0, then m � k . Assume not, m < k , which implies

(−1) j+mxΔ j
> 0 for j ∈ [k−1,n−2)N , t ∈ [t1,∞)T . Due to we cannot ensure wether

xΔn−2
(t) is eventually positive or eventually negative, we also discuss from two cases.
Case i. xΔn−2

(t) < 0 for t ∈ [t1,∞)T . Integrating equation (1.1) from t to v and
letting v → ∞ for t ∈ [t1,∞)T , we get that

a(t)(r(t)xΔn−2
(t))Δ − lim

v→∞
a(v)(r(v)xΔn−2

(v))Δ =
∫ ∞

t
p(s)x(s)Δs. (3.32)

Note that a(t)(r(t)xΔn−2
(t))Δ is positive on [t1,∞)T , we have

(r(t)xΔn−2
(t))Δ � 1

a(t)

∫ ∞

t
p(s)x(s)Δs for t ∈ [t1,∞)T. (3.33)

Integrating from t to v and letting v→ ∞ again, and since r(t)xΔn−2
(t) < 0 on [t1,∞)T ,

we obtain

− xΔn−2
(t) � 1

r(t)

∫ ∞

t

1
a(u)

∫ ∞

u
p(s)x(s)ΔsΔu. (3.34)
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Since (−1) j+mxΔ j
> 0 for j ∈ [k−1,n−2)N , repeating above process n−k−2 times,

we have

xΔk
(t) �

∫ ∞

t

∫ ∞

un−k

· · ·
∫ ∞

u4

1
r(u3)

∫ ∞

u3

1
a(u2)

∫ ∞

u2

p(u1)x(u1)Δu1Δu2 · · ·Δun−k, (3.35)

or

− xΔk
(t) �

∫ ∞

t

∫ ∞

un−k

· · ·
∫ ∞

u4

1
r(u3)

∫ ∞

u3

1
a(u2)

∫ ∞

u2

p(u1)x(u1)Δu1Δu2 · · ·Δun−k, (3.36)

Whether is (3.35) or (3.36) is determined by the parity of n− k . According to the
assumption lim

t→∞
x(t) �= 0, we set lim

t→∞
x(t) = d > 0. Thus we can find a t2 > t1 such that

x(t) > d/2 for t ∈ [t2,∞)T . Then, integrating above equations from t1 to t , we get

− xΔk−1
(t2) � d

2

∫ ∞

t2

∫ ∞

un−k+1

· · ·
∫ ∞

u4

1
r(u3)

∫ ∞

u3

1
a(u2)

∫ ∞

u2

p(u1)Δu1Δu2 · · ·Δun−k+1,

(3.37)
or

xΔk−1
(t2) � 2

d

∫ ∞

t2

∫ ∞

un−k+1

· · ·
∫ ∞

u4

1
r(u3)

∫ ∞

u3

1
a(u2)

∫ ∞

u2

p(u1)Δu1Δu2 · · ·Δun−k+1, (3.38)

Both contradict (3.28).
Case ii. xΔn−2

(t) > 0 for t ∈ [t1,∞)T . Integrating (3.33) from t2 to t , where
x(t) > d/2 for t ∈ [t2,∞)T still holds, considering r(t)xΔn−2

(t) > 0 we have

xΔn−2
(t) � 1

r(t)

∫ t

t2

1
a(u)

∫ ∞

u
p(s)x(s)ΔsΔu. (3.39)

The remaining part is similar to the proof of Case i, and we can finally get a contradic-
tion to (3.29).

Next, we prove that when lim
t→∞

x(t) �= 0, for each m∈{k,k+1, . . . ,n−3} equations

(3.30) and (3.31) are oscillatory makes the equation (1.1) oscillate. Also discuss in two
cases:

Case i′ . xΔn−2
(t) < 0 for t ∈ [t1,∞)T . From Kiguradze’s lemma, we have xΔm

(t) >

0 and xΔm+1
(t) < 0 for t ∈ [t1,∞)T . Thus we have

xΔm−1
(t)− xΔm−1

(t1) =
∫ t

t1
xΔm

(s)Δs

� xΔm
(t)

∫ t

t1
Δs

= xΔm
(t)(t− t1). (3.40)

On the other hand,

(
xΔm−1

(t)
t− t1

)Δ
=

xΔm
(t)(t− t1)− xΔm−1

(t)
(t− t1)(σ(t)− t1)

. (3.41)
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Substituting (3.40) into (3.41), we get
(
xΔm−1

(t)/t − t1
)Δ

< 0 for t ∈ [t1,∞)T , which

means xΔm−1
(t)/t− t1 is strictly decreasing. Thus

xΔm−2
(t)− xΔm−2

(t1) =
∫ t

t1
xΔm−1

(s)Δs

� xΔm−1
(t)

t− t1

∫ t

t1
(s− t1)Δs

=
h2(t,t1)
t− t1

xΔm−1
(t). (3.42)

And

xΔm−3
(t)− xΔm−3

(t1) =
∫ t

t1
xΔm−2

(s)Δs

�
∫ t

t1

h2(s,t1)
s− t1

xΔm−1
(s)Δs

� xΔm−1
(t)

t− t1

∫ t

t1
h2(s,t1)Δs

=
h3(t,t1)
t− t1

xΔm−1
(t). (3.43)

Thus by the recursivemethod, we can get the unequal relation between x(t) and xΔm−1
(t)

as

x(t) � hm(t,t1)
t − t1

xΔm−1
(t). (3.44)

From the proof of Case i above, inequality (3.36) can be rewritten as

− xΔm+1
(t) �

∫ ∞

t

∫ ∞

un−m−1

· · ·
∫ ∞

u4

1
r(u3)

∫ ∞

u3

1
a(u2)

∫ ∞

u2

p(u1)x(u1)Δu1Δu2 · · ·Δun−m−1,

(3.45)
when we replace k with m + 1. Substituting (3.44) into (3.45) and from xΔm−1

(t) is
strictly increasing on [t1,∞)T , we obtain

xΔm−1
(t)

∫ ∞

t

∫ ∞

un−m−1

· · ·
∫ ∞

u4

1
r(u3)

∫ ∞

u3

1
a(u2)

∫ ∞

u2

p(u1)hm(u1,t1)
h1(u1,t1)

Δu1Δu2 · · ·Δun−m−1

+ xΔm+1
(t) � 0, (3.46)

Set y(t) = xΔm−1
(t) . Thus y(t) is a positive solution of the inequality

yΔΔ(t)+Qm(t)y(t) � 0. (3.47)

From Lemma 7, the dynamic equation

yΔΔ(t)+Qm(t)y(t) = 0 (3.48)
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also has a positive solution, which is a contradiction to the hypothesis.
Case ii′ . xΔn−2

(t) > 0 for t ∈ [t1,∞)T . From Case ii (3.39) and (3.44) we have

xΔn−2
(t) � 1

r(t)

∫ t

t1

1
a(u)

∫ ∞

u
p(s)x(s)ΔsΔu

� 1
r(t)

∫ t

t1

1
a(u)

∫ ∞

u
p(s)

hm(s,t1)
s− t1

xΔm−1
(s)ΔsΔu

� 1
r(t)

∫ t

t1

xΔm−1
(u)

a(u)

∫ ∞

u
p(s)

hm(s,t1)
s− t1

ΔsΔu

� 1
r(t)

xΔm−1
(t)

t− t1

∫ t

t1

u− t1
a(u)

∫ ∞

u
p(s)

hm(s,t1)
s− t1

ΔsΔu (3.49)

Integrating (3.49) from t to v , letting v → ∞ , and repeating this process n−m− 3
times, we have

− xΔm+1
(t) �

∫ ∞

t

∫ ∞

un−m−1

· · ·
∫ ∞

u4

xΔm−1
(u3)

r(u3)h1(u3,t1)

∫ u3

t1

h1(u2,t1)
a(u2)

∫ ∞

u2

p(u1)hm(u1,t1)
h1(u1, t1)

Δu1 · · ·Δun−m−1.

(3.50)

Thus

− xΔm+1
(t) � xΔm−1

(t)

·
∫ ∞

t

∫ ∞

un−m−1

· · ·
∫ ∞

u4

1
r(u3)h1(u3,t1)

∫ u3

t1

h1(u2,t1)
a(u2)

∫ ∞

u2

p(u1)hm(u1,t1)
h1(u1,t1)

Δu1 · · ·Δun−m−1,

(3.51)

Setting y(t) = xΔm−1
(t) it becomes

yΔΔ(t)+Q∗
m(t)y(t) � 0.

Then, by Lemma 7, dynamic equation

yΔΔ(t)+Q∗
m(t)y(t) = 0

also has a positive solution, which is a contradiction to the hypothesis. The proof is
complete. �

REMARK 5. For the extreme case∫ ∞

t0

∫ ∞

un+1

· · ·
∫ ∞

u4

1
r(u3)

∫ ∞

u3

1
a(u2)

∫ ∞

u2

p(u1)Δu1Δu2 · · ·Δun+1 < ∞, (3.52)

∫ ∞

t0

∫ ∞

un+1

· · ·
∫ ∞

u4

1
r(u3)

∫ u3

t1

1
a(u2)

∫ ∞

u2

p(u1)Δu1Δu2 · · ·Δun+1 < ∞ (3.53)

holds, the existence of nonoscillatory solution of (1.1) can be discussed, but in this
paper we omit it.
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4. Examples

In this section, we will show the application of our main results.

EXAMPLE 1. Consider the higher-order differential equation

x(4) +
6
t4

x(t) = 0, t � 1. (4.1)

Here r(t) = 1, a(t) = 1, p(t) = 6/t4 . It is clear that the conditions (3.1) and (3.2) hold.
To apply Theorem 1 it remains to prove that (3.8) is satisfied. In our case the condition
reads

liminf
t→∞

∫ t

t1

Δs
a(s)

∫ ∞

t

∫ s
t1

hn−3(s,σ(τ))
∫ τ
t1

Δv
a(v)

r(τ) Δτ
∫ σ(s)
t1

Δu
a(u)

p(s)Δs

= liminf
t→∞

∫ t

t1
ds

∫ ∞

t

∫ s
t1
(s− τ)

(∫ τ
t1

dv
)
dτ∫ s

t1
du

· 6
s4 ds

= liminf
t→∞

(t− t1)
∫ ∞

t

s3 −3t1s2 +3t21s− t31
(s− t1)s4 ds

� liminf
t→∞

(t − t1)
∫ ∞

t

s3−3t1s2 +3t21s− t31
s5 ds

= 1 >
1
4
.

Then, from Theorem 1, we get that all solutions of (4.1) are oscillatory or converge to
zero. In fact, one can easily see that the basis of solution space of (4.1) is given by

{t−1, t2 cos
√

2logt, t2 sin
√

2logt}.

EXAMPLE 2. Let T = qN0 , q > 1 and consider the higher-order q-difference
equation

xΔ4
(t)+

α
th2(t,0)

x(t) = 0, (4.2)

Here r(t) = 1, a(t) = 1, p(t) = α/th2(t,0) . It is clear that the conditions (3.1) and
(3.2) hold. In our case the condition reads

p∗ : = liminf
t→∞

∫ t

t1

Δs
a(s)

∫ ∞

t

∫ s
t1

hn−3(s,σ(τ))
∫ τ
t1

Δv
a(v)

r(τ) Δτ
∫ σ(s)
t1

Δu
a(u)

p(s)Δs

= liminf
t→∞

∫ t

t1
dqs

∫ ∞

t

∫ s
t1
(s−σ(τ))

(∫ τ
t1

dqv
)
dqτ∫ σ(s)

t1
dqu

· α
sh2(s,0)

dqs

� liminf
t→∞

∫ t

t1
dqs

∫ ∞

t

∫ s
t1
(s−σ(τ))dqτ∫ σ(s)

t1
dqu

· α
sh2(s,0)

dqs
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� liminf
t→∞

∫ t

t1
dqs

∫ ∞

t

h2(s,0)∫ σ(s)
t1

dqu
· α∫ s

t1
dquh2(s,0)

dqs

= liminf
t→∞

∫ t

t1
dqs

∫ ∞

t

(
− α∫ s

t1
dqv

)Δ
dqs

= α.

Hence, if α > 1/4, then from Theorem 1, all solutions of (4.2) are oscillatory or con-
verge to zero. If α � 1/4, since

q∗ : = liminf
t→∞

∫ t
t2

∫ σ(s)
t1

Δu
a(u)

∫ s
t1

hn−3(s,σ(τ))
∫ τ
t1

Δv
a(v)

r(τ) Δτ p(s)Δs∫ t
t1

Δs
a(s)

= liminf
t→∞

∫ t
t2

∫ σ(s)
t1

dqv
(∫ s

t1
(s−σ(τ))

∫ τ
t1

dqvdqτ
) α

sh2(s,0)dqs∫ t
t1

dqs

� liminf
t→∞

∫ t
t2

∫ σ(s)
t1

dqvh2(s,0) α
sh2(s,0)dqs∫ t

t1
dqs

� liminf
t→∞

qα
∫ t
t1

dqv−
∫ t
t2

(α
q − α

qs

∫ s
t1

dqv
)
dqs∫ t

t1
dqs

� qα.

Also note that l∗ = q . We see that if q∗ > q/1+q , that is if α > 1/1+q , from Theorem
2, all solutions of (4.2) are oscillatory or converge to zero.
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