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Abstract. In this paper, we present some new existence and uniqueness results for the q-integral
boundary value problem of nonlinear q-difference equation. Our results are based on Banach’s
contraction principle and Krasnowselskii’s fixed point theorem. An example is given to illustrate
the advantage of our results.

1. Introduction

The analysis of q-calculus was initiated at the beginning of the last century by
Jackson [1] and was developed in intensive work especially by Carmichael [2], Mason
[3], Adams [4], Trjitzinsky [5], etc. From that time onwards, this theory has evolved
in various research disciplines and their applications. For some recent works on q-
difference equations, we refer the reader to [9]-[21] and references cite therein.

Ahmad et al. [15] proposed the boundary value problem of nonlinear second order
q -difference equations with nonlocal boundary conditions given by⎧⎪⎨

⎪⎩
D2

qx(t) = f (t,x(t)), t ∈ [0,T ],
α1x(0)−β1Dqx(0) = γ1x(η1),
α2x(1)+ β2Dqx(1) = γ2x(η2),

(1.1)

where f ∈C([0,T ]×R,R), and q ∈ (0,1) is a constant. By employing Banach’s con-
traction principle, Krasnoselskii’s fixed point theorem and Leray-Schauder nonlinear
alternative, Ahmad et al derived the existence of solutions of such a problem.

Later, Yu and Wang [18] proposed the boundary value problem of nonlinear sec-
ond order q -difference equation given by{

D2
qu(t)+ f (t,u(t),Dqu(t)) = 0, t ∈ [0,T ],

Dqu(0) = 0, Dqu(1) = αu(1),
(1.2)
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where f ∈C([0,T ]×R,R), and α �= 0 is a fixed constant. They discussed the existence
and uniqueness of solution of this problem by using Banach’s contraction principle, the
Leray-Schauder nonlinear alternative and Leray-Schauder continuation theorem.

In this article, we consider the following the q -integral boundary value problem
of nonlinear second order q -difference equation provide by⎧⎨

⎩
D2

qx(t) = f (t,x(t)), t ∈ [0,T ],

x(0) = x(T ),
∫ T

0
x(s)dps = 0,

(1.3)

where 0 < p,q < 1 and f ∈C([0,T ]×R,R) .
Our overall goal is to prove an existence and uniqueness of solutions of the prob-

lem 1.3 by employing Banach’s contraction mapping principle and Krasnoselskii’s
fixed point theorem. In Section 2, we briefly discuss about the basic definitions, some
properties of q -difference and present a lemma that will be used throughout the paper.
In Sections 3 and 4, we give the main results and an example, respectively.

2. Preliminaries

The basic definitions and some properties of q -calculus [6]-[8] are as follows.

DEFINITION 1. For 0 < q < 1, we define the q-derivative of a real valued func-
tion f as

Dq f (t) =
f (t)− f (qt)

(1−q)t
, Dq f (0) = lim

t→0
Dq f (t).

The higher order q -derivatives are given by

Dn
q f (t) = DqD

n−1
q f (t), n ∈ N.

where D0
q f (t) = f (t) .

The definite q-integral of a function f defined on the interval [0,T ] is given by

Iq f (t) =
∫ t

0
f (s)dqs =

∞

∑
n=0

t(1−q)qn f (tqn)

where last term is convergent series.

If a ∈ [0,T ] , then

∫ b

a
f (s)dqs = Iq f (b)− Iq f (a) = (1−q)

∞

∑
n=0

qn [b f (bqn)−a f (aqn)] .

We note that
DqIq f (x) = f (x),
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while if f is continuous at x = 0, then

IqDq f (x) = f (x)− f (0).

The property of product rule and integration by parts formula are

Dq(gh)(t) = (Dqg(t))h(t)+g(qt)Dqh(t),
∫ x

0
f (t)Dqg(t)dqt =

[
f (t)g(t)

]x

0
−

∫ x

0
Dq f (t)g(qt)dqt.

For reversing the order of integration is given by
∫ t

0

∫ s

0
f (r)dqrdqs =

∫ t

0

∫ t

qr
f (r)dqsdqr.

In the limit q → 1 the above results correspond to their counterparts in standard
calculus.

LEMMA 1. Let 0 < p,q < 1 . Then for any h ∈C[0,T ] , the boundary value prob-
lem

D2
qx(t) = h(t), t ∈ [0,T ], (2.1)

x(0) = x(T ),
∫ T

0
x(s)dps = 0, (2.2)

has a unique solution

x(t) =
∫ t

0
(t −qs)h(s)dqs+

T − (1+ p)t
(1+ p)T

∫ T

0
(T −qs)h(s)dqs

− 1
T

∫ T

0

∫ s

0
(s−qu)h(u)dqudps. (2.3)

Proof. For t ∈ [0,T ] , taking double q -integrating (2.1) from 0 to t, we get

x(t) =
∫ t

0

∫ s

0
h(u)dqudqs+ c1t + c2. (2.4)

By changing the order of q -integration, we have

x(t) =
∫ t

0

∫ t

qu
h(u)dqsdqu+ c1t + c2

=
∫ t

0
(t−qs)h(s)dqs+ c1t + c2. (2.5)

From (2.5), we take the p -integral of x(t) from 0 to t , we have

∫ t

0
x(s)dps =

∫ t

0

∫ s

0
(s−qu)h(u)dqudps+ c1

t2

(1+ p)
+ c2t. (2.6)
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By substituting t = T in (2.6) and employing the second condition of (2.2), we find that

T 2

1+ p
c1 +Tc2 = −

∫ T

0

∫ s

0
(s−qu)h(u)dqudps. (2.7)

In particular, for t = 0 and T in (2.5), we obtain

x(0) = c2, (2.8)

x(T ) =
∫ T

0
(T −qs)h(s)dqs+ c1T + c2. (2.9)

Now, using the first condition of (2.2) with (2.8), (2.9); we have

c1 = − 1
T

∫ T

0
(T −qs)h(s)dqs. (2.10)

Substituting c1 in (2.7), we get

c2 =
1

1+ p

∫ T

0
(T −qs)h(s)dqs− 1

T

∫ T

0

∫ s

0
(s−qu)h(u)dqudps. (2.11)

Substituting c1 and c2 in (2.5), we obtain (2.3).
Therefore the proof is completes. �

3. Main results

To accomplish the main results, we transform the boundary value problem 1.3 into
a fixed point problem. From Lemma 1, we let C = C([0,T ],R) denote the Banach
space of all functions x . The norm is defined by ‖x‖ = sup

t∈[0,T ]
|x(t)| . The operator

F : C → C is define by

(Fx)(t) =
∫ t

0
(t−qs) f (s,x(s))dqs+

T − (1+ p)t
(1+ p)T

∫ T

0
(T −qs) f (s,x(s))dqs

− 1
T

∫ T

0

∫ s

0
(s−qu) f (u,x(u))dqudps.

For u ∈ C and t ∈ [0,T ] . It should be noticed that the problem 1.3 has solutions
if and only if the operator F has fixed points.

Now we are in position to establish the main results. Our first result is based on
Banach’s fixed point theorem.

THEOREM 1. Assume that f : [0,T ]×R → R is a jointly continuous function
satisfying the conditions

(H1) | f (t,x)− f (t,y)| � L|x− y| , for all t ∈ [0,T ] , L > 0 and x,y ∈ R ,

(H2) LΩ < 1 ,
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where L is a Lipschitz constant, and

Ω = T 2
[

1
(1+q)

+
1

(1+ p)(1+q)
+

1
(1+q)(1+ p+ p2)

]
. (3.1)

Then the boundary value problem 1.3 has a unique solution.

Proof. Firstly, we set an operator F : C → C is defined by (3.1). Let

sup
t∈[0,T ]

| f (t,0)| = M,

and choose a constant R satisfied

R � MΩ
1−LΩ

.

Now we shall show that FBR ⊂ BR, where BR = {x ∈ C : ‖x‖ � R} . For any
x ∈ BR, we have

‖Fx‖
= sup

t∈[0,T ]

∣∣∣∣∣
∫ t

0
(t −qs) f (s,x(s))dqs+

T − (1+ p)t
(1+ p)T

∫ T

0
(T −qs) f (s,x(s))dqs

− 1
T

∫ T

0

∫ s

0
(s−qu) f (u,x(u))dqudps

∣∣∣∣∣
� sup

t∈[0,T ]

{∫ t

0
(t−qs)(| f (s,x(s))+ f (s,0)|+ | f (u,0)|)dqs

+
|T − (1+ p)t|

(1+ p)T

∫ T

0
(T −qs)(| f (s,x(s))+ f (s,0)|+ | f (s,0)|)dqs

+
1
T

∫ T

0

∫ s

0
(s−qu)(| f (u,x(u))+ f (u,0)|+ | f (u,0)|)dqudps

}

� sup
t∈[0,T ]

{
(L‖x‖+M)

∫ t

0
(t−qs)dqs+(L‖x‖+M)

|T − (1+ r)t|
(1+ r)T

∫ T

0
(T −qs)dqs

+
1
T

(L‖x‖+M)
∫ T

0

∫ s

0
(s−qu)dqudps

}

= sup
t∈[0,T ]

{
(L‖x‖+M)

t2

1+q
+(L‖x‖+M)

|T − (1+ p)t|
(1+ p)T

· T 2

1+q

+
1
T

(L‖x‖+M)
T 3

(1+q)(1+ p+ p2)

}

= sup
t∈[0,T ]

{
(L‖x‖+M)

(
t2

1+q
+

T |T − (1+ p)t|
(1+ p)(1+q)

+
T 2

(1+q)(1+ p+ p2)

)}

� (LR+M)
(

T 2

(1+q)
+

T 2

(1+ p)(1+q)
+

T 2

(1+q)(1+ p+ p2)

)}

= (LR+M)Ω
� R.
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Therefore, F BR ⊂ BR .
We next show that F is a contraction. For any x,y ∈ C and for each t ∈ [0,T ] , we

have

‖(Fx)(t)− (Fy)(t)‖
= sup

t∈[0,T ]

∣∣∣(Fx)(t)− (Fy)(t)
∣∣∣

= sup
t∈[0,T ]

∣∣∣∣∣
∫ t

0
(t−qs) | f (s,x(s))− f (s,y(s))|dqs

+
T − (1+ p)t

(1+ p)T

∫ T

0
(T −qs) | f (s,x(s))− f (s,y(s))|dqs

− 1
T

∫ T

0

∫ s

0
(s−qu) | f (u,x(u))− f (u,y(u))|dqudps

∣∣∣∣∣
� sup

t∈[0,T ]

{
L‖x− y‖

∫ t

0
(t −qs)dqs+L‖x− y‖ |T − (1+ p)t|

(1+ p)T

∫ T

0
(T −qs)dqs

+
1
T

L‖x− y‖
∫ T

0

∫ s

0
(s−qu)dqudps

}

� L‖x− y‖
(

T 2

(1+q)
+

T 2

(1+ p)(1+q)
+

T 2

(1+q)(1+ p+ p2)

)
= LΩ‖x− y‖.

As LΩ < 1, F is a contraction. Note that we complete this proof by using Ba-
nach’s contraction mapping principle. �

Further, we consider the existence of a solution to the boundary value problem 1.3.
We shall use the Krasnoselskii’s fixed point theorem [22].

THEOREM 2. Let K be a bounded closed convex and nonempty subset of a Ba-
nach space X . Let A,B be operators such that:

(i) Ax+By∈ K whenever x,y ∈ K

(ii) A is compact and continuous

(iii) B is a contraction mapping.

Then there exists z ∈ K such that z = Az+Bz.

THEOREM 3. Assume that (H1) and (H2) hold. In addition we suppose that:

(H3) | f (t,x)| � μ(t) , for all (t,x) ∈ [0,T ]×R , with μ ∈C([0,T ],R+) .

If
Ω < 1, (3.2)
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where Ω is given by (3.1), then the boundary value problem 1.3 has at least one solution
on [0,T ] .

Proof. We let sup
t∈[0,T ]

|μ(t)| = ‖μ‖ and choosing a constant

R � ‖μ‖Ω, (3.3)

we consider BR = {x ∈ C : ‖x‖ � R} .

In view of Lemma 1, we define the operators F1 and F2 on the ball BR as

(F1x)(t) =
∫ t

0
(t −qs) f (s,x(s))dqs,

(F2x)(t) =
T − (1+ p)t

(1+ p)T

∫ T

0
(T −qs) f (s,x(s))dqs

− 1
T

∫ T

0

∫ s

0
(s−qu) f (u,x(u))dqudps.

For x,y ∈ BR , we have

‖F1x+F2y‖ � ‖μ‖
∫ t

0
(t −qs)dqs+‖μ‖ |T − (1+ p)t|

(1+ p)T

∫ T

0
(T −qs)dqs

+
‖μ‖
T

∫ T

0

∫ s

0
(s−qu)dqudps

� ‖μ‖Ω
� R,

which implies that F1x+F2y ∈ BR . The condition (3.2) implies that F2 is a contrac-
tion mapping. Next, we will show that F1 is compact and continuous. The continuity
of f together with the assumption (H3) implies that an operator F1 is continuous and
uniformly bounded on BR . We let sup

(t,x)∈[0,T ]×BR

| f (t,x)| = N . For t1, t2 ∈ [0,T ] with

t1 � t2 and x ∈ BR , we have that

|F1x(t2)−F1x(t1)| =

∣∣∣∣∣
∫ t2

0
(t2 −qs) f (s,x(s))dqs−

∫ t1

0
(t1−qs) f (s,x(s))dqs

)∣∣∣∣∣
=

∣∣∣∣∣
∫ t1

0
(t2 − t1) f (s,x(s))dqs+

∫ t2

t1
(t2−qs) f (s,x(s))dqs

∣∣∣∣∣
� N

|t22 − t21 |
(1+q)

.

As t2 − t1 → 0, the above inequality, which is independent of x , tends to zero.
Thus, F1 is relatively compact on BR . Hence, we can conclude by the Arzelá-Ascoli
Theorem that F1 is compact on BR . Therefore, all the assumptions of Theorem 3 are
satisfied and the conclusion of Theorem 3 implies that the boundary value problem 1.3
has at least one solution on [0,T ] . This completes the proof. �
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4. Example

In this section, we give an example to illustrate our main results. Consider the
following boundary value problem of nonlinear second-order q -difference equations
with three-point boundary conditions⎧⎪⎪⎨

⎪⎪⎩
D2

1
2
x(t) =

esin2(πt)|x(t)|
(5+ t)2(1+ |x(t)|) , t ∈ [0,2],

x(0) = x(2) ,
∫ 2

0
x(s)d 3

4
s = 0.

(4.1)

Set q = 1/2, p = 3/4 and T = 2, since

| f (t,x)− f (t,y)| � 1
25

|x− y|

then (H1) is satisfied with L = 1
25 . Form Theorem 1, we find that

Ω = 4
[

1
(3/2) + 1

(7/4)(3/2) + 1
(3/2)(37/16)

]
≈ 5.344.

Hence, we get
LΩ ≈ 0.214 < 1.

Therefore, by Theorem 1, problem (4.1) has at least one solution on [0,2] .
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