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Abstract. In this paper, we obtain an existence theorem for a Semi-Linear PDE with infinite
delay employing a phase space in which discretizations can naturally be performed. Further,
for linear PDEs with infinite delay we show that the solutions of the ODE with infinite delay
obtained by the semi-discretization converge to the original solution. Our results cover various
types of PDEs under the assumption that semi-discretization of the PDEs without the delay terms
can be performed. The method of our proof is applicable for the case of finite delays too.

1. Introduction

The study of delay differential equations is motivated by the fact to model some
evolution phenomena arising in physics, biology, engineering etc, some hereditary char-
acteristics such as after effect, time lag and time delay can appear in variables. Complex
phenomena in biological, chemical and physical systems can sometimes be modelled
by delay partial differential equations (DPDEs). Such equations are naturally more dif-
ficult than ordinary differential equations with delay since these are infinite dimensional
both in time and space variables. Since 1970’s such equations have been widely stud-
ied and several important properties such as existence and stability of the solution are
nowadays fairly well understood.

However, the exact solution is not available in general, so one has to resort to
numerical methods when solving such equations. The numerical analysis of computa-
tional methods for delay PDEs has not received too much attention yet as notices in the
literature surveyed.

It is a well known fact that there are numerous technical difficulties in dealing
with partial differential equations with infinite delay due to the unboundedness of the
delay involved. Most numerical schemes for PDEs without delay can be adopted to
the solution delay PDEs, when they are combined with an appropriate interpolation
procedure for the evaluation of the delay argument.

An evolutionary (time dependent) PDE can be reduced to a system of ODEs by
replacing the spatial derivatives with finite difference approximations. The resulting
approximations is called semi-discrete since the time variable is left continuous. The
procedure of reducing a PDE to an ODE system is often called the method of lines
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since a solution of the ODE system gives an approximation to the PDE solution along
x equals constant lines (x,t) space. In the second part of this paper, the process of
semi-discretization is applied to PDE with infinite delay which can be approximated by
a sequence of ODE with infinite delay.

The focus in this research paper is on showing the existence of non-linear PDE
with infinite delay and convergence of the sequence of solutions of linear ODE with
infinite delay to the solution of linear PDE with infinite delay. Two new theorems
are presented in this paper to prove the results and the proposed results cover a broad
spectrum of PDEs with infinite delay.

Unlike in the case of infinite delay, the choice of the phase space for the study
of infinite delay equation is a difficult one. This has motivated the introduction of an
axiomatic approach. In 1983, Pazy proved the existence results of the equation of the
type

u′(t) = Au(t)+F(t,ut), t � 0,

u(θ ) = φ(θ ), θ ∈ (−∞,0],

where A is not necessarily densely defined. Semi-discretization is a well known tech-
nique used in the finite element analysis as well as finite difference schemes in compu-
tational fluid mechanics.

While Rey and Mackey (1993) applied Galerkin finite element method, Houwen et
al. (1986), Higham and Sardar (1995), Zubic-Kowal and Vandewalle (1999) used finite
difference schemes to semi-discretize PDE with delays. Homotopy analysis is used to
approximate solutions of initial-boundary value problem for delay parabolic equations
by Agirseven (2012), Roales et al. (2012) applied stable difference methods for delay
partial differential equations. The phase space{

φ ∈ C(−∞,0] :
∞

∑
k=1

|βk| sup
θ∈[−kτ1,0]

|φ(θ )| < ∞

}

has been introduced to study discretization of ODE with infinite delay by Sengadir
(2006). In this paper, appropriate modification has been made to the phase space to
cover PDEs and a broader class of delay equations. Inspired by above mentioned work,
in this paper the research work has taken the direction to study the existence of solution
to the non-linear abstract infinite delay equation as well as approximation of solutions
of sequence of delay differential equations to the proposed partial differential equation.

In this paper, the following non-linear abstract infinite delay equation is consid-
ered.

u′(t) = Au(t)+F(ut), t � 0,

u(θ ) = φ(θ ), θ ∈ (−∞,0], (1.1)

in a phase space which makes the analysis of numerical approximations convenient.
Also the convergence of the sequence of solutions of the linear delay equation

x′(t) = Anx(t)+Ln(xt), t � 0,
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x(θ ) = φn(θ ), θ ∈ (−∞,0], (1.2)

to the solution of the abstract linear infinite delay equation

u′(t) = Au(t)+Lut, t � 0,

u(θ ) = φ(θ ), θ ∈ (−∞,0], (1.3)

in an appropriate sense is proven in this paper. Here A : D(A)→ X is the generator of a
C0 semigroup and An are bounded linear maps on finite dimensional spaces Xn which
approximate A in an appropriate sense. This paper is structured as follows: In section
2, the attention is fixed on preliminary results and in sections 3 and 4, the discussions
are focused on non-linear as well as linear PDE with delay respectively.

2. Preliminaries

This section is devoted to some preliminary definitions and facts which are used
throughout this paper.

DEFINITION 1. Let X and Y be normed linear spaces. A function f : X → Y is
said to be Lipschitz, if there exists a constant L > 0 (called as a Lipschitz constant of
f ) such that for all x,y ∈ X , || f (x)− f (y)|| � L||x− y|| .

PROPOSITION 1. Let X be a Banach space with the norm ‖ ‖X and {βk} be

a sequence of strictly positive reals such that
∞

∑
k=1

βk < ∞ . Define the vector space

Cσ ((−∞,0];X) as{
φ ∈ C((−∞,0];X) :

∞

∑
k=1

|βk| sup
θ∈[−k,−k+1]

‖φ(θ )‖X < ∞

}
.

Then Cσ ((−∞,0];X) is a Banach space with the norm ‖ ‖σ ,X defined as

‖φ‖σ ,X =
∞

∑
k=1

|βk| sup
θ∈[−k,−k+1]

‖φ(θ )‖X .

Further, a sequence φn ∈Cσ ((−∞,0];X) converges to φ ∈Cσ ((−∞,0];X) if for every
fixed k ∈ IN ,

lim
n→∞

sup
θ∈[−k,−k+1]

‖φn(θ )−φ(θ )‖X = 0

and there exists a sequence αk � 0 such that
∞

∑
k=1

bkαk < ∞ with

sup
θ∈[−k,−k+1]

‖φk(θ )‖X � αk for all k ∈ IN .
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THEOREM 1. (Trotter-Kato Approximation Theorem) Let (Xn,‖ ‖n) ,
n = 1,2,3, ... and (X ,‖ ‖) be the Banach spaces. Further, let there be bounded lin-
ear maps Pn : X −→ Xn and En : Xn −→ X such that

(i) ‖Pn‖ � C1 , ‖En‖ � C2 , with C1 and C2 are constants independent of n .

(ii) ‖EnPnu−u‖→ 0 as n → ∞ for every u ∈ X .

(iii) PnEn = In , where In is the identity operator on Xn .
Further, assume that

(iv) A : D(A) −→ X is a closed and densely defined operator in class G(M,w,X) and
An : Xn −→ Xn are bounded linear maps in G(M,w,Xn) respectively generating
the semigroups Tt and Tn

t .

Then the following are equivalent:

(a) For all u ∈ D(A) there exists a sequence un ∈ Xn such that lim
n→∞

Enun = u and

lim
n→∞

EnAnun = Au.

(b) lim
n→∞

‖EnT
n
t Pnx−Ttx‖→ 0 as n → ∞ for all x ∈ X .

THEOREM 2. Let (Xn,‖ ‖n) , n = 1,2,3, ..., (X ,‖ ‖) be Banach spaces and as-
sume that (i), (ii) and (iii) of Theorem 1 are true. Define
Pn : Cσ ((−∞,0];X) −→ Cσ ((−∞,0];Xn) and
En : Cσ ((−∞,0];Xn) −→ Cσ ((−∞,0];X) as Pn f (θ ) = Pn[ f (θ )] and
Eng(θ ) = En[g(θ )] . Then the operators En and Pn satisfy conditions analogous to
that of (i), (ii) and (iii) of Theorem 1.

Proof. Since (i) and (ii) are obvious, to prove (iii), let f ∈ Cσ ((−∞,0];X) . For
a fixed θ ∈ (−∞,0] , EnPn( f (θ )) converges to f (θ ) and the sequence of functions
EnPn f is equi-continuous on any fixed interval [−k,−k + 1] . Hence the sequence

sup
θ∈[−k,−k+1]

‖EnPn( f (θ ))− f (θ )‖X converges to 0. Next letting

αk = C1C2 sup
θ∈[−k,−k+1]

‖ f (θ )‖X ,

the hypotheses of Proposition 1 are satisfied for φn = EnPn f .
Hence (iii) follows.

REMARK 1. It is clear that Theorem 2 is valid if the spaces Cσ ((−∞,0];X) and
Cσ ((−∞,0];Xn) are replaced by C([−τ,0];X) and C([−τ,0];Xn) respectively.
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3. Non-linear PDE with infinite delay

This section is concerned with the existence of solution to non-linear partial dif-
ferential equation with infinite delay. The following theorem facilitates the existence
result for equation (1.1) by a semigroup of Lipchitz maps. In the sequel, �t� denotes
the greatest integer less than or equal to t .

THEOREM 3. Let X be a Banach space and let A : D(A) −→ X be a closed and
densely defined linear operator in class G(M,w,X) generating the semigroup St . Let

βk be a sequence of positive reals such that
∞

∑
k=1

βk < ∞ and for every fixed t � 0 ,

sup
k��t�+2

max

(
βk

βk−�t�
,

βk

β−�t�+k−1

)
< ∞. (3.1)

Assume that F : Cσ ((−∞,0];X)−→ X is a Lipchitz continuous map with Lipchitz con-
stant α � 0 . Then there is a unique mild solution to (1.1) which is given by a semigroup
St of Lipchitz maps.

Proof. The quantity ‖y‖T = sup
t∈[0,T ]

‖y(t)‖X which is the standard norm in the space

C([0,T ];X) . Define

H : [0,T ]×{(y,φ) ∈ C([0,T ];X)×Cσ ((−∞,0];X) : y(0) = φ(0)}
→ Cσ ((−∞,0];X)

as

H(s,y,φ)(θ ) = y(s+ θ ), s+ θ � 0,

= φ(s+ θ ), s+ θ < 0,

Σ : [0,T ]×Cσ((−∞,0];X) −→ Cσ ((−∞,0];X)

as

Σ(s,φ)(θ ) = 0, s+ θ � 0,

= φ(s+ θ )−φ(0), s+ θ < 0

and
K : [0,T ]×C([0,T ];X) −→ Cσ ((−∞,0];X)

as

K(s,y)(θ ) = y(s+ θ )− y(0), s+ θ � 0,

= 0, s+ θ < 0.
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Now clearly, H(s,y,φ) = K(s,y)+ Σ(s,φ)+ cy(0) , where cy(0) is the constant function
assuming the value y(0) ∈ X for all θ ∈ (−∞,0] .

It can be easily shown that ‖K(s,y)‖σ = 2
∞

∑
k=1

|βk|‖y‖T .

‖Σ(t,φ)‖σ can be estimated as follows.
Let t be fixed. Then �t� � t < �t�+1 and hence −�t�−1 < −t � −�t� .

For k < �t�+1 and θ ∈ [−k,−k+1] , one can have
θ � −k � −�t�−1 > −t and hence θ + t > 0. So, |Σ(t,φ)(θ )| = 0.

For k = �t�+ 1 and θ ∈ [−k,−k + 1] = [−�t�− 1,−�t�] , then θ � −t . Hence
|Σ(t,φ)(θ )| = 0.

Let θ ∈ [−�t�−1,−�t�] . Then −1 � t−�t�−1 � θ + t � 0.
So,

β�t�+1 sup
θ∈[−�t�−1,−�t�]

‖Σ(t,φ)‖σ � sup
θ∈[−1,0]

|φ(θ )|+ |φ(0)|

� 2β�t�+1 sup
θ∈[−1,0]

|φ(θ )|

� 2
β�t�+1

β1
‖φ‖σ .

For k > �t�+1, if θ ∈ [−k,−k+1] , then t + θ � 0. Further,

�t�− k � t− k � θ + t � −k+1+ �t�+1= −k+ �t�+2.

So,

βk sup
θ∈[−k,−k+1]

‖Σ(t,φ)(θ )‖

� βk max

(
sup

θ∈[�t�−k,�t�−k+1]
‖φ(θ )‖, sup

θ∈[�t�−k+1,�t�−k+2]
‖φ(θ )‖

)

� max

(
βk sup

θ∈[�t�−k,�t�−k+1]
‖φ(θ )‖,βk sup

θ∈[�t�−k+1,�t�−k+2]
‖φ(θ )‖

)

� max

(
βk−�t�

βk

βk−�t�
sup

θ∈[�t�−k,�t�−k+1]
‖φ(θ )‖,

β−�t�+k−1
βk

β−�t�+k−1
sup

θ∈[�t�−k+1,�t�−k+2]
‖φ(θ )‖

)

� max

(
βk

βk−�t�
,

βk

β−�t�+k−1

)
×

(
βk−�t� sup

θ∈[�t�−k,�t�−k+1]
‖φ(θ )‖ +

β−�t�+k+1 sup
θ∈[�t�−k+1,�t�−k+2]

‖φ(θ )‖
)

.



Differ. Equ. Appl. 7, No. 3 (2015), 313–331. 319

Thus,

‖Σ(t,φ)‖σ

� 2
β�t�+1

β1
‖φ‖σ +

∞

∑
k=�t�+2

max

(
βk

βk−�t�
,

βk

β−�t�+k−1

)
×

(
βk−�t� sup

θ∈[�t�−k,�t�−k+1]
|φ(θ )|+ β−�t�+k+1 sup

θ∈[�t�−k+1,�t�−k+2]
|φ(θ )|

)

� 2
β�t�+1

β1
‖φ‖σ +max

{
k � �t�+2 : max

(
βk

βk−�t�
,

βk

β−�t�+k−1

)}
2‖φ‖σ

� 2max

[{β�t�+1

β1

}
∪
{

k � �t�+2 : max

(
βk

βk−�t�
,

βk

β−�t�+k−1

)}]
‖φ‖σ .

Denote the quantity

2max

[{β�t�+1

β1

}
∪
{

k � �t�+2 : max

(
βk

βk−�t�
,

βk

β−�t�+k−1

)}]

by γ(t) and supt∈[0,T ] γ(t) = γT . Then

‖Σ(t,φ)‖σ � γ(t)‖φ‖σ .

Define Gφ : C([0,T ];X) −→ C([0,T ];X) as

Gφ y(t) = Stφ(0)+
∫ t

0
St−sF [H(s,y,φ)]ds.

It is obtained that

‖[H(s,y,φ1)]− [H(s,z,φ2)]‖σ
� ‖K(s,y)−K(s,z)+ Σ(s,φ1)−Σ(s,φ2)+ cφ1(0)−φ2(0)‖σ

� ‖K(s,y− z)‖σ +‖Σ(s,φ1−φ2)‖σ +
∞

∑
i=1

|βi|‖φ1(0)−φ2(0)‖

� 2
∞

∑
k=1

|βk|‖y− z‖T +[2γ(s)+
1

|β1|
∞

∑
i=1

|βi|]‖φ1−φ2‖σ .

Now, let y = Gφ1(y) and z = Gφ2(z) . Then

‖Gφ1y−Gφ2z‖T � sup
t∈[0,T ]

(‖Stφ1(0)−Stφ2(0)‖+
∥∥∥∥
∫ t

0
St−s (F [H(s,y,φ1)]−F[H(s,z,φ2)])ds

)∥∥∥∥
� sup

t∈[0,T ]

(
eωt) M

β1
‖φ1−φ2‖σ +
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sup
t∈[0,T ]

∫ t

0
‖St−s (F[H(s,y,φ)]−F [H(s,z,φ)])‖ds

� max
(
1,eωT) M

β1
‖φ1−φ2‖σ +

sup
t∈[0,T ]

∫ t

0
‖St−s (F[H(s,y,φ)]−F [H(s,z,φ)])‖ds.

Now,

sup
t∈[0,T ]

∫ t

0
‖St−s (F[H(s,y,φ1)]−F[H(s,z,φ2)])‖ds

� sup
t∈[0,T ]

∫ t

0
Meω(t−s)‖F(H(s,y,φ1))−F(H(s,z,φ2))‖ds

� sup
t∈[0,T ]

∫ t

0
Meω(t−s)α‖H(s,y,φ1)− (H(s,z,φ2))‖σds

� M sup
t∈[0,T ]

(
eωt −1

ω

)
×

α

(
2

∞

∑
k=1

|βk|‖y− z‖T +[2γT +
1

|β1|
∞

∑
i=1

|βi|]‖φ1−φ2‖σ

)

� M

(
eωT −1

ω

)
×

α

(
2

∞

∑
k=1

|βk|‖y− z‖T +[2γT +
1

|β1|
∞

∑
i=1

|βi|]‖φ1−φ2‖σ

)
.

So,

‖Gφ1y−Gφ2z‖T � sup
t∈[0,T ]

(
eωt) M

β1
‖φ1 −φ2‖σ

+2αM

(
eωT −1

ω

)( ∞

∑
k=1

|βk|
)
‖y− z‖T

+

(
2αM

eωT −1
ω

(
γT +

1
2|β1|

∞

∑
i=1

|βi|
)
‖φ1−φ2‖σ

)
.

Now, it follows that

‖Gφ y−Gφz‖T � 2M
eωT −1

ω

(
α

∞

∑
k=1

|βk|
)
‖y− z‖T .

Next, choose 0 < T sufficiently small such that

κ .=
(

eωT −1
ω

)(
2αM

∞

∑
k=1

|βk|
)

< 1.
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Thus, Gφ is a contraction and hence has a unique fixed point. Denote the unique fixed
point of Gφ by Nφ . If Nφ1 = y and Nφ2 = z , then

‖Nφ1−Nφ2‖T = ‖y− z‖T = ‖Gφ1y−Gφ2z‖T

� max
(
1,eωT ) M

β1
‖φ1 −φ2‖σ + κ‖y− z‖T

+
(

2αM

(
eωT −1

ω

))(
γT +

1
2|β1|

∞

∑
k=1

|βk|
)
‖φ1−φ2‖σ .

Denoting ∑∞
k=1 |βk| by b , one can write

(1−κ)‖y− z‖T �((
max

(
1,eωT )) M

β1
+
(

2αM

(
eωT −1

ω

))(
γT +

b
2|β1|

))
‖φ1−φ2‖σ .

So,

‖Nφ1−Nφ2‖T �(
max

(
1,eωT

))
M
β1

+
(
2αM

(
eωT−1

ω

))(
γT + b

2|β1|
)

1−
((

eωT−1
ω

)
(2αMb)

) ‖φ1−φ2‖σ .

Therefore, a Lipschitz map is obtained,

N : {φ ∈ Cσ (−∞,0] : φ(0) = x0} −→ {y ∈ C[0,T ] : y(0) = x0} .

Define St : (Cσ (−∞,0];X) −→ (Cσ (−∞,0];X) as

Stφ(θ ) = Nφ(t + θ ), θ + t � 0,

= φ(t + θ ), θ + t < 0.

‖Stφ1−Stφ2)‖ = ‖H(t,N(φ1),φ1)−H(t,N(φ2),φ2)‖
� 2b‖N(φ1)−N(φ2)‖T +[2γ(t)+

1
|β1|b]‖φ1−φ2‖σ

�

⎛
⎝
(
max

(
1,eωT

))
M
β1

+
(
2M
(

eωT−1
ω

))(
γT + 1

2|β1|b
)

1−
((

eωT−1
ω

)
(2αMb)

)
+ [2γT +

1
|β1|b]

)
‖φ1−φ2‖σ .

Also, it is standard to show that for t,s ∈ [0,T ] with t + s � T , StSsφ = St+sφ . For
arbitrary t > T , it is obtained that for n ∈ IN such that t = nT + δ , where 0 < δ < T .
Defining

St = (ST )nSδ

the proof is complete.
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EXAMPLE 1. Let β > 1. The sequence βk = β−k satisfy (3.1). Further, if loge β >
γ > 0, then the standard phase space

Cγ =

{
φ ∈ C((−∞,0];X) : sup

θ∈(−∞,0]
‖φ(θ )‖e−γθ < ∞

}

is contained in Cσ ((−∞,0];X).

EXAMPLE 2. Let p > 1. The sequence βk = 1
kp satisfies (3.1).

EXAMPLE 3. Let K : (−∞,0]−→ IR be measurable function and let there exist a
sequence βk such that ∫ −k+1

−k
|K(θ )|dθ � βk

for all k ∈ IN and let βk satisfy (3.1). Then L : Cσ ((−∞,0];X) −→ X defined as

Lφ =
∫ 0

−∞
K(θ )φ(θ )dθ (3.2)

is a bounded linear map from Cσ ((−∞,0];X) into X .
Let γ, p,q > 0 and it is not difficult to check that K1,K2 : (−∞,0] −→ IR defined

as

K1(θ ) = |θ |pe−γθ and K2(θ ) =
1

(|θ |+q)p+1

satisfy the above conditions.

EXAMPLE 4. Let η : (−∞,0] −→ IR be a function of bounded variation on each
of the interval [−k,−k+1] . Let there exist a sequence βk such that

Varη(−k,−k+1) � βk for all k ∈ IN and let βk satisfy (3.1).

Then L : Cσ ((−∞,0];X)) −→ X defined as

Lφ =
∫ 0

−∞
dη(θ )φ(θ )dθ (3.3)

is a bounded linear map from Cσ ((−∞,0];X) into X .

4. Linear PDE with infinite delay

In this section, the sequence of solutions to (1.2) converge to the solution of (1.3)
is shown. The following theorem proves this result.
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THEOREM 4. Let X , A : D(A) −→ X ,Xn ,En , Pn An satisfy (i), (ii), (iii) and
(iv) of Theorem 1. The maps En and Pn are defined as in Theorem 2. In addition,
assume that for every u ∈ D(A) , there exists a sequence un ∈ Xn such that Enun → u
and EnAnun → Au. Further, let L : Cσ ((−∞,0];X) −→ X be a bounded linear map.
Define D(Ã) as

D(Ã) =
{

φ ∈ Cσ ((−∞,0];X) : φ ′ ∈ Cσ ((−∞,0];X),
φ(0) ∈ D(A),φ ′(0) = A[φ(0)]+L(φ)

}
,

Ã as Ãφ = φ ′ , Ln : Cσ ((−∞,0];Xn) −→ Xn as Lnϕ = Pn[LEn(ϕ)] ,
D(Ãn) as

D(Ãn) =
{

ϕ ∈ Cσ ((−∞,0];Xn) : ϕ ′ ∈ Cσ ((−∞,0];Xn),
ϕ(0) ∈ D(An), ϕ ′(0) = An[ϕ(0)]+PnL(Enϕ)

}
and Ãn as Ãnϕ = ϕ ′ . Then

(A) Ãn generates the semigroup Tt
(n)

such that Tt
(n)ϕ is the mild solution to the delay

equation (1.2)

(B) Ã generates the semigroup Tt such that T tφ is the mild solution to the delay
equation (1.3)

(C) For every φ ∈ Cσ ((−∞,0];X) , EnT t
(n)

Pnφ converges to T tφ .

Proof. If the operator norm ‖L‖ is denoted by α , then the operator norm ‖Ln‖
satisfies ‖Ln‖ � αC1C2 . Choose T > 0 such that

(
eωT −1

ω

)(
2M

∞

∑
k=1

|βk|
)

max(α,αC1C2) < 1.

Thus, using Theorem 3 one obtains the existence of linear semigroups Tt and Tt
(n)

which satisfy

sup
t∈[0,T ]

max(‖Tt‖,‖T (n)
t ‖)

�

⎛
⎝
(
max

(
1,eωT

))
M
β1

+
(
2M
(

eωT−1
ω

))(
γT + b

2|β1|
)

1−
((

eωT−1
ω

)
(2max(α,αC1C2)Mb)

) [2γT +
b

|β1| ]
⎞
⎠ .

Denoting the quantity on the right hand side of the above inequality by μ , it is standard
to show that the above semigroups satisfy

max(‖Tt‖,‖T (n)
t ‖) � μe

lnμ
T t

for all t ∈ [0,∞) .
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Let φ ∈ D(Ã) . Then φ ′(0) = A[φ(0)]+Lφ .
Define λn : (−∞,0] −→ IR as

λn(θ ) = θ
(

θ +
1
n

)(
θ +

1
2n

)
[12n4θ 2 +26n3θ +10n2]

−4nθ
(

θ +
1
n

)
, θ ∈

[−1
n

,0

]

= 0, θ <
−1
n

.

Note that λn(0) = λn(−1/n) = λ ′
n(−1/n) = λ ′

n(−1/2n) = 0 and
λ ′

n(0) = 1.
For θ ∈ [− 1

n ,0
]
,

|λn(θ )| �
(

1
n

)(
2
n

)(
3
2n

)(
12n4

n2 +26
n3

n
+10n2

)
+4n

(
1
n

)(
2
n

)

� 144
n

+
8
n

� 152
n

and hence as n→ ∞ , λn converges to zero uniformly on (−∞,0] . Further, it is obtained
that there exists C3 > 0 such that

|λ ′
n(θ )| � C3 for all θ ∈ (−∞,0]. (4.1)

Fixing a v ∈ Xn , denote the Xn valued function defined on (−∞,0] which takes
the value λn(θ )v at every θ by λnv . It is clear that λnv ∈ Cσ ((−∞,0];Xn) . Denoting
the norm on Cσ ((−∞,0];Xn) by ‖ ‖σ ,n , it is obtained that

‖λnv‖σ ,n � β1

(
sup

θ∈[−1/n,0]
|λn(θ )|

)
‖v‖n � β1

152
n

‖v‖n.

Recalling that φ ∈D(Ã) , φ(0) ∈ D(A) and there exists un ∈ Xn such that Enun →
φ(0) and EnAnun → A[φ(0)] .

Define ψn as

ψn(θ ) = Pn[φ(θ )]+ λn(θ )vn −Pn[φ(0)]+un,

where vn ∈ Xn is the unique fixed point of Kn : Xn −→ Xn defined as

Knv = Anun−PnA(φ(0)
+Pn[L(EnPnφ)− (Lφ)]
+Pn[−L(En Pnφ(0)+LEnun)]
+Pn[L(En Pnλnv)].
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Here, it is observed that Kn is an affine map such that

‖Knv−Knw‖σ ,n � C1C2‖L‖ ‖λn(v−w)‖σ ,n.

Thus, for large enough n , Kn is a contraction.
Now, one can claim that ψn ∈ D(Ãn).
In the following computations, the constant function cy : (−∞,0]−→Y defined as

cy(θ ) = y , where Y is a Banach space and y ∈Y is denoted by y itself.
Now, ψn(0) = Pn[φ(0)]+ λ (0)vn−Pn[φ(0)]+un = un,

ψ ′
n(θ ) = Pn[φ ′(θ )]+ λ ′

n(θ )vn (4.2)

and thus,

ψ ′
n(0) = Pn[ϕ ′(0)]+ λ ′(0)vn

= Pn[ϕ ′(0)]+ vn

= Pn[A(φ(0))]+Pn(Lφ)+ vn

= Pn[A(φ(0))]+PnL(φ)
+Anun−PnA(φ(0)
+Pn[L(EnPnφ)− (Lφ)]
+Pn[−L(EnPnφ(0)+LEnun)]
+Pn[L(EnPnλnv)]

= An(un)+PnLEnPn(φ + λnv)−PnLEnPn[φ(0)]+PnLEnun.

Then

An[ψn(0)]+PnL(Enψn) = Anun +PnLEnPn(φ + λnvn)−PnLEnPn[ϕ(0)]+PnLEnun

and hence
ψ ′

n(0) = An[ψn(0)]+PnL(ψn).

Thus, ψn ∈ D(Ãn) . Further, Ãnψn = ψ ′
n . Next,

‖Envn‖ = ‖EnKnvn‖ � ‖EnAnun−EnPnA(φ(0)‖+‖EnPnL(EnPnφ)−EnPn(Lφ)]‖
+‖EnPnLEnun−EnPnLEnPn[φ(0))]‖+‖EnPn[L(Eλnv)]‖.

(4.3)

Since

lim
n→∞

(‖EnAnun −EnPnA(φ(0))‖+‖EnPnL(EnPnφ)−EnPn(Lφ)‖
+ ‖EnPnLEnun −EnPnLEnPn(φ(0))‖)= 0

there exists a C such that

‖Envn‖ � C+‖EnPn[L(Enλnvn)]‖.
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For large enough n , one obtains k ∈ (0,1) such that
‖L(Enλnvn)‖n � k

C1
‖vn‖n . Hence

‖PnEnvn‖n � C1C+ k‖vn‖n

(1− k)‖vn‖n � C1C

‖vn‖n � C1C/(1− k). (4.4)

From (4.4) and the estimation,

‖En(LEnλnvn)‖ � C2
2‖L‖

152
n

‖vn‖n

lim
n→∞

‖En(LEnλnvn)‖ = 0. (4.5)

Using (4.3) and (4.5),

lim
n→∞

‖vn‖n = lim
n→∞

‖PnEnKnvn‖n = 0. (4.6)

With the help of (4.1), (4.2) and (4.6),

lim
n→∞

EnÃnψn = lim
n→∞

EnPnϕ ′+ lim
n→∞

Enλ ′
nvn

= ϕ ′ = Ãϕ .

Thus (a) of Theorem 1 is satisfied and hence (b) of that same holds.

REMARK 2. If lim
n→∞

EnAnPnu = Au for all u ∈ D(A) , then it can be taken un =
Pnu . There are many interesting cases one can have EnAnPnu → Au , where it can
be considered un to be just Pnu . For example, refer to Theorem 4.4 of Kulkarni and
Ramesh (2008). But the general case is useful in examples like Example 5 and Example
8 of next section.

REMARK 3. The proposed method of proof works without any major modifica-
tions for the finite delay case also.

5. Examples

In this section, based on this research work few examples have presented here.

EXAMPLE 5. (First Order Hyperbolic Equation With Delay in L1[0,1])

ut(x, t)+ux(x,t) =
∫ 0

−∞
K(θ )u(x,t + θ )dθ , x ∈ [0,1], t � 0,

u(x,θ ) = φ(x,θ ), θ ∈ (−∞,0],
u(1,θ ) = 0, θ ∈ (−∞,0]. (5.1)
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Let X , A , Xn , En ,Pn and An be as in Case 1 in Example 3.1 of Ito and Kappel (1998)
and let K be as in Example 3. Define L : Cσ ((−∞,0];L1[0,1]) −→ L1[0,1] as in (3.3).
The solutions of the system of DDE

v′(t)i =
v(t)i−1− v(t)i

h
+
∫ 0

−∞
K(θ )vi(t + θ )dθ , i = 1,2, . . . ,n

approximate the solution to (5.1).

EXAMPLE 6. (First Order Hyperbolic Equation With Delay in C[0, 1]) This exam-
ple is related to the equation studied in Dyson et al. (2003).

Let a,b,c : [0,1] −→ IR be continuous functions such that

a(x) > 0 for all x ∈ [0,1) , a(1) = 0 and
∫ 1
0

dξ
a(ξ ) = ∞.

Take 0 < α < 1.
Consider the delayed PDE

ut(x, t) = a(x)ux(x,t)+b(x)u(x,t)+ c(x)u(αx,t− τ), x ∈ [0, l],t � 0,

u(x,θ ) = φ(x,θ ), θ ∈ [−τ,0],
u(1,s) = 0, θ ∈ [−τ,0]. (5.2)

Let X = {u ∈C[0,1] : u(1) = 0} and β (x) =
∫ x
0

dξ
a(ξ ) .

Now, SB
t f (x) = f [β−1 (t + β (x))] defines a contraction semigroup on C[0,1] whose

generator B is given by

D(B) =
{

g ∈ C[0,1] : g′ ∈ C[0,1) and lim
x→1

a(x)g′(x) = 0

}

and

Bg(x) = a(x)g′(x), x ∈ [0,1),
Bg(1) = 0.

With D(A) = D(B) and Ag(x) = Bg(x) + b(x)g(x) , A generates a semigroup
which gives the mild solution to the following PDE by Theorem 1.1 from Chapter 3
of Pazy (1983),

ut(x,t) = a(x)ux(x,t)+b(x)u(x,t), x ∈ [0,1],t � 0,

u(x,0) = u0(x), x ∈ [0,1] (5.3)

where u0(1) = 0. Define L : C([−τ,0];C[0,1]) −→ C[0,1] is defined as
Lφ(x) = φ(−τ)(αx) .

Let Xn = IRn+1 . For v ∈ IRn+1 , choose the notation v = (v0,v1, . . . ,vn) . Both
spaces X and Xn are normed with the usual supremum norm.
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Now define Pn : X → Xn as Pn f = ( f (0), f (1/n), f (2/n), . . . , f (1)) .
En : Xn → X is defined as follows:

for v ∈ IRn+1 , Env the function f which is equal to vi at the point x = i/n ,
i = 0,1, . . . ,n and is linear between any two consecutive points i/n and (i + 1)/n .
It is easy to see that ‖En‖ � 1 and ‖Pn‖ � 1, PnEnV = V for all V ∈ IRn+1 and
lim
n→∞

EnPn f = f for every f ∈ X .

Define An : IRn −→ IRn as

(Anv)i = na(i/n)[vi+1− vi]+b(i/n)vi, i = 0,1,2, . . . ,n−1

(Anv)n = b(1)vn−1.

Using arguments analogous to those in Case 3 of Example 4.1 in Ito and Kappel (1998)
and the fact that product of bounded uniformly convergent sequences converges uni-
formly, it can be shown that EnAnPnu −→ Au and hence by taking un = Pnu , all the
hypothesis of Theorem 4 are true.

Now, the explicit form for PnLEnϕ can be presented here. Let �x� be the greatest
integer less than or equal to x . For ϕ ∈ Cσ

(
(−∞,0]; IRn+1

)
,

[PnLEnϕ ]i = ϕ(−τ)�α i� +
ϕ(−τ)�α i�+1−ϕ(−τ)�α i�

h

(
αin− �αi�

n

)
.

Thus, the system of differential equations approximating equation 5.2 is given by

[v′(t)]i = na(i/n)[v(t)i+1− v(t)i]+b(i/n)v(t)i + v(t− τ)�α i�

+
v(t− τ)�α i�+1− v(t− τ)�α i�

h

(
αin− �αi�

n

)
, i = 0,1,2, . . . ,n−1,

(v′(t))n = b(1)v(t)n + vn(t − τ)�αn�

+
v(t− τ)�αn�+1− v(t− τ)�αn�

h

(
α − �αn�

n

)
.

EXAMPLE 7. (Parabolic Equation With Delay) Let Ω be a bounded open set of
class C∞ with boundary Γ . Consider

∂u
∂ t

(x,t) = 	u(x,t)+
∫ 0

−∞
dη(θ )u(x,θ + t),

u(x,θ ) = φ(x,θ ), θ ∈ (−∞,0], x ∈ Ω,

u(x,t) = 0 on Γ× [0,∞).

Take X = L2(Ω) , D(A) = H2(Ω)∪H1
0 (Ω) , A : D(A) −→ X as Au = 	u , Xn = IRn

with the norm ‖v‖n = ‖EnPnv‖L2 , where En : Xn −→ X and Pn : X −→ Xn are defined
as below:

Let {gn : n ∈ IN } be an ortho-normal basis of L2(Ω) consisting of eigen functions
of 	 and {λn : n ∈ IN } be the corresponding sequence of negative eigen values with
λn →−∞ as n → ∞ .

(Pn f )i = 〈 f ,gi〉, Env =
n

∑
i=1

vigi.
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Since EnPn = Πn f , where Πn is the orthogonal projection given by

Πn f =
n

∑
i=1

〈 f ,gi〉gi,

one can verify (i), (ii) and (iii) of Theorem 1. Let An : Xn −→ Xn be defined as [Anv] =
PnAEnv . For u ∈ D(A) ,

EnAnPnu = EnPnAEnPnu = ΠnAΠnu.

Now, using Theorem 4.4 of Kulkarni and Ramesh (2008), ‖Au−AΠnu‖→ 0. Since

‖Au−EnAnPnu‖ = ‖Au−ΠnAu+ ΠnAu−ΠnAΠnu‖
� ‖Au−ΠAu‖+‖Πn‖‖Au−AΠnu‖,

(a) of Theorem 1 is true for u = Pnu . Letting L be as in Example 4, note that PnLEn

is given by an identical expression to (3.3). Since (Anvn)i = λivi , one can obtain the
approximating DDE as

v′(t)i = λiv(t)i +
∫ 0

−∞
dη(θ )vi(t + θ ), i = 1,2, . . . ,n,

v(θ ) = ϕ(θ ),θ ∈ (−∞,0].

EXAMPLE 8. (Wave Equation with Delay)
For equations such as

∂ 2u
∂ t2

(x,t) = a2 ∂ 2u
∂x2 (x,t)+bu(x,t− τ)+ c

∂u
∂ t

(x,t− τ),

u(x,θ ) = φ(x,θ ), θ ∈ [−τ,0], x ∈ [0, l],
∂u
∂ t

(x,θ ) = φ1(x,θ ), θ ∈ [−τ,0], x ∈ [0,1],

u(0,t) = 0,

ku(1, t)+
∂
∂x

u(1,t) = 0, t ∈ [0,∞) (5.4)

and

∂ 2u
∂ t2

(x, t) = a2 ∂ 2u
∂x2 (x,t)+

∫ 0

−∞
dη(θ )u(x,t + θ )+

∫ 0

−∞
dη1(θ )

∂u
∂ t

(x, t + θ ),

u(x,θ ) = φ(x,θ ), θ ∈ [−τ,0], x ∈ [0, l],
∂u
∂ t

(x,θ ) = φ1(x,θ ), θ ∈ [−τ,0], x ∈ [0, l],

u(0, t) = 0,

ku(1,t)+
∂
∂x

u(1, t) = 0, t ∈ [0,∞). (5.5)

One can find approximating DDEs with infinite delay by choosing X , A , Xn , Pn , En

and An as in Example 4.2 of Ito and Kappel (1998).
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6. Conclusion

In this paper, the existence of solution to non-linear partial differential equation
with infinite delay by semigroup of Lipchitz maps is proved and examples are given to
support the result.

Also the convergence of solutions of linear infinite delay equation to the solution
of linear partial differential equation with infinite delay is proved.
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