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Abstract. By means of nonlinear alternative theorem of Leray-Schauder, some new results on
the existence of positive solutions for a nonlinear fractional differential equations with integral
boundary conditions on unbounded domain are established. The paper concludes with an illus-
trative example.

1. Introduction

The study of fractional differential equations has become a very important and
useful area of mathematics over the last few decades due to its numerous applications
in various areas of physics, chemistry and engineering such as viscoelasticity.

Recently, the theory on existence and uniqueness of solutions (or positive solution)
of nonlinear fractional differential equations with finite domain by the use of techniques
of nonlinear analysis has attracted the attention of many authors, (see, for example
[2, 3, 4, 6, 15, 16, 17]) and references therein.

Some recent results on fractional differential equations with infinite domain, for
instance, can be found in papers [5, 8, 11, 13, 18, 19, 20] and references therein. In
this paper, we study the existence of positive solutions for a boundary value problem
of nonlinear fractional differential equations with integral boundary conditions on an
infinite interval. Precisely, we consider the following problem (FBVP for short):

Dα
0+u(t)+ f (t,u(t)) = 0, t ∈ J = [0,+∞) , (1.1)

u(0) = u′(0) = 0, Dα−1
0+ u(∞) =

∫ ∞

0
ϕ (t)u(t)dt, (1.2)

where 2 < α � 3, f ∈ C (J×R
+,R+) , Dα

0+ and Dα−1
0+ are the standard Riemann-

Liouville fractional derivatives of order α and α − 1, respectively and Dα−1
0+ u(∞) =

limt→+∞ Dα−1
0+ u(t) .
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Here by a positive solution we mean a function u(t) which is positive on (0,+∞)
and satisfies (1.1)-(1.2).

Throughout this paper, we assume that the following conditions hold:
(H1) for any t ∈ (0,+∞) assume that

∫ ∞

0
tα−1ϕ(t)dt = μ < +∞, μ ∈ (0,Γ(α)) ;

(H2) there exist nonnegative functions a(t) and b(t) defined on [0,+∞) and a constant

ρ > 0 such that
| f (t,u(t))| � a(t)+b(t) |u(t)|ρ

and ∫ +∞

0
a(t)dt = a < +∞,

∫ +∞

0

(
1+ tα−1)ρ

b(t)dt = b < +∞.

The rest of this paper is organized as follows: In section 2, we present some pre-
liminaries and lemmas that will be used to prove our main results. Section 3 is devoted
to prove the existence of positive solutions for FBVP (1.1)-(1.2). In section 4 an exam-
ple is worked out to demonstrate our main result.

2. Background and Preliminary lemmas

In this section, we present some notations, definitions and preliminary lemmas
which are used throughout the paper. We also state in this section the nonlinear alter-
native theorem of Leray-Schauder.

For the definitions of fractional integral, fractional derivative, related proprieties
and existence theorems of fractional differential equations we refer the reader to [9, 14].

DEFINITION 1. ([9, 14]) The Riemann-Liouville fractional integral of order α >
0 of a function u : (0,+∞) → R is given by

Iα
0+u(t) =

1
Γ(α)

∫ t

0
(t − s)α−1u(s)ds,

where Γ(α) is the gamma function, provided that the integral exists.

DEFINITION 2. ([9, 14]) The Riemann-Liouville fractional derivative of order
α > 0, of a continuous function u : (0,+∞) → R is defined by

Dα
0+u(t) =

1
Γ(n−α)

(
d
dt

)n ∫ t

0
(t− s)n−α−1u(s)ds,

where n = [α]+1 and [α] denotes the integer part of α , provided that the right side is
pointwise defined on (0,∞) .
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LEMMA 1. ([9]) Let u ∈C (0,+∞)∩L1 (0,+∞) , β � α > 0 , then

Dα
0+Iβ

0+u(t) = Iβ−α
0+ u(t).

LEMMA 2. ([9]) Let α > 0 , then
(i) If μ > −1 , μ �= α − i with i = 1,2, ..., [α]+1 , t > 0 , then

Dα
0+tμ =

Γ(μ +1)
Γ(μ −α +1)

tμ−α , α > 0.

(ii) For i = 1,2, ..., [α]+1 , we have

Dα
0+tα−i = 0.

(iii) For every t ∈ (0,+∞) , u ∈ L1 (0,+∞)

Dα
0+Iα

0+u(t) = u(t).

(iv) For every t ∈ (0,+∞) , u ∈ L1 (0,+∞)

Iα
0+Dα

0+u(t) = u(t)+
n

∑
i=1

cit
α−i, ci ∈ R,n = [α]+1.

(v) Dα
0+u(t) = 0 if and only if u(t) = ∑n

i=1 citα−i , ci ∈ R , n = [α]+1 .

The following lemma is crucial in finding an integral representation of the bound-
ary value problem (1.1)-(1.2).

LEMMA 3. Let h ∈C ([0,+∞)) such that

0 <

∫ ∞

0
h(s)ds < +∞.

For Γ(α) �= μ , the fractional boundary-value problem

Dα
0+u(t)+h(t) = 0, t ∈ (0,+∞) , 2 < α � 3, (2.1)

u(0) = u′(0) = 0, Dα−1
0+ u(∞) =

∫ ∞

0
ϕ (t)u(t)dt, (2.2)

has a unique solution given by

u(t) =
∫ ∞

0
G(t,s)h(s)ds, (2.3)

where
G(t,s) = G1(t,s)+G2(t,s), (2.4)

G1(t,s) = 1
Γ(α)

{
tα−1− (t− s)α−1 , 0 � s � t � +∞
tα−1, 0 � t � s � +∞ (2.5)

and

G2(t,s) =
tα−1

(Γ(α)− μ)

∫ ∞

0
ϕ(t)G1(t,s)dt. (2.6)

The function G(t,s) is called Green’s function of boundary-value problem (2.1)-(2.2) .
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Proof. By Lemmas 1 and 2, we can reduce the equation (2.1) to an equivalent
integral equation

u(t) = − 1
Γ(α)

∫ t

0
(t − s)α−1h(s)ds+ c1t

α−1 + c2t
α−2 + c3t

α−3, (2.7)

for some c1,c2,c3 ∈ R .
From u(0) = u′(0) = 0, we know that c2 = c3 = 0. Thus,

u(t) = − 1
Γ(α)

∫ t

0
(t− s)α−1h(s)ds+ c1t

α−1. (2.8)

On the other hand

Dα−1
0+ u(t) = −

∫ t

0
h(s)ds+ c1Γ(α),

combining with

Dα−1
0+ u(∞) =

∫ ∞

0
ϕ (s)u(s)ds,

we have

c1 =
1

Γ(α)

(∫ ∞

0
ϕ(s)u(s)ds+

∫ ∞

0
h(s)ds

)
.

Therefore, the unique solution of (2.1)-(2.2) is

u(t) = − 1
Γ(α)

∫ t

0
(t− s)α−1h(s)ds+

tα−1

Γ(α)

(∫ ∞

0
ϕ(s)u(s)ds+

∫ ∞

0
h(s)ds

)

= − 1
Γ(α)

∫ t

0
(t− s)α−1h(s)ds+

1
Γ(α)

∫ ∞

0
tα−1h(s)ds

+
1

Γ(α)

∫ ∞

0
tα−1ϕ(s)u(s)ds

=
∫ ∞

0
G1(t,s)h(s)ds+

1
Γ(α)

∫ ∞

0
tα−1ϕ(s)u(s)ds

where G1(t,s) is defined by (2.5).
From

u(t) =
∫ ∞

0
G1(t,s)h(s)ds+

1
Γ(α)

∫ ∞

0
tα−1ϕ(s)u(s)ds (2.9)

we have∫ ∞

0
ϕ(t)u(t)dt =

∫ ∞

0
ϕ(t)

(∫ ∞

0
G1(t,s)h(s)ds+ 1

Γ(α)

∫ ∞

0
tα−1ϕ(s)u(s)ds

)
dt

=
∫ ∞

0
ϕ(t)

(∫ ∞

0
G1(t,s)h(s)ds

)
dt

+ 1
Γ(α)

∫ ∞

0
ϕ(t)

(∫ ∞

0
tα−1ϕ(s)u(s)ds

)
dt
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=
∫ ∞

0
ϕ(t)

∫ ∞

0
G1(t,s)h(s)dsdt

+ 1
Γ(α)

∫ ∞

0
tα−1ϕ(t)dt

∫ ∞

0
ϕ(t)u(t)dt

it follows that∫ ∞

0
ϕ(t)u(t)dt =

1(
1− 1

Γ(α)

∫ ∞

0
tα−1ϕ(t)dt

)∫ ∞

0
ϕ(t)

∫ ∞

0
G1(t,s)h(s)dsdt,

then ∫ ∞

0
ϕ(t)u(t)dt =

Γ(α)
(Γ(α)− μ)

∫ ∞

0
ϕ(t)

∫ ∞

0
G1(t,s)h(s)dsdt. (2.10)

Substituting (2.10) into (2.9), we obtain

u(t) =
∫ ∞

0
G1(t,s)h(s)ds+

tα−1

(Γ(α)− μ)

∫ ∞

0
ϕ(t)

∫ ∞

0
G1(t,s)h(s)dsdt

=
∫ ∞

0
G1(t,s)h(s)ds+

tα−1

(Γ(α)− μ)

∫ ∞

0

(∫ ∞

0
ϕ(t)G1(t,s)dt

)
h(s)ds

=
∫ ∞

0
G1(t,s)h(s)ds+

∫ ∞

0
G2(t,s)h(s)ds

=
∫ ∞

0
G(t,s)h(s)ds

where G(t,s),G1(t,s), and G2(t,s) are defined by (2.4), (2.5) and (2.6) respectively.
The proof is complete.

We need some properties of functions G1(t,s) , G2(t,s) and G(t,s) in order to
discuss the existence of positive solutions.

LEMMA 4. ([11]) The function G1(t,s)defined by (2.5) satisfies
(i) G1(t,s) is a continuous function and G1(t,s) � 0 for (t,s) ∈ [0,+∞)× [0,+∞) ;
(ii) G1(t,s) is strictly increasing in the first variable;
(iii) G1(t,s) is concave in the first variable for 0 < s < t < +∞;
(iv) G1(t,s)/(1+ tα−1) � 1/Γ(α) , for all (t,s) ∈ [0,+∞)× [0,+∞) and,∫ ∞

0
ϕ(t)G1(t,s)dt < μ/Γ(α) for all s ∈ [0,+∞) .

PROPOSITION 1. If μ ∈ (0,Γ(α)) , the function G2(t,s) defined by (2.6) satis-
fies:
(i) G2(t,s) is a continuous function and G2(t,s) � 0 for all (t,s) ∈ [0,+∞)× [0,+∞) ;
(ii) G2(t,s) � μtα−1/Γ(α)(Γ(α)− μ) , for all (t,s) ∈ [0,+∞)× [0,+∞) ;
(iii) G2(t,s)/(1+ tα−1) � μ/Γ(α)(Γ(α)− μ) , for all (t,s) ∈ [0,+∞)× [0,+∞) .

Proof. Using the properties of G1(t,s) , definition of G2(t,s) , it can easily be
shown that (i), (ii) and (iii) hold.
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LEMMA 5. If μ ∈ (0,Γ(α)) , the function G(t,s) defined by (2.4) satisfies:
(i) G(t,s) is a continuous function and G(t,s) � 0 for all (t,s) ∈ [0,+∞)× [0,+∞) ;
(ii) G(t,s)/(1+ tα−1) � 1/(Γ(α)− μ) , for all (t,s) ∈ [0,+∞)× [0,+∞) , where

L =
1

(Γ(α)− μ)
.

Proof. It follows from Lemme 1 and Lemme 2 that G(t,s) is a continuous function
and G(t,s) � 0 for all (t,s) ∈ [0,+∞)× [0,+∞) ;
(ii) If 0 � s, t < +∞ , we have

G(t,s)
1+ tα−1 =

G1(t,s)
1+ tα−1 +

G2(t,s)
1+ tα−1

� 1
Γ(α)

tα−1

1+ tα−1 +
tα−1

1+ tα−1

1
(Γ(α)− μ)

∫ ∞

0
ϕ(t)G1(t,s)dt

� 1
Γ(α)

+
1

(Γ(α)− μ)

∫ ∞

0
ϕ(t)G1(t,s)dt

� 1
Γ(α)

+
1

Γ(α)(Γ(α)− μ)

∫ ∞

0
tα−1ϕ(t)dt

=
1

Γ(α)
+

μ
Γ(α)(Γ(α)− μ)

=
1

Γ(α)

(
1+

μ
Γ(α)− μ

)

=
1

Γ(α)

(
Γ(α)

Γ(α)− μ

)

=
1

Γ(α)− μ
= L.

This complete the proof of Lemma 5.
To establish the existence of solutions for FBVP (1.1)-(1.2), we need the following

known Leray-Schauder nonlinear alternative.

THEOREM 1. ([1] Leray-Schauder nonlinear alternative). Let C be a convex sub-
set of a Banach space, and let U be an open subset of C with 0 ∈U. Then every com-
pletely continuous map T : U −→C has at least one of the following two properties:
(i) T has a fixed point in U ;
(ii) There is an x ∈ ∂ U and λ ∈ (0,1) with x = λTx.

3. Existence of solutions

In this section, we will apply the Leray-Schauder nonlinear alternative theorem 1
to the problem (1.1)-(1.2). For our constructions, we shall consider the space

X =
{

u ∈C (J,R) : lim
t→∞

|u(t)|
1+ tα−1 < +∞

}
, (3.1)
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equipped with the norm

‖u‖X = lim
t→∞

|u(t)|
1+ tα−1 .

LEMMA 6. ([11]) (X ,‖.‖X ) is a Banach space.

The Arzela-Ascoli theorem fails to work in the Banach space X due to the fact that
the infinite interval J = [0,+∞) is noncompact. The following compctness criterion
will help us to resolve this problem.

THEOREM 2. ([12]) Let U ⊂ X be a bounded set. Then U is relatively compact
in X if the following conditions hold:
(i) For any u(t) ∈U , u(t)/(1+ tα−1) is equicontinuous on any compact interval of J.
(ii) For any ε > 0 , there exists a constant T = T (ε) > 0 such that∣∣∣∣∣ u(t1)

1+ tα−1
1

− u(t2)
1+ tα−1

2

∣∣∣∣∣< ε

for any t1, t2 � T and u(t) ∈U.

Define the operator T : X → X by

Tu(t) =
∫ ∞

0
G(t,s) f (s,u(s))ds , 0 � t < +∞ (3.2)

where G(t,s) defined by (2.4),(2.5) and (2.6).
Observe that the problem (1.1)-(1.2) has a solution if and only if the operator T

defined by (3.2) has a fixed point.
In order to use Theorem 1, we must show that T : X → X is completely continu-

ous.

LEMMA 7. Assume that (H1 )-(H2 ) hold. Then the operator T : X → X is com-
pletely continuous.

Proof. We divide the proof into several steps.

(a) The operator T : X → X is uniformly bounded. Let Ω be any bounded subset of
X ; then there exists a constant R > 0 such that ‖u‖X � R . By (H2 ), we have

‖Tu‖X = sup
t∈J

∫ +∞

0

G(t,s)
1+ tα−1 | f (s,u(s))|ds

� 1
(Γ(α)− μ)

∫ +∞

0

[
a(s)+b(s)

(
1+ sα−1)ρ |u(s)|ρ

(1+ sα−1)ρ

]
ds

� a+b‖u‖ρ
X

(Γ(α)− μ)
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� a+bRσ

(Γ(α)− μ)
< +∞.

This shows that TΩ is uniformly bounded.

(b) The operator T : X → X is continuous. Take un , u ∈ X such that ‖un‖X < +∞ ,
‖u‖X < +∞ and un → u as n → ∞ . Then by (H2 ), we have

∫ ∞

0

G(t,s)
1+ tα−1 f (s,un(s))ds

� 1
(Γ(α)− μ)

∫ ∞

0

[
a(s)+b(s)

(
1+ sα−1)ρ |un(s)|ρ

(1+ sα−1)ρ

]
ds

� a+b‖un‖ρ
X

(Γ(α)− μ)
< +∞.

By the Lebesgue dominated convergence theorem and continuity of f , we obtain

lim
n→∞

∫ ∞

0

G(t,s)
1+ tα−1 f (s,un(s))ds =

∫ ∞

0

G(t,s)
1+ tα−1 f (s,u(s))ds.

Taking the limit n → ∞ , we get

‖Tun −Tu‖X = sup
t∈J

∫ ∞

0

G(t,s)
1+ tα−1 | f (s,un(s))− f (s,u(s))|ds → 0.

Therefore T is continuous.

(c) The operator T : X → X is equicontinuous. We consider tow cases.

(c1 ) Let I ⊂ J be any compact interval and t1,t2 ∈ I are such that t1 < t2 . Let Ω be
any bounded subset of X , then for any u ∈ Ω , we have∣∣∣∣∣ Tu(t2)

1+ tα−1
2

− Tu(t1)
1+ tα−1

1

∣∣∣∣∣
=

∣∣∣∣∣
∫ ∞

0

(
G(t2,s)
1+ tα−1

2

− G(t1,s)
1+ tα−1

1

)
f (s,u(s))ds

∣∣∣∣∣
�
∫ ∞

0

∣∣∣∣∣ G(t2,s)
1+ tα−1

2

− G(t1,s)
1+ tα−1

1

∣∣∣∣∣
(

a(s)+b(s)
(
1+ sα−1)ρ |u(s)|ρ

(1+ sα−1)ρ

)
ds

�
∫ ∞

0

∣∣∣∣∣ G(t2,s)
1+ tα−1

2

− G(t1,s)
1+ tα−1

1

∣∣∣∣∣
(
a(s)+b(s)

(
1+ sα−1)ρ ‖u‖ρ

X

)
ds.

So,
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1+ tα−1

2

− Tu(t1)
1+ tα−1

1

∣∣∣∣∣
�
∫ ∞

0

∣∣∣∣∣ G(t2,s)
1+ tα−1

2

− G(t1,s)
1+ tα−1

1

∣∣∣∣∣
(
a(s)+b(s)

(
1+ sα−1)ρ ‖u‖ρ

X

)
ds. (3.3)

Since G(t,s) is continuous on J × J, we have that G(t,s)/(1+ tα−1) is a uni-
formly continuous function on the compact set I × I . Moreover, for s � t, we have
that this function only depends on t , in consequence it is uniformly continuous on
I× (J \ I) . So we have that for all s ∈ J and t1,t2 ∈ I the following property holds:

For all ε > 0 there is δ (ε) > 0 such that if |t2 − t1| < δ then,∣∣∣∣∣ G(t2,s)
1+ tα−1

2

− G(t1,s)
1+ tα−1

1

∣∣∣∣∣< ε.

By this, together with (3.3), and the fact that∫ ∞

0

(
a(s)+b(s)

(
1+ sα−1)ρ

Rρ
)

ds < ∞, (3.4)

we can get that TΩ is equicontinuous on I.

(c2 ) In fact, when t → ∞ , we have

lim
t→∞

G(t,s)
1+ tα−1 = 0. (3.5)

From this, it is not difficult to verify that for any given ε > 0, there is a constant
T ′ = T ′(ε) > 0 such that ∣∣∣∣∣ G(t2,s)

1+ tα−1
2

− G(t1,s)
1+ tα−1

1

∣∣∣∣∣< ε.

for any t1, t2 � T ′ and s ∈ J . Hence, T is equiconvergent at ∞.
Thus the conclusion of Theorem 2 applies that hence T is relatively compact on

J . So, T : X → X is completely continuous. This completes the proof.

We are now in a position to state and prove our existence result for the FBVP
(1.1)-(1.2).

THEOREM 3. Assume that (H1 ) and (H2 ) with σ = 1 hold. If there exists r > 0
such that

r

(
1− b

(Γ(α)− μ)

)
>

a
(Γ(α)− μ)

. (3.6)

Then problem (1.1)-(1.2) has a solution u(t) satisfying

0 � u(t) �
(
1+ tα−1)r , for t ∈ J.
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Proof. Let U = {u ∈ X , ‖u‖X < r} . For u ∈ ∂U , if there exist λ ∈ (0,1) such
that u = λTu , then we have

‖u‖X = sup
t∈J

|u(t)|
1+ tα−1

= sup
t∈J

|λ (Tu)(t)|
1+ tα−1

� sup
t∈J

∫ ∞

0

G(t,s)
1+ tα−1 | f (s,u(s))|ds

� 1
(Γ(α)− μ)

∫ ∞

0
|a(s)+b(s)u(s)|ds

� a+b‖u‖X

(Γ(α)− μ)
.

This implies that

r

(
1− b

(Γ(α)− μ)

)
� a

(Γ(α)− μ)
,

which contradicts (3.6). By Lemma 7 and Theorem 1, we conclude that problem (1.1)-
(1.2) has a solution u(t) satisfying

0 � u(t) �
(
1+ tα−1)r , for t ∈ J.

This completes the proof.

THEOREM 4. Assume that (H1 ) and (H2 ) with 0 < σ < 1 hold. If there exists
r > 0 such that

r > max

{
2a

(Γ(α)− μ)
,

(
2b

(Γ(α)− μ)

) 1
1−ρ
}

. (3.7)

Then problem (1.1)-(1.2) has a solution u(t) satisfying

0 � u(t) �
(
1+ tα−1)r , for t ∈ J.

Proof. In this case, we take

r > max

{
2a

(Γ(α)− μ)
,

(
2b

(Γ(α)− μ)

) 1
1−ρ
}

.

The rest of the proof is similar to that of Theorem 3. So we omit it.

THEOREM 5. Assume that (H1 ) and (H2 ) with σ > 1 hold. If there exists r > 0
such that

2a
(Γ(α)− μ)

< r <

(
2b

(Γ(α)− μ)

) 1
1−ρ

. (3.8)
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Then problem (1.1)-(1.2) has a solution u(t) satisfying

0 � u(t) �
(
1+ tα−1)r , for t ∈ J.

Proof. In this case, we take

2a
(Γ(α)− μ)

< r <

(
2b

(Γ(α)− μ)

) 1
1−ρ

.

The rest of the proof is similar to that of Theorem 3 . So we omit it.

4. Application

We consider the following fractional boundary value problem on an unbounded
domaine

D
5
2
0+u(t)+

1
1+ t2

+
|u(t)|σ

(1+ t4)
(
1+ t

3
2

) = 0, t ∈ J = [0,+∞) , (4.1)

u(0) = u′(0) = 0, Dα−1
0+ u(∞) =

∫ ∞

0

√
t exp(t)
1+ t2

u(t)dt, (4.2)

where α = 5/2, ϕ (t) =
√

t exp(t)/(1+ t2) and

f (t,u) = 1/(1+ t2)+ |u(t)|σ /
(
1+ t4

)(
1+ t

3
2
)
.

Then we can easily show that

| f (t,u(t))| =
∣∣∣∣∣ 1
1+ t2

+
|u(t)|σ

(1+ t4)
(
1+ t

3
2
)
∣∣∣∣∣

� 1
1+ t2

+
|u(t)|σ

(1+ t4)
(
1+ t

3
2
) ,

obviously, for a.e. t ∈ [0,+∞) , we have

μ =
∫ +∞

0
tα−1ϕ(t)dt =

∫ ∞

0

t2 exp(t)
t2 +1

dt = 0.37855.

Then μ ∈ (0, 1.3293) , where Γ(5/2) = 1.3293. Hence (H1 ) is satisfied.
Also, set

a(t) = 1/(1+ t2) and b(t) = 1/
(
1+ t4

)(
1+

√
t
)

for t ∈ [0,+∞) .

Then we can easily show that

f (t,u(t)) � a(t)+b(t) |u(t)|ρ .
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By simple calculations we have:

Case 1. For σ = 1, an easy computation shows that:

a =
∫ +∞

0
a(t)dt =

∫ +∞

0

1
1+ t2

dt = 1.5708

and

b =
∫ +∞

0

(
1+ tα−1)ρ

b(t)dt =
∫ +∞

0

1+ t
3
2

(1+ t4)
(
1+ t

3
2

)dt = 1.1107.

So, condition (H2 ) hold. Then by an application of Theorem 3 the FBVP (4.1)-
(4.1) has a solution u(t) satisfying

0 � u(t) �
(
1+ tα−1)r , for t ∈ J,

where

r(1−b)/
(
Γ(α)− μ

)
> a/

(
Γ(α)− μ

)
,(

1−b
)
/
(
Γ(α)− μ

)
= −0.16824,

a/
(
Γ(α)− μ

)
= 1.5708(1.3293−0.37855)= 1.6522.

Case 2. For σ = 0.5 < 1. An easy computation shows that:

a =
∫ +∞

0
a(t)dt =

∫ +∞

0

1
1+ t2

dt = 1.5708,

and

b =
∫ +∞

0

(
1+ tα−1)ρ

b(t)dt =
∫ ∞

0

1

(t4 +1)
√

t
3
2 +1

dt = 0.90382.

So, condition (H2 ) hold. Then by an application of Theorem 4 the FBVP (4.1)-(4.1)
has a solution u(t) satisfying

0 � u(t) �
(
1+ tα−1)r , for t ∈ J.

Here

r > max

{
2a

(Γ(α)− μ)
,

(
2b

(Γ(α)− μ)

) 1
1−ρ
}

= 3.3043.

Case 3: For σ = 2 > 1. An easy computation shows that:

a =
∫ +∞

0
a(t)dt =

∫ +∞

0

1
1+ t2

dt = 1.5708

and

b =
∫ +∞

0

(
1+ tα−1)ρ

b(t)dt =
∫ ∞

0

1
t4 +1

(
t

3
2 +1

)
dt = 1.9608.
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So, condition (H2 ) hold. Then by an application of Theorem 5 the FBVP (4.1)-(4.1)
has a solution u(t) satisfying

0 � u(t) �
(
1+ tα−1)r , for t ∈ J.

Here

2a
(Γ(α)− μ)

= 3.3043 < r <

(
2b

(Γ(α)− μ)

) 1
1−ρ

= 17.013
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