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Abstract. We consider Cauchy problems associated to first and second order semilinear integro-
differential inclusions in separable Banach spaces and we establish some Filippov type existence
existence results.

1. Introduction

This paper is concerned with the following semilinear differential inclusions

x′ ∈ Ax+F(t,x,V (x)(t)), x(0) = x0, (1.1)

x′′ ∈ Ax+F(t,x,V (x)(t)), x(0) = x0, x′(0) = y0, (1.2)

where X is a real separable Banach space, P(X) is the family of all subsets of X ,
I = [0,T ] , F(., ., .) : I×X2 → P(X) , x0,y0 ∈ X and V : C(I,X) →C(I,X) is a non-
linear Volterra integral operator. In (1.1) A is the infinitesimal generator of a strongly
continuous semigroup {G(t); t � 0} of bounded linear operators on X and in (1.2)
A is the infinitesimal generator of a strongly continuous cosine family of operators
{C(t); t � 0} on X .

We consider both classes of semilinear inclusions because it is well known that the
study of mild solutions of second order semilinear differential equations defined by the
infinitesimal generator of a strongly continuous cosine family of operators is similar to
the study of mild solutions of first order semilinear differential equations defined by the
infinitesimal generator of a strongly continuous semigroup of operators.

In the case when F does not depend on the last variable, i.e., without Volterra
integral operators, existence results and qualitative properties of the mild solutions of
problem (1.1) may be found in [5, 6, 7, 9, 11] etc. and for problem (1.2) in [2, 3, 5] etc..

The present paper is motivated by a recent paper of Tatar [12] where it is consid-
ered problem (1.2) with F single valued and with V (x)(t) = tγDβ x(t) with β ∈ (1,2) ,
γ � 0, Dβ is the Riemann-Liouville fractional derivative of order β and where several
existence results are provided.

Mathematics subject classification (2010): 34A60, 34A08.
Keywords and phrases: semilinear differential inclusion; mild solution; decomposable set.
This research is supported by the CNCS grant PN-II-ID-PCE-2011-3-0198.

c© � � , Zagreb
Paper DEA-07-20

347

http://dx.doi.org/10.7153/dea-07-20


348 AURELIAN CERNEA

In the present paper we extend the study in [12] to the more general problem (1.2)
and our aim is twofold. On one hand, we show that Filippov’s ideas ([9]) can be suitably
adapted in order to obtain the existence of mild solutions of problems (1.1) and (1.2).
We recall that for a first order differential inclusion defined by a lipschitzian set-valued
map with nonconvex values Filippov’s theorem ([9]) consists in proving the existence
of o solution starting from a given ”quasi” solution. Moreover, the result provides
an estimate between the starting ”quasi” solution and the solution of the differential
inclusion. On the other hand, we prove the existence of mild solutions continuously
depending on a parameter for problems (1.1) and (1.2). This result may be seen as a
continuous variant of Filippov’s theorem. The key tool in the proof of this theorem is a
result of Bressan and Colombo ([4]) concerning the existence of continuous selections
of lower semicontinuous multifunctions with decomposable values.

The paper is organized as follows: in Section 2 we recall some preliminary results
that we use in the sequel, in Section 3 we obtain our Filippov type existence results and
in Section 4 we treat the parameterized situation.

2. Preliminaries

In what follows I = [0,T ] , X is a real separable Banach space with norm |.| and
with the correspondingmetric d(., .) . As usual, we denote by C(I,X) the Banach space
of all continuous functions x(.) : I → X endowed with the norm |x(.)|C = supt∈I |x(t)|
and by L1(I,X) the Banach space of all (Bochner) integrable functions x(.) : I → X
endowed with the norm |x(.)|1 =

∫ T
0 |x(t)|dt . By B(X) we mean the Banach space of

bounded linear operators from X into X .
Denote by L (I) the σ -algebra of all Lebesgue measurable subsets of I and by

B(X) the family of all Borel subsets of X . If A ⊂ I then χA(.) : I → {0,1} denotes
the characteristic function of A . For any subset A ⊂ X we denote by cl(A) the closure
of A .

In the sequel V :C(I,X)→C(I,X) is a nonlinear Volterra integral operator defined
by V (x)(t) =

∫ t
0 k(t,s,x(s))ds where k(., ., .) : I ×X ×X → X is a given function and

F(., ., .) : I×X ×X → P(X) is a set-valued map.
Let {G(t)}t�0 ⊂ B(X) be a strongly continuous semigroup of bounded linear op-

erators from X to X having the infinitesimal generator A which defines differential
inclusion (1.1)

It is well known that, in general, the Cauchy problem

x′ = Ax+ f (t), x(0) = x0 (2.1)

may not have a classical solution and that a way to overcome this difficulty is to look
for continuous solutions of the integral equation

x(t) = G(t)x0 +
∫ t

0
G(t−u) f (u)du. (2.2)

This is why the concept of the mild solution is convenient for solving (2.1).
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A continuous mapping x(.) ∈C(I,X) is called a mild solution of problem (1.1) if
there exists a (Bochner) integrable function f (.) ∈ L1(I,X) such that

f (t) ∈ F(t,x(t),V (x)(t)) a.e. (I) (2.3)

and (2.2) is satisfied, i.e., f (.) is a (Bochner) integrable selection of the set-valued map
F(.,x(.),V (x)(.)) and x(.) is the mild solution of the initial value problem (2.1).

We shall call (x(.), f (.)) a trajectory-selection pair of (1.1) if f (.) verifies (2.3)
and x(.) is a mild solution of (2.1).

We shall use the following notations for the solution set of (1.1)

S1(x0) = {x(.); x(.) is a mild solution of (1.1)}.
We recall that a family {C(t); t ∈R} of operators in B(X) is a strongly continuous

cosine family if the following conditions are satisfied:

(i) C(0) = I , where I is the identity operator in X ,

(ii) C(t + s)+C(t− s) = 2C(t)C(s) ∀t,s ∈ R ,

(iii) the map t →C(t)x is strongly continuous ∀x ∈ X .

The strongly continuous sine family {S(t); t ∈ R} associated to a strongly contin-
uous cosine family {C(t); t ∈ R} is defined by S(t)x :=

∫ t
0 C(s)xds , x ∈ X ,t ∈ R.

The infinitesimal generator A : X → X of a cosine family {C(t); t ∈ R} is defined

by Ax = ( d2

dt2
)C(t)x|t=0 .

Fore more details on strongly continuous cosine and sine family of operators we
refer to [8, 13].

In what follows A is infinitesimal generator of a cosine family {C(t); t ∈ R}
which defines Cauchy problem (1.2).

A continuous mapping x(.) ∈C(I,X) is called a mild solution of problem (1.2) if
there exists a (Bochner) integrable function f (.) ∈ L1(I,X) such that (2.3) is satisfied
and

x(t) = C(t)x0 +S(t)y0 +
∫ t

0
S(t−u) f (u)du ∀t ∈ I,

i.e., f (.) is a (Bochner) integrable selection of the set-valued map F(.,x(.),
V (x)(.)) and x(.) is the mild solution of the Cauchy problem

x′′ = Ax+ f (t) x(0) = x0, x′(0) = y0.

We make the following notation

S2(x0,y0) = {x(.); x(.) is a mild solution of (1.2)}.
Finally, we recall several preliminary results we shall use in the sequel.

LEMMA 2.1. Let X be a separable Banach space, let H : I → P(X) be a mea-
surable set-valued map with nonempty closed values and g,h : I → X ,L : I → (0,∞)
measurable functions. Then one has.

i) The function t → d(h(t),H(t) is measurable.
ii) If H(t)∩(g(t)+L(t)B) �= /0 a.e. (I) then the set-valued map t →H(t)∩(g(t)+

L(t)B) has a measurable selection.
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Its proof may be found in [1].
A subset D⊂ L1(I,X) is said to be decomposable if for any u(·),v(·) ∈D and any

subset A ∈ L (I) one has uχA + vχB ∈ D , where B = I\A . We denote by D(I,X) the
family of all decomposable closed subsets of L1(I,X) .

Next (S,d) is a separable metric space; we recall that a set-valued map G(·) : S →
P(X) is said to be lower semicontinuous (l.s.c.) if for any closed subset C ⊂ X , the
subset {s ∈ S;G(s) ⊂C} is closed. The proof of the next two lemmas may be found in
[4].

LEMMA 2.2. Let F∗(., .) : I×S→P(X) be a closed-valued L (I)⊗B(S) mea-
surable set-valued map such that F∗(t, .) is l.s.c. for any t ∈ I .

Then the set-valued map G(.) : S → D(I,X) defined by

G(s) = {v ∈ L1(I,X); v(t) ∈ F∗(t,s) a.e. (I)}
is l.s.c. with nonempty closed values if and only if there exists a continuous mapping
p(.) : S → L1(I,X) such that

d(0,F∗(t,s)) � p(s)(t) a.e. (I), ∀s ∈ S.

LEMMA 2.3. Let G(.) : S → D(I,X) be a l.s.c. set-valued map with closed de-
composable values and let φ(.) : S → L1(I,X) , ψ(.) : S → L1(I,R) be continuous such
that the set-valued map H(.) : S → D(I,X) defined by

H(s) = cl{v ∈ G(s); |v(t)−φ(s)(t)| < ψ(s)(t) a.e. (I)}
has nonempty values.

Then H has a continuous selection, i.e. there exists a continuous mapping h : S →
L1(I,X) such that h(s) ∈ H(s) ∀s ∈ S.

3. A Filippov type result

In order to establish our existence result for problem (1.1) we need the following
hypotheses.

Hypothesis 1. i) F(., ., .) : I × X × X → P(X) has nonempty closed values and is
L (I)⊗B(X ×X) measurable.

ii) There exists L(.) ∈ L1(I,R+) such that, for almost all t ∈ I,F(t, ., .) is L(t)-
Lipschitz in the sense that for almost t ∈ I

d(F(t,x1,y1),F(t,x2,y2)) � L(t)(|x1 − x2|+ |y1− y2|) ∀ x1,x2,y1,y2 ∈ X ,

where d(A,B) is the Hausdorff distance

d(A,B) = max{d∗(A,B),d∗(B,A)}, d∗(A,B) = sup{d(a,B);a ∈ A}.
iii) k(., ., .) : I×X ×X → X satisfy: ∀x ∈ X , (t,s) → k(t,s,x) is measurable and

|k(t,s,x)− k(t,s,y)| � L(t)|x− y| a.e.(t,s) ∈ I× I, ∀x,y ∈ X .
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We shall use next the following notations

m(t) =
∫ t

0
L(u)du, α(x) =

(x+1)2−1
2

, x ∈ R.

In what follows u0 ∈ X , g(.) ∈ L1(I,X) and y(.) ∈ C(I,X) is a mild solution of
the Cauchy problem

y′ = Ay+g(t) y(0) = u0,

where A is the infinitesimal generator of a strongly continuous semigroup {G(t); t � 0}
of bounded linear operators on X .

Let M1 � 1 be such that |G(t)| � M1 ∀t ∈ I.

Hypothesis 2. i) Hypothesis 1 is satisfied.
ii) A is the infinitesimal generator of a strongly continuous semigroup {G(t); t �

0} of bounded linear operators on X .
iii) The function t → p(t) := d(g(t),F(t,y(t),V (y)(t)) is integrable on I .

THEOREM 3.1. Consider δ � 0 and assume that Hypothesis 2 is satisfied. Then
for any x0 ∈ X with |x0 −u0| � δ and any ε > 0 there exists (x(.), f (.)) a trajectory-
selection pair of (1.1) such that

|x(t)− y(t)| � ξ (t) ∀ t ∈ I,

| f (t)−g(t)|� L(t)(ξ (t)+
∫ t

0
L(u)ξ (u)du)+ γ(t)+ ε a.e. (I),

where

ξ (t) = δeM1α(m(t)) +
∫ t

0
p(u)eM1α(m(t)−m(u))du+M1tε.

Proof. Let ε > 0 and set x0(t) ≡ y(t) , f0(t) ≡ g(t) , t ∈ I ,

pn(t) =
∫ t

0
p(u)

(α(m(t)−m(u))n−1

(n−1)!
du+

(α(m(t))n−1

(n−1)!
|x0−u0|,n � 1.

We claim that is enough to construct the sequences xn(.) ∈ C(I,X) , fn(.) ∈ L1(I,X) ,
n � 1 with the following properties

xn(t) = G(t)x0 +
∫ t

0
G(t − s) fn(s)ds, ∀t ∈ I, (3.1)

|x1(t)− x0(t)| � M1(δ +
∫ t

0
p(u)du+ εt) =: p0(t) ∀t ∈ I, (3.2)

| f1(t)− f0(t)| � p(t)+ ε a.e. (I), (3.3)

fn(t) ∈ F(t,xn−1(t),V (xn−1)(t)) a.e.(I), n � 1, (3.4)

| fn+1(t)− fn(t)| � L(t)(|xn(t)− xn−1(t)|+
∫ t

0
L(u)|xn(u)− xn−1(u)|du) a.e., (3.5)
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|xn(t)− xn−1(t)| � Mn−1
1 pn(t) ∀t ∈ I. (3.6)

Indeed, from (3.6) {xn(.)} is a Cauchy sequence in the Banach space C(I,X) .
Thus, from (3.5) for almost all t ∈ I , the sequence { fn(t)} is Cauchy in X . Moreover,
from (3.2) and the last inequality we have

|xn(t)− y(t)|�
n−1

∑
i=0

|xi+1(t)− xi(t)| �
n−1

∑
i=0

Mi
1pi+1(t) � ξ (t) (3.7)

On the other hand, from (3.3), (3.5) and (3.6) we obtain for almost all t ∈ I

| fn(t)−g(t)|
� ∑n−1

i=1 | fi+1(t)− fi(t)|+ | f1(t)−g(t)|
� L(t)(ξ (t)+

∫ t
0 L(u)ξ (u)du)+ γ(t)+ ε.

(3.8)

Let x(.) ∈C(I,X) be the limit of the Cauchy sequence xn(.) . From (3.8) the sequence
fn(.) is integrably bounded and we have already proved that for almost all t ∈ I , the
sequence { fn(t)} is Cauchy in X . Take f (.) ∈ L1(I,X) with f (t) = limn→∞ fn(t) .

Passing to the limit in (3.1) and using Lebesgue’s dominated convergence theorem
we get (2.2). Finally, passing to the limit in (3.7) and (3.8) we obtained the desired
estimations.

It remains to construct the sequences xn(.), fn(.) with the properties in (3.1)-(3.6).
The construction will be done by induction.

The set-valued map t → F(t,y(t),V (y)(t)) is measurable with closed values and

F(t,y(t),V (y)(t))∩{g(t)+ (p(t)+ ε)B} �= /0 a.e. (I).

From Lemma 2.1 we find f1(.) a measurable selection of the set-valued map H1(t) :=
F(t,y(t),V (y)(t))∩{g(t)+ (p(t)+ ε)B} . Obviously, f1(.) satisfy (3.3). Define x1(.)
as in (3.1) with n = 1. Therefore, we have

|x1(t)− y(t)|� |G(t)(x0−u0)|+ |
∫ t

0
G(t − s)( f1(s)−g(s))ds|

� M1δ +M
∫ t

0
(p(s)+ ε)ds = p0(t).

Assume that for some N � 1 we already constructed xn(.) ∈C(I,X) and fn(.) ∈
L1(I,X),n = 1,2, ...N satisfying (3.1)-(3.6). We define the set-valued map

HN+1(t) := F(t,xN(t),V (xN)(t))∩
{

fN(t)+L(t)(|xN(t)− xN−1(t)|

+
∫ t

0
L(u)|xN(u)− xN−1(u)|duB

}
, t ∈ I.

The set-valued map t → F(t,xN(t),V (xN)(t)) is measurable and from the lips-
chitzianity of F(t, ., .) we have that for almost all t ∈ I HN+1(t) �= /0 . We apply Lemma
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2.1 and find a measurable selection fN+1(.) of F(.,xN(.),V (xN)(.)) such that for al-
most t ∈ I

| fN+1(t)− fN(t)| � L(t)
(
|xN(t)− xN−1(t)|+

∫ t

0
L(u)|xN(u)− xN−1(u)|du

)
.

We define xN+1(.) as in (3.1) with n = N +1 and we get

|xN+1(t)− xN(t)| � M1

∫ t

0
| fN+1(u)− fN(u)|du

� M1

∫ t

0
L(u)

(
|xN(u)− xN−1(u)|

+
∫ u

0
L(s)|xN(s)− xN−1(s)|ds

)
du

� M1

∫ t

0
L(u)

(
MN−1

1 pN(u)+
∫ u

0
L(s)MN−1

1 pN(r)dr

)
du.

We shall prove next that

∫ t

0
L(u)

(
pn(u)+

∫ u

0
L(r)pn(r)dr

)
du � pn+1(t) (3.9)

and therefore (3.6) holds true with n = N +1 which completes the proof.
One has
∫ t

0
L(u)(pn(u)+

∫ u

0
L(r)pn(r)dr)du

=
∫ t

0
(1+m(t)−m(u))L(u)pn(u)du

=
∫ t

0
(1+m(t)−m(u))L(u)

(α(m(u))n−1

(n−1)!
|x0−u0|du

+
∫ t

0
(1+m(t)−m(u))L(u)

(∫ u

0
p(r)

(α(m(t)−m(r))n−1

(n−1)!
dr

)
du

� |x0−u0|
∫ t

0
(1+m(t)−m(u))L(u)

(α(m(u)))n−1

(n−1)!

+
∫ t

0

(∫ t

r

(α(m(u)−m(r)))n−1

(n−1)!
(1+m(t)−m(u))L(u)

)
p(r)drdu.

According to the definition of α(.) we have

∫ t

0
(1+m(t)−m(u))L(u)

α(m(u)))n−1

(n−1)!
du

=
∫ t

0
(2+m(t))L(u)

(α(m(u))n−1

(n−1)!
du

(α(m(t))n

n!
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� (m(t)+2)
(m(t)/2+1)n−1

(n−1)!

∫ t

0
(m(u))n−1L(u)du− (α(m(t)))n

n!

=
(α(m(t)))n

n!
.

As above we deduce that
∫ t

r

(α(m(u)−m(r))))n−1

(n−1)!
(1+m(t)−m(u))L(u)du � (α(m(t)−m(r)))n

n!

and inequality (3.9) is proved.

REMARK 3.1. In the particular case when F does not depend on the last variable,
problem (1.1) reduces to the semilinear differential inclusion

x′ ∈ Ax+F(t,x), x(0) = x0, (3.10)

and the corresponding Filippov type theorem for the mild solutions of problem (3.10)
may be found in [10].

EXAMPLE 3.1. Consider the following Cauchy problem

x′ ∈ ax+[0,t sin(
∫ t

0
x(s)ds)], x(0) = x0,

where a,x0 ∈ R and I = [0,1] . We take

V (x)(t) =
∫ t

0
x(s)ds, F(t,z) = [0, t sinz],

G(t) = eat and g = y = 0.

We have

sup{|u|;u ∈ F(t,z)} � |t| � 1 and dH(F(x,z1),F(x,z2)) � |z1 − z2|, ∀z1,z2 ∈ R.

Therefore, we apply Theorem 3.1 in order to obtain the existence of a solution for the
problem considered.

Next we consider u0,v0 ∈ X , g(.) ∈ L1(I,X) and y(.) ∈C(I,X) is a mild solution
of the Cauchy problem

y′′ = Ay+g(t) y(0) = u0, y′(0) = v0,

where A is the infinitesimal generator of a strongly continuous cosine family of opera-
tors {C(t); t ∈ R} on X .

Let M2 � 0 be such that |C(t)| � M2 ∀ t ∈ I . Note that |S(t)| � M2t ∀ t ∈ I .

Hypothesis 3. i) Hypothesis 1 is satisfied.
ii) A is the infinitesimal generator of a strongly continuous cosine family of oper-

ators {C(t); t ∈ R} on X .
iii) The function t → p(t) := d(g(t),F(t,y(t),V (y)(t)) is integrable on I .
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THEOREM 3.2. Consider δ � 0 and assume that Hypothesis 3 is satisfied. Then
for any x0,y0 ∈ X with M2(|x0 − u0|+ T |y0 − v0|) � δ and any ε > 0 there exists
(x(.), f (.)) a trajectory-selection pair of (1.2) such that

|x(t)− y(t)| � ξ (t) ∀ t ∈ I,

| f (t)−g(t)|� L(t)(ξ (t)+
∫ t

0
L(u)ξ (u)du)+ γ(t)+ ε a.e. (I),

where

ξ (t) = δeM2Tα(m(t)) +
∫ t

0
p(u)eM2Tα(m(t)−m(u))du+M2Ttε.

Proof. The proof is similar to the one of Theorem 3.1.

EXAMPLE 3.2. Consider the following Cauchy problem

x′′ ∈ −a2x+
[
0,t sin(

∫ t

0
x(s)ds)

]
, x(0) = x0, x′(0) = y0,

where a,x0,y0 ∈ R , a �= 0 and I = [0,1] . We take

V (x)(t) =
∫ t

0
x(s)ds, F(t,z) = [0, t sinz],

C(t) = cos(at), S(t) =
sin(at)

a
and g = y = 0.

As in Example 3.1 the assumptions of Theorem 3.2 are satisfied; hence we deduce the
existence of a solution for the problem considered.

4. Continuous family of solutions

In order to establish our continuous version of Filippov theorem for problem (1.1)
we need the following hypotheses.

Hypothesis 4. i) A is the infinitesimal generator of a strongly continuous semigroup
{G(t); t � 0} of bounded linear operators on X .

ii) S is a separable metric space and a(.) : S→X , c(.) : S→ (0,∞) are continuous
mappings.

(ii) There exists the continuous mappings g(.) : S → L1(I,X) , p(.) : S → R , y(.) :
S →C(I,X) such that

(y(s))′(t) = Ay(s)(t)+g(s)(t) ∀s ∈ S,t ∈ I

and
d(g(s)(t),F(t,y(s)(t),V (y(s))(t)) � p(s)(t) a.e. (I), ∀ s ∈ S.



356 AURELIAN CERNEA

THEOREM 4.1. Assume that Hypotheses 1 and 4 are satisfied.
Then there exist the continuous mappings x(.) : S → C(I,X) , f (.) : S → L1(I,X)

such that for any s ∈ S , (x(s)(.), f (s)(.)) is a trajectory-selection pair of

x′ ∈ Ax+F(t,x,V (x)(t)), x(0) = a(s)

and
|x(s)(t)− y(s)(t)| � ξ (s)(t) ∀(t,s) ∈ I×S, (4.1)

| f (s)(t)−g(s)(t)| � L(t)(ξ (s,t)+
∫ t

0
L(u)ξ (s,u)du)+ p(s)(t)+ c(s) a.e.(I), (4.2)

∀s ∈ S , where

ξ (s, t) = M1e
M1α(m(t))[tc(s)+ |a(s)− y(s)(0)|]+

∫ t

0
p(s)(u)eM1α(m(t)−m(u))du.

Proof. We denote

εn(s) = c(s)
n+1
n+2

, n = 0,1, ..., d(s) = M1|a(s)− y(s)(0)|,

and

pn(s)(t) = Mn
1

∫ t

0
p(s)(u)

(m(t)−m(u))n−1

(n−1)!
du

+Mn−1
1

(m(t))n−1

(n−1)!
(M1tεn(s)+d(s)), n � 1.

Set also x0(s)(t) = y(s)(t) , f0(s)(t) = g(s)(t) , ∀s ∈ S .
We consider the set-valued maps G0(.),H0(.) defined, respectively, by

G0(s) = {v ∈ L1(I,X); v(t) ∈ F(t,y(s)(t),V (y(s))(t)) a.e.(I)},

H0(s) = cl{v ∈ G0(s); |v(t)−g(s)(t)|< p(s)(t)+ ε0(s)}.
Since

d(g(s)(t),F(t,y(s)(t),V (y(s))(t)) � p(s)(t) < p(s)(t)+ ε0(s),

according with Lemma 2.1, the set H0(s) is not empty.
Set F∗

0 (t,s) = F(t,y(s)(t),V (y(s))(t)) and note that

d(0,F∗
0 (t,s)) � |g(s)(t)|+ p(s)(t) = p∗(s)(t)

and p∗(.) : S → L1(I,X) is continuous.
Applying now Lemmas 2.2 and 2.3 we obtain the existence of a continuous selec-

tion f0 of H0 , i.e. such that

f0(s)(t) ∈ F(t,y(s)(t),V (y(s))(t)) a.e.(I), ∀s ∈ S,
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| f0(s)(t)−g(s)(t)| � p0(s)(t) = p(s)(t)+ ε0(s) ∀s ∈ S, t ∈ I.

We define

x1(s)(t) = G(t)a(s)+
∫ t

0
G(t −u) f0(s)(u)du

and one has

|x1(s)(t)− x0(s)(t)| � M1|a(s)− y(s)(0)|+M1

∫ t

0
| f0(s)(u)−g(s)(u)|du

� d(s)+M1

∫ t

0
(p(s)(u)+ ε0(s))du = p1(s)(t).

We shall construct two sequences of approximations fn(.) : S → L1(I,X) , xn(.) :
S →C(I,X) with the following properties:

a) fn(.) : S → L1(I,X) , xn(.) : S →C(I,X) are continuous.

b) fn(s)(t) ∈ F(t,xn(s)(t),V (xn(s))(t)) , a.e. (I) , s ∈ S .

c) | fn(s)(t)− fn−1(s)(t)| � L(t)(pn(s)(t)+
∫ t
0 L(u)pn(s)(u)du) , a.e. (I) , s ∈ S .

d) xn+1(s)(t) = G(t)a(s)+
∫ t
0 G(t−u) fn(s)(u)du , ∀t ∈ I,s ∈ S .

Suppose we have already constructed fi(.),xi(.) , i = 1, ...,n satisfying a)-c) and
define xn+1(.) as in d). As in the proof of inequality (3.9) we have

∫ t

0
L(u)(pn(s)(u)+

∫ u

0
L(r)pn(s)(r)dr)du � pn+1(s)(t)− c(s)(α(m(t)))nt

(n+2)(n+3)n!
. (4.3)

From c) and d) one has

|xn+1(s)(t)− xn(s)(t)|
� M1

∫ t
0 | fn(s)(u)− fn−1(s)(u)|du

� M1
∫ t
0 L(u)(pn(s)(u)+

∫ u
0 L(r)pn(s)(r)dr)du < pn+1(s)(t).

(4.4)

Consider the following set-valued maps, for any s ∈ S ,

Gn+1(s) =
{
v ∈ L1(I,X); v(t) ∈ F(t,xn+1(s)(t),V (xn+1(s))(t)) a.e.(I)

}
,

and

Hn+1(s) = cl
{

v ∈ Gn+1(s); |v(t)− fn(s)(t)| < L(t)(pn(s)(t)

+
∫ t

0
L(u)pn(s)(u)du) a.e.(I)

}
.

To prove that Hn+1(s) is nonempty we note first that the real function

t → rn(s)(t) = c(s)
(MT )n+1tL(t)(m(t))n

(n+2)(n+3)n!
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is measurable and strictly positive for any s . From (4.3) we get

d( fn(s)(t),F(t,xn+1(s)(t),V (xn+1(s))(t))

� L(t)
(
|xn(s)(t)− xn+1(s)(t)|+

∫ t

0
L(u)|xn(s)(u)− xn+1(s)(u)|du

)

� L(t)
(

pn(s)(t)+
∫ t

0
L(u)pn(s)(u)du

)
− rn(s)(t)

and therefore according to Lemma 2.1 there exists v(.) ∈ L1(I,X) such that v(t) ∈
F(t,xn+1(s)(t),V (xn+1(s))(t)) a.e. (I) and

|v(t)− fn(s)(t)| < d( fn(s)(t),F(t,xn+1(s)(t),V (xn+1(s))(t))+ rn(s)(t)

and hence Hn+1(s) is not empty.
Set F∗

n+1(t,s) = F(t,xn+1(s)(t),V (xn+1(s))(t)) and note that we may write

d(0,F∗
n+1(t,s)) � | fn(s)(t)|+L(t)(pn+1(s)(t)+

∫ t

0
L(u)pn+1(s)(u)du)

= p∗n+1(s)(t) a.e.(I)

and p∗n+1(.) : S → L1(I,X) is continuous.
By Lemmas 2.2 and 2.3 there exists a continuous map fn+1(.) : S → L1(I,X) such

that for any s ∈ S

fn+1(s)(t) ∈ F(t,xn+1(s)(t),V (xn+1(s))(t)) a.e.(I),

| fn+1(s)(t)− fn(s)(t)| � L(t)(pn+1(s)(t)+
∫ t

0
L(u)pn+1(s)(u)du) a.e.(I).

From (4.4) and d) we obtain

|xn+1(s)(.)− xn(s)(.)|C
� M1| fn+1(s)(.)− fn(s)(.)|1
� (M1α(m(T )))n

n! (M1|p(s)(.)|1 +M1Tc(s)+d(s)).

(4.5)

Therefore fn(s)(.) , xn(s)(.) are Cauchy sequences in the Banach space L1(I,X)
and C(I,X) , respectively. Let f (.) : S → L1(I,X) , x(.) : S → C(I,X) be their limits.
The function s→M1|p(s)(.)|1 +M1Tc(s)+d(s) is continuous, hence locally bounded.
Therefore (4.5) implies that for every s′ ∈ S the sequence fn(s′)(.) satisfies the Cauchy
condition uniformly with respect to s′ on some neighborhood of s . Hence, s→ f (s)(.)
is continuous from S into L1(I,X) .

From (4.5), as before, xn(s)(.) is Cauchy in C(I,X) locally uniformly with respect
to s . So, s → x(s)(.) is continuous from S into C(I,X) . On the other hand, since
xn(s)(.) converges uniformly to x(s)(.) and

d( fn(s)(t),F(t,x(s)(t),V (x(s))(t))
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� L(t)(|xn(s)(t)− x(s)(t)|+
∫ t

0
L(u)|xn(s)(u)− x(s)(u)|du) a.e. (I), ∀s ∈ S

passing to the limit along a subsequence of fn(.) converging pointwise to f (.) we
obtain

f (s)(t) ∈ F(t,x(s)(t),V (x(s))(t)) a.e. (I), ∀s ∈ S.

Passing to the limit in d) we obtain

x(s)(t) = G(t)a(s)+
∫ t

0
G(t−u) f (s)(u)du.

By adding inequalities c) for all n and using the fact that ∑i�1 pi(s)(t) � ξ (s)(t)
we obtain

| fn+1(s)(t)−g(s)(t)|
� ∑n

l=0 | fl+1(s)(u)− fl(s)(u)|+ | f0(s)(t)−g(s)(t)|
� ∑n

l=0 L(t)pl+1(s)(t)+ p(s)(t)+ ε0(s)
� L(t)ξ (s)(t)+ p(s)(t)+ c(s).

(4.6)

Similarly, by adding (4.4) we get

|xn+1(s)(t)− y(s)(t)| �
n

∑
l=0

pl(s)(t) � ξ (s)(t). (4.7)

By passing to the limit in (4.6) and (4.7) we obtain (4.1) and (4.2), respectively.
Theorem 4.2 allows to obtain the next corollary which is a general result concern-

ing continuous selections of the solution set of problem (1.1).

Hypothesis 5. Hypothesis 1 is satisfied and there exists p0(.) ∈ L1(I,R+) such that
d(0,F(t,0,V (0)(t))) � p0(t) a.e. (I) .

THEOREM 4.2. Assume that Hypothesis 5 is satisfied.
Then there exists a function x(., .) : I×X → X such that
a) x(.,ξ ) ∈ S1(ξ ) , ∀ξ ∈ X .
b) ξ → x(.,ξ ) is continuous from X into C(I,X) .

Proof. We take S = X , a(ξ ) = ξ , ∀ξ ∈ X , c(.) : X → (0,∞) an arbitrary continu-
ous function, g(.) = 0, y(.) = 0, p(ξ )(t) = p0(t) ∀ξ ∈ X , t ∈ I and we apply Theorem
4.1 in order to obtain the conclusion of the theorem.

REMARK 4.1. In the particular case when F does not depend on the last variable,
problem (1.1) reduces to the semilinear differential inclusion (3.10) and a correspond-
ing continuous selection of the solution set of problem (3.10) is obtained in [11].
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Finally, we consider problem (1.2).

Hypothesis 6. i) A is the infinitesimal generator of a strongly continuous cosine family
of operators {C(t); t ∈ R} on X ..

ii) S is a separable metric space and a(.),b(.) : S → X , c(.) : S → (0,∞) are
continuous mappings.

(ii) There exists the continuous mappings g(.) : S → L1(I,X) , p(.) : S → R , y(.) :
S →C(I,X) such that

(y(s))′′(t) = Ay(s)(t)+g(s)(t) ∀s ∈ S,t ∈ I

and
d(g(s)(t),F(t,y(s),V (y(s))(t)) � p(s)(t) a.e. (I), ∀ s ∈ S.

THEOREM 4.3. Assume that Hypotheses 1 and 6 are satisfied.
Then there exist the continuous mappings x(.) : S → C(I,X) , f (.) : S → L1(I,X)

such that for any s ∈ S , (x(s)(.), f (s)(.)) is a trajectory-selection pair of

x′′ ∈ Ax+F(t,x), x(0) = a(s), x′(0) = b(s)

and
|x(s)(t)− y(s)(t)| � ξ (s)(t) ∀(t,s) ∈ I×S,

| f (s)(t)−g(s)(t)| � L(t)ξ (s)(t)+ p(s)(t)+ c(s) a.e.(I), ∀s ∈ S,

where

ξ (s, t) = M2e
M2Tα(m(t))[tc(s)+ |a(s)− y(s)(0)|+T |b(s)− (y(s))′(0)|]

+
∫ t

0
p(s)(u)eM2Tα(m(t)−m(u))du.

Proof. The proof is similar to the one of Theorem 4.1.

THEOREM 4.4. Assume that Hypothesis 5 is satisfied.
Then there exists a function x(., .) : I×X2 → X such that
a) x(.,(ξ ,η)) ∈ S2(ξ ,η) , ∀(ξ ,η) ∈ X2 .
b) (ξ ,η) → x(.,(ξ ,η)) is continuous from X2 into C(I,X) .

Proof. We take

S = X ×X , a(ξ ,η) = ξ , b(ξ ,η) = η , ∀(ξ ,η) ∈ X ×X ,

c(.) : X×X → (0,∞) an arbitrary continuous function, g(.) = 0, y(.) = 0, p(ξ ,η)(t) =
p0(t) ∀(ξ ,η) ∈ X ×X , t ∈ I and we apply Theorem 4.3 in order to obtain the conclu-
sion of the theorem.
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