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OSCILLATION CRITERIA FOR ODD HIGHER ORDER

NONLINEAR NEUTRAL DIFFERENTIAL EQUATIONS

WITH POSITIVE AND NEGATIVE COEFFICIENTS
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(Communicated by Norio Yoashida)

Abstract. In this paper, the authors study oscillatory and asymptotic behavior of solutions of a
class of nonlinear higher order neutral differential equations with positive and negative coeffi-
cients of the form

(a(t)(b(t)(y(t)+ p(t)y(σ(t)))′)′)(n−2) +q(t)G(y(α(t)))−h(t)H(y(β(t))) = 0 (E)

for n � 3 , n is an odd integer, 0 � p(t) � p1 < 1 and −1 < p2 � p(t) � 0 . The results in
this paper generalize the results of Panigrahi and Basu [9] and various results in the literature.
We establish new conditions which guarantees that every solutions of (E) either oscillatory or
converges to zero. Examples are considered to illustrate the main results.

1. Introduction

In this paper, we are concerned with the oscillatory and asymptotic behavior of
solutions of a higher order nonlinear neutral delay differential equations of the form

(a(t)(b(t)(y(t)+ p(t)y(σ(t)))′)′)(n−2) +q(t)G(y(α(t)))−h(t)H(y(β (t))) = 0, (1.1)

where a,b,q ∈C([t0,∞),(0,∞)) , h ∈C([t0,∞), [0,∞)) , p,σ , α,β ∈C([t0,∞),R) ,

σ(t) � t, α(t) � t, β (t) � t,

lim
t→∞

σ(t) = ∞, lim
t→∞

α(t) = ∞, lim
t→∞

β (t) = ∞,

G and H ∈C(R,R) with uG(u) > 0, vH(v) > 0, for u , v �= 0, n(� 3) is odd number,
H is bounded, G is non-decreasing under the assumptions

∫ ∞

t0

1
b(t)

∫ ∞

t

1
a(s)

∫ ∞

s
un−3h(u)dudsdt < ∞, (H1)
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∫ ∞

t0

dt
a(t)

= ∞,

∫ ∞

t0

dt
b(t)

= ∞, (H2)

∫ ∞

t0

dt
a(t)

< ∞,

∫ ∞

t0

dt
b(t)

= ∞, (H3)

∫ ∞

t0

dt
a(t)

< ∞,
∫ ∞

t0

dt
b(t)

< ∞, (H4)

and ∫ ∞

t0

dt
a(t)

= ∞,

∫ ∞

t0

dt
b(t)

< ∞ (H5)

for the ranges 0 � p(t) � p1 < 1 and −1 < p2 � p(t) � 0.

Oscillation and non-oscillations of neutral differential equations have been studied by
many authors since last two decades (see [1, 2, 6, 7, 8, 10, 11, 12]). However, there are
only a few works have been done on the oscillatory behaviour of higher order (n � 2)
neutral delay differential equations with positive and negative coefficients.

In [5], Li, Zhang and Xing have studied the oscillatory and asymptotic behaviour of
solutions of

(a(t)(b(t)(x(t)+ p(t)x(σ(t)))′)′)′ +q(t)x(τ(t)) = 0 (1.2)

under the assumptions (H2),(H3) and (H4) , where a,b,q∈C([t0,∞), (0,∞)) , p,σ ,τ ∈
C([t0,∞),R) , σ(t) � t , τ(t) � t, limt→∞ σ(t) = ∞, limt→∞ τ(t) = ∞ and 0 � p(t) �
p < 1. Moreover, they did not investigate the oscillatory and asymptotic behaviour of
(1.2) for the case (H5).

Later on, Panigrahi and Basu [9] have studied the oscillatory and asymptotic behaviour
of solutions of a class of nonlinear third order neutral differential equations with posi-
tive and negative coefficients of the form

(a(t)(b(t)(y(t)+ p(t)y(σ(t)))′)′)′ +q(t)G(y(α(t)))−h(t)H(y(β (t))) = 0 (1.3)

under the assumptions
∫ ∞

t0

1
b(t)

∫ ∞

t

1
a(s)

∫ ∞

s
h(u)dudsdt < ∞,

(H2) , (H3) , (H4) and (H5) for the ranges 0 � p(t) � p1 < 1 and −1 < p2 � p(t) �
0, where a,b,q ∈ C([t0,∞),(0,∞)), h ∈ C([t0,∞), [0,∞)) , p,σ , α,β ∈ C([t0,∞),R) ,
σ(t) � t, α(t) � t, β (t) � t, limt→∞ σ(t) = ∞, limt→∞ α(t) = ∞, limt→∞ β (t) = ∞ ,
G and H ∈ C(R,R) with uG(u) > 0, vH(v) > 0, for u , v �= 0, H is bounded, G
is non-decreasing. Clearly, equations (1.2) and (1.3) are particular cases of equations
(1.1).

Keeping in view of the above facts, the motivation of the present work has come
from the recent work of Panigrahi and Basu [9]. We may note that a very few work is
available in this direction. This work is the generalization of the earlier work of [9].
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By a solution of (1.1) we understand a function y(t)∈C([Ty,∞)) , Ty � t0 � 0 such
that

(y(t)+ p(t)y(σ(t))) ∈C1([Ty,∞)),

b(t)(y(t)+ p(t)y(σ(t)))′ ∈C1([Ty,∞)),

a(t)(b(t)(y(t)+ p(t)y(σ(t)))′)′ ∈C(n−2)([Ty,∞))

and satisfies (1.1) on [Ty,∞) . We consider only those solutions y(t) of (1.1) which
satisfies sup{|y(t)|; t � T} > 0 for every T � Ty . We assume that (1.1) has such a
solution. A solution of (1.1) is said to be oscillatory if it has arbitrarily large zeros on
[Ty,∞) ; otherwise, it is called non-oscillatory.

2. Oscillation properties of homogeneous equation

In this section, sufficient conditions are obtained for the oscillatory and asymptotic
behavior of solutions of (1.1). We need the following conditions and lemma for our use
in the sequel.

(H6)
∫ ∞
t0

q(t)dt = ∞ ;

(H7) G(−u) = −G(u),H(−u) = −H(u) for u ∈ R ;

(H8)
∫ ∞
t∗

1
a(t)

∫ t
t∗(t− s)n−3q(s)dsdt = ∞ ;

(H9)
∫ ∞
t∗

1
b(t)

∫ t
t∗

1
a(v)

∫ v
t∗(v− s)n−3q(s)dsdvdt = ∞ , t∗ � t0 .

LEMMA 1. [3], ([4], p. 193) Let y ∈ C(n)([0,∞),R) be of constant sign. Let
y(n)(t) be of constant sign and �≡ 0 in any interval [T,∞) , T � 0 , and y(n)(t)y(t) � 0 .
Then there exists a number t0 � 0 such that the functions y( j)(t) , j = 1,2, ...,n−1 are
of constant sign on [t0,∞) and there exists a number k ∈ {1,3, ...,n− 1} when n is
even or k ∈ {0,2, ..,n−1} when n is odd such that

y(t)y( j)(t) > 0 f or j = 0,1,2, ...,k, t � t0,

(−1)n+ j−1y(t)y( j)(t) > 0 f or j = k+1,k+2, ...,n−1, t � t0.

THEOREM 2. Let 0 � p(t) � p1 < 1 . Suppose (H1) , (H2) , (H6) and (H7) hold,
then every solution of (1.1) either oscillates or converges to zero as t → ∞ .

Proof. Let y(t) be a non-oscillatory solution of (1.1) on [t0,∞) , t0 � 0, say y(t)
is an eventually positive solution. Then there exists t1 > t0 such that y(α(t)) > 0,
y(β (t)) > 0, y(σ(t)) > 0 for t � t1 . Set

z(t) = y(t)+ p(t)y(σ(t)) (2.1)
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and

k(t) =
1

(n−3) !

∫ ∞

t

1
b(s)

∫ ∞

s

1
a(θ )

∫ ∞

θ
(u−θ )n−3h(u)H(y(β (u)))dudθds. (2.2)

Note that condition (H1) and the fact that H is bounded function implies that k(t)
exists for all t . Now if we let

v(t) = z(t)+ k(t), (2.3)

then

w(n−2)(t) = −q(t)G(y(α(t))) � 0(�≡ 0), (2.4)

where

w(t) = a(t)(b(t)v′(t))′ (2.5)

for t � t1 . Here w(n−2)(t) represents the (n− 2)th derivative of w w.r.t t . Clearly,
w(n−3)(t),w(n−4)(t), ..,w′(t),w(t) are monotonic functions and of constant sign for t ∈
[t2,∞), t2 � t1 .

If w(t) > 0 for t � t2 , then in view of Lemma 1, w(n−3)(t) > 0 for t � t2 .
Now w(t) > 0 implies (b(t)v′(t))′ > 0 for t � t2 , which in turn implies b(t)v′(t)

is eventually monotonic function. Since b(t) > 0, then either v′(t) > 0 or < 0 for
t � t3 > t2 .

Case I. If v′(t) > 0 for t � t3 , then z′(t) > 0 eventually. Therefore,

(1− p1)z(t) < (1− p(t))z(t) < z(t)− p(t)z(σ(t)) = y(t)− p(t)p(σ(t))y(σ(σ(t))),

which implies

(1− p1)z(t) < y(t)

for t � t4 > t3 . From (2.4), z′(t) > 0 and by using the last inequality, we obtain

w(n−2)(t) � −q(t)G((1− p1)z(t4))

for t � t5 > t4 . Then integrating the preceeding inequality from t5 to t , we obtain

∞ > w(n−3)(t5) > −w(n−3)(t)+w(n−3)(t5) � G((1− p1)z(t4))
∫ t

t5
q(s)ds.

Since limt→∞ w(n−3)(t) < ∞ , then taking t → ∞ in the last inequality we have
∫ ∞

t5
q(t)dt < ∞,

which is a contradiction to (H6) .
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Case II. If v′(t) < 0 for t � t3 , we may note that limt→∞ v(t) exists and equal to l
(say). We will claim that l = 0. If it is not true, then for every ε > 0, there exists t4 > t3
such that l < v(t) < l + ε for t � t4. Choose 0 < ε < l(1−p1)

1+p1
. Since limt→∞ k(t) = 0,

then for the same chosen ε , k(t) < ε for t � t5 � t4 . Thus,

y(t) = v(t)− p(t)y(σ(t))− k(t)
> v(t)− p(t)v(σ(t))− k(t)
> l− p1(l + ε)− ε

for t � t6 > t5 . Now,

y(t) > (l− ε)− p1(l + ε) > k2(l + ε) > k2v(t) > k2l. (2.6)

By the choice of ε , we can show that k2 > 0. Using (2.6) in (2.4), we obtain

w(n−2)(t) � −q(t)G(k2l) (2.7)

for t � t7 > t6 . Integrating (2.7) from t7 to t , we obtain

∞ > w(n−3)(t7) > −w(n−3)(t)+w(n−3)(t7) � G(k2l)
∫ t

t7
q(s)ds.

Since limt→∞ w(n−3)(t) < ∞ , then taking t → ∞ in the last inequality we obtain
∫ ∞

t7
q(t)dt < ∞,

which is a contradiction to (H6) . Therefore, limt→∞ v(t) = 0 and hence limt→∞ z(t) =
0. Since y(t) � z(t) , then it implies limt→∞ y(t) = 0.

If w(t) < 0 for t � t2 , then (b(t)v′(t))′ < 0 for t � t2 . Thus, v′(t) > 0 or v′(t) < 0
for t � t3 > t2 .

Case III. Suppose v′(t) > 0 for t � t3 . Since w(n−2)(t) � 0 eventually, then w(n−3)(t) >
0 or < 0 eventually.

Subcase (i): Suppose w(n−3)(t) > 0 eventually. Now v′(t) > 0 and k′(t) < 0
implies z′(t) > 0. Therefore, (1− p1)z(t) < (1− p(t))z(t)< z(t)− p(t)z(σ(t))= y(t)−
p(t)p(σ(t))y(σ(σ(t))) , which implies

(1− p1)z(t) < y(t) (2.8)

for t � t3 . From (2.4) and z′(t) > 0, we obtain

w(n−2)(t) � −q(t)G((1− p1)z(t3))

for t � t4 > t3 . Then integrating the last inequality from t4 to t , we obtain

∞ > w(n−3)(t4) > −w(n−3)(t)+w(n−3)(t4) � G((1− p1)z(t3))
∫ t

t4
q(s)ds.
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Since limt→∞ w(n−3)(t) < ∞ , then taking t → ∞ in the last inequality we have
∫ ∞

t4
q(t)dt < ∞,

which is a contradiction to (H6) .
Subcase (ii): If w(n−3)(t) < 0 eventually, then from (2.4) we can conclude that

w(n−4)(t) < 0, ...,w′(t) < 0 for large t . Since w′(t) < 0 for t > t4(> t3) , then w(t) <
w(t4) , that is,

a(t)(b(t)v′(t))′ < a(t4)(b(t4)v′(t4))′.

Integrating the preceeding inequality from t4 to t , we obtain

b(t)v′(t) < b(t4)v′(t4)+a(t4)(b(t4)v′(t4))′
∫ t

t4

ds
a(s)

.

Using (H2) in the preceeding inequality, we obtain b(t)v′(t) →−∞ as t → ∞ , a con-
tradiction to the fact that v′(t) > 0.

Case IV. Suppose v′(t) < 0 for t � t3 . Then, integrating (b(t)v′(t))′ < 0 twice from t3
to t , we obtain

v(t) � v(t3)+b(t3)v′(t3)
∫ t

t3

ds
b(s)

.

Using (H2) in the preceeding inequality, we obtain v(t) →−∞ as t → ∞ , a contradic-
tion to the fact that v(t) > 0.

Finally, we suppose that y(t) < 0 for t � t0 . From (H7) , we note that G(−u) =
−G(u) and H(−u) = −H(u),u ∈ R . Hence putting x(t) = −y(t) for t � t0 , we obtain
x(t) > 0 and

(a(t)(b(t)(x(t)+ p(t)x(σ(t)))′)′)(n−2) +q(t)G(x(α(t)))−h(t)H(x(β (t))) = 0.

Proceeding as above, we can show that every solution of (1.1) either oscillates or con-
verges to zero as t → ∞ . This completes the proof of the theorem.

THEOREM 3. Let 0 � p(t) � p1 < 1 . Suppose that (H1),(H3) and (H6)− (H8)
hold, then every solution of (1.1) either oscillates or converges to zero as t → ∞.

Proof. Let y(t) be a non-oscillatory solution of (1.1) on [t0,∞) , t0 � 0, say y(t)
is an eventually positive solution. (The proof in case y(t) < 0 eventually is similar and
will be omitted.) Then there exists t1 > t0 such that y(α(t)) > 0,y(β (t)) > 0,y(σ(t)) >
0 for t � t1 . Setting z(t) , k(t) , v(t) as in (2.1), (2.2) and (2.3) respectively, we get (2.4)
and (2.5) for t � t1 . Clearly, w(n−3)(t),w(n−4)(t), ..,w′(t),w(t) are monotonic functions
and of constant sign for t ∈ [t2,∞), t2 � t1 .
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If w(t) > 0 for t � t2 , then in view of Lemma 1, w(n−3)(t) > 0 for t � t2 . Now
w(t) > 0 implies (b(t)v′(t))′ > 0 for t � t2 , which in turn implies v′(t) is monotonic
function. Thus, v′(t) > 0 or < 0 for t � t3 > t2 .

Case I. If v′(t) > 0 for t � t3 , then proceeding as in Case I of Theorem 2, we ob-
tain a contradiction due to (H6) .

Case II. If v′(t) < 0 for t � t3 , then proceeding as in Case II of Theorem 2, we ob-
tain limt→∞ y(t) = 0.

If w(t) < 0 for t � t2 , then (b(t)v′(t))′ < 0 for t � t2 . Thus, v′(t) > 0 or v′(t) < 0 for
t � t3 > t2 .

Case III. Suppose v′(t) > 0 for t � t3 . Since w(n−2)(t) � 0 eventually, then either
w(n−3)(t) > 0 or < 0 eventually.

Subcase (i): If w(n−3)(t) > 0 eventually, then proceeding as in Subcase (i) of Case
III of Theorem 2, we obtain a contradiction due to (H6) .

Subcase (ii): If w(n−3)(t)< 0 eventually, then from (2.4) it implies that w(n−4)(t)<
0, ...,w′(t) < 0 for large t . Now v′(t) > 0 implies z′(t) > 0 eventually. Therefore from
(2.4) and (2.8), we obtain

0 � w(n−2)(t)+q(t)G((1− p1)z(t3))

for t � t4 > t3. Integrating the last inequality consecutively (n−2) times from t4 to t ,
we obtain

0 > w(t4) � w(t)+
1

(n−3) !

∫ t

t4
(t − s)n−3q(s)G((1− p1)z(t3))ds.

Hence,

0 > (b(t)v′(t))′ +
1

(n−3) !
1

a(t)

∫ t

t4
(t − s)n−3q(s)G((1− p1)z(t3))ds.

Further integrating the preceeding inequality from t4 to t , we obtain

b(t4)v′(t4) � b(t)v′(t)+
1

(n−3) !

∫ t

t4

1
a(v)

∫ v

t4
(v− s)n−3q(s)G((1− p1)z(t3))dsdv.

Since limt→∞ b(t)v′(t) < ∞ , then from the last inequality for large t , we get

1
(n−3) !

∫ ∞

t4

1
a(t)

∫ t

t4
(t − s)n−3q(s)G((1− p1)z(t3))dsdt < ∞,

a contradiction to (H8) .

Case IV. Since v′(t) < 0 and (b(t)v′(t))′ < 0 for t � t3 , then using (H3) and pro-
ceeding as in Case IV of Theorem 2, we obtain a contradiction to the fact that v(t) > 0.
Hence the proof of the theorem is complete.
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THEOREM 4. Let 0 � p(t) � p1 < 1 . Suppose that (H1) , (H4) and (H6)− (H9)
hold, then every solution of (1.1) either oscillates or tends to zero as t → ∞ .

Proof. Let y(t) be a non-oscillatory solution of (1.1) on [t0,∞) , t0 � 0, say y(t)
is an eventually positive solution. (The proof in case y(t) < 0 eventually is similar and
will be omitted.) Then there exists t1 > t0 such that y(α(t)) > 0,y(β (t)) > 0,y(σ(t)) >
0 for t � t1 . Setting z(t),k(t) , v(t) as in (2.1), (2.2) and (2.3) respectively, we get (2.4)
and (2.5) for t � t1 . Clearly, w(n−3)(t),w(n−4)(t), ..,w′(t),w(t) are monotonic functions
and of constant sign for t ∈ [t2,∞), t2 � t1 .

If w(t) > 0 for t � t2 , then in view of Lemma 1, w(n−3)(t) > 0 for t � t2 . Now
w(t) > 0 implies (b(t)v′(t))′ > 0 for t � t2 , which in turn implies v′(t) is monotonic
function. Thus, v′(t) > 0 or < 0 for t � t3 > t2 .

Case I. If v′(t) > 0 for t � t3, then z′(t) > 0 eventually. Therefore,

(1− p1)z(t) < (1− p(t))z(t) < z(t)− p(t)z(σ(t)) = y(t)− p(t)p(σ(t))y(σ(σ(t))),

which implies

(1− p1)z(t) < y(t)

for t � t4 > t3 . From (2.4), z′(t) > 0 and by using the last inequality, we obtain

w(n−2)(t) � −q(t)G((1− p1)z(t5))

for t � t5 > t4 . Then integrating the preceeding inequality from t5 to t , we obtain

∞ > w(n−3)(t5) > −w(n−3)(t)+w(n−3)(t5) � G((1− p1)z(t5))
∫ t

t5
q(s)ds.

Since limt→∞ w(n−3)(t) < ∞ , then taking t → ∞ in the last inequality we have

∫ ∞

t5
q(t)dt < ∞,

which is a contradiction to (H6) .

Case II. If v′(t) < 0 for t � t3 , then proceeding as in Case II of Theorem 2, we ob-
tain limt→∞ y(t) = 0.

If w(t) < 0, then (b(t)v′(t))′ < 0 for t � t2 . Thus, v′(t) > 0 or v′(t) < 0 for
t � t3 > t2 .

Case III. Suppose v′(t) > 0 for t � t3 . Since w(n−2)(t) � 0 eventually, then either
w(n−3)(t) > 0 or < 0 eventually.

Subcase (i): If w(n−3)(t) > 0 eventually, then proceeding as in Subcase (i) of Case
III of Theorem 2, we obtain a contradiction due to (H6) .
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Subcase (ii): If w(n−3)(t) < 0 eventually, then proceeding as in Subcase (ii) of
Case III of Theorem 3, we obtain a contradiction (H8) .

Case IV. Since v′(t) < 0 and (b(t)v′(t))′ < 0 for t � t3 . Since, w(n−2)(t) � 0 eventu-
ally, then either w(n−3)(t) > 0 or < 0 eventually.

Subcase (iii): If w(n−3)(t) < 0 eventually, then, w(n−4)(t)< 0, ...,w′(t) < 0,w(t) <
0 eventually. Since limt→∞ v(t) < ∞ , let 0 < limt→∞ v(t) < ∞ . Therefore from (2.4),
(2.6), we obtain

0 � w(n−2)(t)+q(t)G(k2l) (2.9)

for t � t4 > t3 . Integrating (2.9) consecutively (n−2) times from t4 to t , we obtain

0 > w(t4) � w(t)+
1

(n−3) !

∫ t

t4
(t− s)n−3q(s)G(k2l)ds.

Hence,

0 > (b(t)v′(t))′ +
1

a(t)
1

(n−3) !

∫ t

t4
(t− s)n−3q(s)G(k2l)ds.

Further integrating the preceeding inequality from t4 to t and considering the fact that
v′(t) < 0, we obtain

0 > b(t4)v′(t4) � b(t)v′(t)+
1

(n−3) !

∫ t

t4

1
a(θ )

∫ θ

t4
(θ − s)n−3q(s)G(k2l)dsdθ .

Again integrating the last inequality from t4 to t , we get

v(t4) � v(t)+
1

(n−3) !

∫ t

t4

1
b(u)

∫ u

t4

1
a(θ )

∫ θ

t4
(θ − s)n−3q(s)G(k2l)dsdθdu.

Since limt→∞ v(t) < ∞ , then it implies for large t

G(k2l)
(n−3) !

∫ ∞

t4

1
b(u)

∫ u

t4

1
a(θ )

∫ θ

t4
(θ − s)n−3q(s)dsdθdu < ∞,

a contradiction to (H9) .

If limt→∞ v(t) = 0, then limt→∞ z(t) = 0. Hence, limt→∞ y(t) = 0 as y(t) � z(t) .
Subcase (iv): Suppose w(n−3)(t) > 0 for t � t4 > t3 . If 0 < limt→∞ v(t) < ∞ , then

from (2.4) and (2.6), we have
∫ ∞

t4
q(t)dt < ∞,

a contradiction to (H6) . Hence, limt→∞ v(t) = 0. Thus, limt→∞ y(t) = 0. Hence proof
of the theorem is complete.
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THEOREM 5. Let 0 � p(t) � p1 < 1 . Suppose that (H1) , (H5) , (H6) , (H7) and
(H9) hold, then every solution of (1.1) either oscillates or converges to zero as t → ∞ .

Proof. Let y(t) be a non-oscillatory solution of (1.1) on [t0,∞) , t0 � 0, say y(t)
is an eventually positive solution. (The proof in case y(t) < 0 eventually is similar and
will be omitted.) Then there exists t1 > t0 such that y(α(t)) > 0,y(β (t)) > 0,y(σ(t)) >
0 for t � t1 . Setting z(t),k(t) , v(t) as in (2.1), (2.2) and (2.3) respectively, we get (2.4)
and (2.5) for t � t1 . Clearly, w(n−3)(t),w(n−4)(t), ..,w′(t),w(t) are monotonic functions
and of constant sign for t ∈ [t2,∞), t2 � t1 .

If w(t) > 0 for t � t2 , then in view of Lemma 1, w(n−3)(t) > 0 for t � t2 . Now
w(t) > 0 implies (b(t)v′(t))′ > 0 for t � t2 , which in turn implies v′(t) is monotonic
function. Thus, v′(t) > 0 or < 0 for t � t3 > t2 .

Case I. If v′(t) > 0 for t � t3 , then proceeding as in Case I of Theorem 4, we ob-
tain a contradiction due to (H6) .

Case II. If v′(t) < 0 for t � t3 , then proceeding as in Case II of Theorem 2, we ob-
tain limt→∞ y(t) = 0.

If w(t) < 0, for t � t2 , then (b(t)v′(t))′ < 0 for t � t2 . Thus, v′(t) > 0 or v′(t) < 0 for
t � t3 > t2 .

Case III. Suppose v′(t) > 0 for t � t3 . Since w(n−2)(t) � 0 eventually. then either
w(n−3)(t) > 0 or < 0 eventually.

Subcase (i): If w(n−3)(t) > 0 eventually, then proceeding as in Subcase (i) of Case
III of Theorem 2, we obtain a contradiction due to (H6) .

Subcase (ii): If w(n−3)(t) < 0 eventually, then using (H5) and proceeding as
in Subcase (ii) of Case III of Theorem 2, we obtain a contradiction to the fact that
v′(t) > 0.

Case IV. Suppose v′(t) < 0 for t � t3 . Since, w(n−2)(t) � 0 eventually, then either
w(n−3)(t) > 0 or < 0 eventually.

Subcase (iii): Suppose w(n−3)(t) < 0 eventually. If 0 < limt→∞ v(t) < ∞ , then
proceeding as in Subcase (iii) of Case IV of Theorem 4, we obtain a contradiction due
to (H9) .

If limt→∞ v(t) = 0, then we obtain limt→∞ y(t) = 0.

Subcase (iv): If w(n−3)(t) > 0 eventually, then proceeding as in Subcase (iv) of
Case IV of Theorem 4, we obtain limt→∞ y(t) = 0. Hence proof of the theorem is
complete.

THEOREM 6. Let −1 < p2 � p(t) � 0 . Suppose that (H1) , (H2) , (H6) and (H7)
hold, then every solution of (1.1) either oscillates or converges to zero as t → ∞ .
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Proof. Let y(t) be a non-oscillatory solution of (1.1) on [t0,∞) , t0 � 0, say y(t)
is an eventually positive solution. (The proof in case y(t) < 0 eventually is similar and
will be omitted.) Then there exists t1 > t0 such that y(α(t)) > 0,y(β (t)) > 0,y(σ(t)) >
0 for t � t1 . Setting z(t) , k(t) , v(t) as in (2.1), (2.2) and (2.3) respectively, we get (2.4)
and (2.5) for t � t1 . Clearly, w(n−3)(t),w(n−4)(t), ..,w′(t),w(t) are monotonic functions
and of constant sign for t ∈ [t2,∞), t2 � t1 .

If w(t) > 0 for t � t2 , then in view of Lemma 1, w(n−3)(t) > 0 for t � t2 . Now
w(t) > 0 implies (b(t)v′(t))′ > 0 for t � t2 , which in turn implies v′(t) is monotonic
function. Thus, v′(t) > 0 or < 0 for t � t3 > t2 .

Case I. Suppose v′(t) > 0 for t � t3. Now v′(t) > 0 and k′(t) < 0 implies that z′(t) > 0
eventually. Hence, z(t) > 0 or < 0 for t � t4 > t3 .

Subcase (i): If z(t) > 0 for t � t4 , then

y(t) � z(t)

for t � t4 > t3 . Using the last inequality in (2.4), we obtain

w(n−2)(t) � −q(t)G(z(t4)).

Thus integrating this from t5(> t4) to t , we obtain

∞ > w(n−3)(t5) > −w(n−3)(t)+w(n−3)(t5) � G(z(t4))
∫ t

t5
q(s)ds.

Since limt→∞ wn−3(t) < ∞ , then taking the limit as t → ∞ in the last inequality, we
obtain ∫ ∞

t5
q(t)dt < ∞,

a contradiction to (H6) .
Subcase (ii): If z(t) < 0 for t � t4 > t3 , then limt→∞ z(t) exists. Note that y(t) is

bounded. Hence,

0 � limsup
t→∞

z(t) � limsup
t→∞

(y(t)+ p2y(σ(t)))

� limsup
t→∞

y(t)+ liminf
t→∞

(p2y(σ(t)))

= limsup
t→∞

y(t)+ p2 limsup
t→∞

y(σ(t))

= (1+ p2) limsup
t→∞

y(t).

Since (1+ p2) > 0, then it implies limsupt→∞ y(t) = 0. So also limt→∞ y(t) = 0.

Case II. If v′(t) < 0 for t � t3 , then two cases are possible: v(t) > 0 or < 0 for
t � t4 > t3 .
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Subcase (iii): If v(t) > 0 for t � t4 , then limt→∞ v(t) exists and equal to l1 (say).
We will claim that l1 = 0. If it is not true, then for every ε > 0, there exists t5 > t4
such that l1 < v(t) < l1 + ε for t � t5. Choose 0 < ε < l1 . Since limt→∞ k(t) = 0, then
for the same chosen ε , k(t) < ε for t � t6 > t5 . Thus,

v(t)− y(t)− k(t) = p(t)y(σ(t)) � 0

for t � t7 > t6 . Hence,

l1 − ε < v(t)− k(t) � y(t).

From (2.4), we obtain

w(n−2)(t) � −q(t)G(l1− ε)

for t � t8 > t7 . Thus integrating the last inequality from t8 to t , we obtain

∞ > w(n−3)(t8) > −w(n−3)(t)+w(n−3)(t8) � G(l1 − ε)
∫ t

t8
q(s)ds.

Since limt→∞ wn−3(t) < ∞ , then taking the limit as t → ∞ in the preceeding inequality
we get a contradiction to (H6) . Hence, limt→∞ v(t) = 0 and limt→∞ z(t) = 0. Hence,
z(t) is bounded. We can show that y(t) is bounded. Thus,

0 = limsup
t→∞

z(t) � limsup
t→∞

(y(t)+ p2y(σ(t)))

� limsup
t→∞

y(t)+ liminf
t→∞

(p2y(σ(t)))

= limsup
t→∞

y(t)+ p2 limsup
t→∞

y(σ(t))

= (1+ p2) limsup
t→∞

y(t).

Since (1+ p2) > 0, then it implies limsupt→∞ y(t) = 0. Hence, limt→∞ y(t) = 0.
Subcase (iv): Suppose v(t) < 0 for t � t4 , as v′(t) < 0 so −∞ � limt→∞ v(t) < 0.

Thus, −∞ � limt→∞ z(t)(= l2) < 0. If l2 = −∞ , then we get a contradiction due to the
boundedness of y(t) .

If −∞ < l2 < 0, then

0 > limsup
t→∞

z(t) � limsup
t→∞

(y(t)+ p2y(σ(t)))

� limsup
t→∞

y(t)+ liminf
t→∞

(p2y(σ(t)))

= limsup
t→∞

y(t)+ p2 limsup
t→∞

y(σ(t))

= (1+ p2) limsup
t→∞

y(t).

Since (1+ p2) > 0, then it implies limsupt→∞ y(t) < 0, a contradiction to the fact that
y(t) > 0.
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If w(t) < 0 for t � t2 , then (b(t)v′(t))′ < 0 for t � t2 . Thus, v′(t) > 0 or v′(t) < 0 for
t � t3 > t2 .

Case III. Suppose v′(t) > 0 for t � t3. Since w(n−2)(t) � 0 eventually, then w(n−3)(t) >
0 or < 0 eventually.

Subcase (v): Suppose w(n−3)(t) > 0 eventually. Now v′(t) > 0 and k′(t) < 0 im-
plies that z′(t) > 0 eventually. Hence, z(t) > 0 or < 0 eventually.

If z(t) > 0 eventually, then

y(t) � z(t) (2.10)

for t � t4 > t3 . Using (2.10) in (2.4), we obtain

w(n−2)(t) � −q(t)G(z(t4)).

Thus integrating this from t4 to t , we obtain

∞ > w(n−3)(t4) > −w(n−3)(t)+w(n−3)(t4) � G(z(t4))
∫ t

t4
q(s)ds.

Since limt→∞ wn−3(t) < ∞ , then taking the limit as t → ∞ in the last inequality we
obtain ∫ ∞

t4
q(t)dt < ∞,

a contradiction to (H6) .

If z(t) < 0 for t � t4 > t3 , then limt→∞ z(t) exists. Let it be l3 . So −∞ < l3 � 0.
We may note that y(t) is bounded. Hence,

0 � limsup
t→∞

z(t) � limsup
t→∞

(y(t)+ p2y(σ(t)))

� limsup
t→∞

y(t)+ liminf
t→∞

(p2y(σ(t)))

= limsup
t→∞

y(t)+ p2 limsup
t→∞

y(σ(t))

= (1+ p2) limsup
t→∞

y(t).

Since (1+ p2) > 0, then it implies limsupt→∞ y(t) = 0. So also limt→∞ y(t) = 0.

Subcase (vi): If w(n−3)(t) < 0 eventually, then proceeding as in Subcase (ii) of
Case III of Theorem 2, we obtain a contradiction due to v′(t) > 0.

Case IV. Suppose v′(t)< 0 and (b(t)v′(t))′ < 0 for t � t3 , then integrating (b(t)v′(t))′ <
0 twice consecutively from t3 to t , we obtain

v(t) � v(t3)+b(t3)v′(t3)
∫ t

t3

ds
b(s)

.
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Using (H2) in the last inequality, we obtain v(t) →−∞ as t → ∞ . Thus, v(t) < 0 for
large t . It is easy to show that y(t) is bounded, hence v(t) is bounded, a contradiction.
Hence proof of the theorem is complete.

THEOREM 7. Let −1< p2 � p(t)� 0 . Suppose that (H1) , (H3) and (H6)−(H8)
hold, then every solution of (1.1) either oscillates or converges to zero as t → ∞ .

Proof. Let y(t) be a non-oscillatory solution of (1.1) on [t0,∞) , t0 � 0, say y(t)
is an eventually positive solution. (The proof in case y(t) < 0 eventually is similar and
will be omitted.) Then there exists t1 > t0 such that y(α(t)) > 0,y(β (t)) > 0,y(σ(t)) >
0 for t � t1 . Setting z(t),k(t) , v(t) as in (2.1), (2.2) and (2.3) respectively, we get (2.4)
and (2.5) for t � t1 . Clearly, w(n−3)(t),w(n−4)(t), ..,w′(t),w(t) are monotonic functions
and of constant sign for t ∈ [t2,∞), t2 � t1 .

If w(t) > 0 for t � t2 , in view of Lemma 1, w(n−3)(t) > 0 for t � t2 . Now w(t) > 0
implies (b(t)v′(t))′ > 0 for t � t2 , which in turn implies v′(t) is monotonic function.
Thus, v′(t) > 0 or < 0 for t � t3 > t2 .

Case I. If v′(t) > 0 for t � t3 , then z′(t) > 0 and hence two cases are possible: z(t) > 0
or < 0 for t � t4 > t3 .

Subcase (i): If z(t) > 0 for t � t4 , then proceeding as in Subcase (i) of Case I of
Theorem 6, we obtain a contradiction due to (H6) .

Subcase (ii): If z(t) < 0 for t � t4 , then proceeding as in Subcase (ii) of Case I of
Theorem 6, we obtain limt→∞ y(t) = 0.

Case II. If v′(t) < 0 for t � t3 , we have two cases; v(t) > 0 or v(t) < 0 for t � t4 > t3 .

Subcase (iii): If v(t) > 0 for t � t4 , then limt→∞ v(t) < ∞ and proceeding as in
Subcase (iii) of Case II of Theorem 6, we get limt→∞ y(t) = 0.

Subcase (iv): If v(t) < 0 for t � t4 , then proceeding as in Subcase (iv) of Case II
of Theorem 6, we get limt→∞ y(t) = 0.

If w(t) < 0 for t � t2 , then (b(t)v′(t))′ < 0 for t � t2 . Thus, v′(t) > 0 or v′(t) < 0 for
t � t3 > t2 .

Case III. Suppose v′(t) > 0 for t � t3. Since w(n−2)(t) � 0 eventually, then either
w(n−3)(t) > 0 or < 0 eventually.

Subcase (v): Suppose w(n−3)(t) > 0 eventually. Now v′(t) > 0 and k′(t) < 0 im-
plies that z′(t) > 0. Hence, z(t) > 0 or < 0 eventually.

If z(t) > 0 eventually, then proceeding as in Subcase (v) of Case III of Theorem 6,
we obtain a contradiction due to (H6) .

If z(t) < 0 eventually, then proceeding as in Subcase (v) of Case III of Theorem 6,
we get limt→∞ y(t) = 0.
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Subcase (vi): Suppose w(n−3)(t)< 0 eventually. Since z′(t)> 0 eventually. Hence,
z(t) > or < 0 eventually.

If z(t) > 0 eventually, then proceeding as in Subcase (ii) of Case III of Theorem 3,
we get a contradiction due to (H8) .

If z(t) < 0 eventually, then limt→∞ z(t) exists. Note that y(t) is bounded. Hence,

0 � limsup
t→∞

z(t) � limsup
t→∞

(y(t)+ p2y(σ(t)))

� limsup
t→∞

y(t)+ liminf
t→∞

(p2y(σ(t)))

= limsup
t→∞

y(t)+ p2 limsup
t→∞

y(σ(t))

= (1+ p2) limsup
t→∞

y(t)

which implies limt→∞ y(t) = 0.

Case IV. If v′(t) < 0 for t � t3 , then using (H3) and proceeding as in Case IV of
Theorem 6, we get a contradiction to the fact that y(t) is bounded. Hence proof of the
theorem is complete.

THEOREM 8. Let −1< p2 � p(t)� 0 . Suppose that (H1) , (H4) and (H6)−(H9)
hold, then every solution of (1.1) either oscillates or converges to zero as t → ∞ .

Proof. Let y(t) be a nonoscillatory solution of (1.1) on [t0,∞) , t0 � 0, say y(t) is
an eventually positive solution. (The proof in case y(t) < 0 eventually is similar and
will be omitted.) Then there exists t1 > t0 such that y(α(t)) > 0,y(β (t)) > 0,y(σ(t)) >
0 for t � t1 . Setting z(t),k(t) , v(t) as in (2.1), (2.2) and (2.3) respectively, we get (2.4)
and (2.5) for t � t1 . Clearly, w(n−3)(t),w(n−4)(t), ..,w′(t),w(t) are monotonic functions
and of constant sign for t ∈ [t2,∞), t2 � t1 .

If w(t) > 0 for t � t2 , then in view of Lemma 1, w(n−3)(t) > 0 for t � t2 . Now
w(t) > 0 implies (b(t)v′(t))′ > 0 for t � t2 , which in turn implies v′(t) is monotonic
function. Thus, v′(t) > 0 or < 0 for t � t3 > t2 .

Case I. If v′(t) > 0 for t � t3 , then z′(t) > 0 eventually. Thus, we have two cases;
z(t) > 0 or z(t) < 0 for t � t4 > t3.

Subcase (i): If z(t) > 0 for t � t4 , then proceeding same as in Subcase (i) of Case
I of Theorem 6, we obtain a contradiction due to (H6) .

Subcase (ii): If z(t) < 0 for t � t4 , then limt→∞ z(t) exists. Let it be l4 . Now
−∞ < l4 � 0. Note that y(t) is bounded. Hence,

0 � limsup
t→∞

z(t) � limsup
t→∞

(y(t)+ p2y(σ(t)))

� limsup
t→∞

y(t)+ liminf
t→∞

(p2y(σ(t)))
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= limsup
t→∞

y(t)+ p2 limsup
t→∞

y(σ(t))

= (1+ p2) limsup
t→∞

y(t).

Since (1+ p2) > 0, then it implies limsupt→∞ y(t) = 0. So also limt→∞ y(t) = 0.

Case II. If v′(t) < 0 for t � t3 , then we have two cases: v(t) > 0 or v(t) < 0 for
t � t4 > t3.

Subcase (iii): If v(t) > 0 for t � t4 , then proceeding as in Subcase (iii) of Case II
of Theorem 6, we get limt→∞ y(t) = 0.

Subcase (iv): If v(t) < 0 for t � t4 , then proceeding as in Subcase (iv) of Case II
of Theorem 6, we get a contradiction due to y(t) > 0.

If w(t) < 0 for t � t2 , then (b(t)v′(t))′ < 0 for t � t2 . Thus, v′(t) > 0 or v′(t) < 0
for t � t3 > t2 .

Case III. Suppose v′(t) > 0 for t � t3. Since w(n−2)(t) � 0 eventually, Then either
w(n−3)(t) > 0 or < 0 eventually.

Subcase (v): Suppose w(n−3)(t) > 0 eventually. Since v′(t) > 0 for t � t3 , then
z′(t) > 0 eventually. Thus, we have two cases: z(t) > 0 or z(t) < 0 for t � t4 > t3.

If z(t) > 0 for t � t4 , then proceeding as in Subcase (v) of Case III of Theorem 6,
we get a contradiction to (H6) .

If z(t) < 0 for t � t4 , then proceeding as in Subcase (v) of Case III of Theorem 6,
we get limt→∞ y(t) = 0.

Subcase (vi): Suppose w(n−3)(t) < 0 eventually. Since v′(t) > 0 for t � t3 , then
z′(t) > 0 eventually. Thus, we have two cases: z(t) > 0 or z(t) < 0 for t � t4 > t3.

If z(t) > 0 for t � t4 , then proceeding as in Subcase (ii) of Case III of Theorem 3,
we get a contradiction due to (H8) .

If z(t) < 0 for t � t4 , then limt→∞ z(t) exists. Note that y(t) is bounded. Hence,

0 � limsup
t→∞

z(t) � limsup
t→∞

(y(t)+ p2y(σ(t)))

� limsup
t→∞

y(t)+ liminf
t→∞

(p2y(σ(t)))

= limsup
t→∞

y(t)+ p2 limsup
t→∞

y(σ(t))

= (1+ p2) limsup
t→∞

y(t)

which implies limt→∞ y(t) = 0.

Case IV. Suppose v′(t) < 0 for t � t3 . Since w(n−2)(t) � 0 eventually, then we have
two cases w(n−3)(t) > 0 or w(n−3)(t) < 0 eventually.

Subcase (vii): Suppose w(n−3)(t) > 0 eventually. Since v′(t) < 0, then v(t) > 0
or v(t) < 0 for t � t4 > t3.
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If v(t) > 0 for t � t4 , then limt→∞ v(t) exists and equal to l5 (say). We will claim
that l5 = 0. If it is not true, then for every ε > 0, there exists t5 > t4 such that
l5 < v(t) < l5 + ε for t � t5. Choose 0 < ε < l5 . Since limt→∞ k(t) = 0, then for
the same chosen ε , k(t) < ε for t � t6 > t5 . Thus,

v(t)− y(t)− k(t) = p(t)y(σ(t)) � 0

for t � t7 > t6 . Hence,

l5 − ε < v(t)− k(t) � y(t).

From (2.4), we obtain

w(n−2)(t) � −q(t)G(l5− ε)

for t � t8 > t7 . Thus integrating the last inequality from t8 to t , we obtain

∞ > w(n−3)(t8) > −w(n−3)(t)+w(n−3)(t8) � G(l5 − ε)
∫ t

t8
q(s)ds.

Since limt→∞ wn−3(t) < ∞ , then taking the limit as t → ∞ in the preceeding inequality
we get a contradiction to (H6) . Hence, limt→∞ v(t) = 0 and limt→∞ z(t) = 0. There-
fore, z(t) is bounded. We can show that y(t) is also bounded. Thus,

0 = limsup
t→∞

z(t) � limsup
t→∞

(y(t)+ p2y(σ(t)))

� limsup
t→∞

y(t)+ liminf
t→∞

(p2y(σ(t)))

= limsup
t→∞

y(t)+ p2 limsup
t→∞

y(σ(t))

= (1+ p2) limsup
t→∞

y(t).

Since (1+ p2) > 0, then limsupt→∞ y(t) = 0 and hence limt→∞ y(t) = 0.

Suppose v(t) < 0 for t � t4 as v′(t) < 0. Thus, −∞ � limt→∞ v(t) < 0. Hence,
−∞ � limt→∞ z(t)(= l6) < 0. If l6 =−∞ , then we get a contradiction due to the bound-
edness of y(t) .

If −∞ < l6 < 0, then

0 > limsup
t→∞

z(t) � limsup
t→∞

(y(t)+ p2y(σ(t)))

� limsup
t→∞

y(t)+ liminf
t→∞

(p2y(σ(t)))

= limsup
t→∞

y(t)+ p2 limsup
t→∞

y(σ(t))

= (1+ p2) limsup
t→∞

y(t).

Since (1+ p2) > 0, then limsupt→∞ y(t) < 0, a contradiction to the fact that y(t) > 0.
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Subcase (viii): Suppose w(n−3)(t) < 0 eventually, then from (2.4) we can conclude
that w(n−4)(t) < 0, ...,w′(t) < 0 for large t .

If v(t)> 0 eventually, then limt→∞ v(t)< ∞ and equal to l7 (say). We will claim l7 = 0.
If it is not true, then for every ε > 0, there exists t4 > t3 such that l7 < v(t) < l7 +ε for
t � t4. Choose 0 < ε < l7 . Since limt→∞ k(t) = 0, then for the same chosen ε , k(t) < ε
for t � t5 > t4 . Thus,

v(t)− y(t)− k(t) = p(t)y(σ(t)) � 0

for t � t6 > t5 . Hence,

l7 − ε < v(t)− k(t) � y(t).

Therefore using the last inequality in (2.4), we obtain

0 � w(n−2)(t)+q(t)G(l7− ε)

for t � t7 > t6 . Integrating the last inequality consecutively (n−2) times from t7 to t ,
we obtain

0 > w(t7) � w(t)+
1

(n−3) !

∫ t

t7
(t− s)n−3q(s)G(l7 − ε)ds.

Hence,

0 > (b(t)v′(t))′ +
1

a(t)
1

(n−3) !

∫ t

t7
(t− s)n−3q(s)G(l7 − ε)ds.

Further integrating the preceeding inequality from t7 to t and considering the fact that
v′(t) < 0, we obtain

0 > b(t7)v′(t7) � b(t)v′(t)+
1

(n−3) !

∫ t

t7

1
a(θ )

∫ θ

t7
(θ − s)n−3q(s)G(l7 − ε)dsdθ .

Again integrating the last inequality from t7 to t , we obtain

v(t7) � v(t)+
1

(n−3) !

∫ t

t7

1
b(u)

∫ u

t7

1
a(θ )

∫ θ

t7
(θ − s)n−3q(s)G(l7 − ε)dsdθdu.

Since limt→∞ v(t) < ∞ , then it implies that

1
(n−3) !

G(l7 − ε)
∫ ∞

t7

1
b(u)

∫ u

t7

1
a(θ )

∫ θ

t7
(θ − s)n−3q(s)dsdθdu < ∞,

a contradiction to (H9) . Hence, limt→∞ v(t) = 0 and limt→∞ z(t) = 0. Thus,

0 = limsup
t→∞

z(t) � limsup
t→∞

(y(t)+ p2y(σ(t)))
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� limsup
t→∞

y(t)+ liminf
t→∞

(p2y(σ(t)))

= limsup
t→∞

y(t)+ p2 limsup
t→∞

y(σ(t))

= (1+ p2) limsup
t→∞

y(t).

Since (1+ p2) > 0, then limsupt→∞ y(t) = 0. Hence, limt→∞ y(t) = 0.

If v(t) < 0 eventually, then −∞ � limt→∞ v(t) < 0. If −∞ < limt→∞ v(t) < 0, then
−∞ < limt→∞ z(t) < 0. Hence,

0 > limsup
t→∞

z(t) � limsup
t→∞

(y(t)+ p2y(σ(t)))

� limsup
t→∞

y(t)+ liminf
t→∞

(p2y(σ(t)))

= limsup
t→∞

y(t)+ p2 limsup
t→∞

y(σ(t))

= (1+ p2) limsup
t→∞

y(t),

which implies limsupt→∞ y(t)< 0, a contradiction to the fact that y(t)> 0. If limt→∞ v(t)
= −∞ , then we obtain a contradiction to the fact that y(t) is bounded. Hence the proof
of the theorem is complete.

THEOREM 9. Let −1 < p2 � p(t) � 0 . Suppose that (H1) , (H5) , (H6) , (H7)
and (H9) hold, then every solution of (1.1) either oscillates or converges to zero as
t → ∞ .

Proof. Let y(t) be a non-oscillatory solution of (1.1) on [t0,∞) , t0 � 0, say y(t)
is an eventually positive solution. (The proof in case y(t) < 0 eventually is similar and
will be omitted.) Then there exists t1 > t0 such that y(α(t)) > 0,y(β (t)) > 0,y(σ(t)) >
0 for t � t1 . Setting z(t),k(t) , v(t) as in (2.1), (2.2) and (2.3) respectively, we get (2.4)
and (2.5) for t � t1 . Clearly, w(n−3)(t),w(n−4)(t), ..,w′(t),w(t) are monotonic functions
and of constant sign for t ∈ [t2,∞), t2 � t1 .

If w(t) > 0 for t � t2 , then in view of Lemma 1, w(n−3)(t) > 0 for t � t2 . Now
w(t) > 0 implies (b(t)v′(t))′ > 0 for t � t2 , which in turn implies v′(t) is monotonic
function. Thus, v′(t) > 0 or < 0 for t � t3 > t2 .

Case I. If v′(t) > 0 for t � t3 , then z′(t) > 0 eventually. Thus, we have two cases:
z(t) > 0 or z(t) < 0 for t � t4 > t3.

Subcase (i): If z(t) > 0 for t � t4 , then proceeding as in Subcase (i) of Case I of
Theorem 8, we get a contradiction due to (H6) .

Subcase (ii): If z(t) < 0 for t � t4 , then proceeding as in Subcase (ii) of Case I of
Theorem 8, we get limt→∞ y(t) = 0.

Case II. If v′(t) < 0 for t � t3 , then we have two cases: v(t) > 0 or v(t) < 0 for
t � t4 > t3.
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Subcase (iii): If v(t) > 0 for t � t4 , then proceeding as in Subcase (iii) of Case II
of Theorem 6, limt→∞ y(t) = 0.

Subcase (iv): If v(t) < 0 for t � t4 , then proceeding as in Subcase (iv) of Case II
of Theorem 6, we get limt→∞ y(t) = 0.

If w(t) < 0 for t � t2 , then (b(t)v′(t))′ < 0 for t � t2 . Thus, v′(t) > 0 or v′(t) < 0 for
t � t3 > t2 .

Case III. Suppose v′(t) > 0 for t � t3. Since, w(n−2)(t) � 0 eventually, then either
w(n−3)(t) > 0 or < 0 eventually.

Subcase (v): Suppose w(n−3)(t) > 0 eventually. Now v′(t) > 0 and k′(t) < 0
implies that z′(t) > 0 eventually. Hence, z(t) > 0 or < 0 eventually.

If z(t) > 0 eventually, then proceeding as in Subcase (v) of Case III of Theorem 6, we
get a contradiction to (H6) .
If z(t) < 0 for t � t4 > t3 , then proceeding as in Subcase (v) of Case III of Theorem 6,
we get limt→∞ y(t) = 0.

Subcase (vi): If w(n−3)(t) < 0 eventually, then using (H5) and proceeding same
as in Subcase (ii) of Case III of Theorem 2, we get a contradiction due to v′(t) > 0.

Case IV. Suppose v′(t) < 0 eventually. Since w(n−2)(t) � 0 eventually, then we have
two cases; w(n−3)(t) > 0 or w(n−3)(t) < 0 eventually.

Subcase (vii): If w(n−3)(t) > 0 eventually, then proceeding as in Subcase (vii) of
Case IV of Theorem 8 for v(t) > 0 part, we get limt→∞ y(t) = 0 and for v(t) < 0 part
we get a contradiction due to y(t) > 0.

Subcase (viii): If w(n−3)(t) < 0 eventually, then first we consider:

If v(t) > 0 eventually, then limt→∞ v(t) < ∞ .

If 0 < limt→∞ v(t) < ∞ , then proceeding as in Subcase (viii) of Case IV of Theorem 8,
we get a contradiction due to (H9) .
If limt→∞ v(t) = 0, then limt→∞ y(t) = 0.

If v(t) < 0 eventually, then proceeding as in Subcase (viii) of Case IV of Theorem 8,
we get a contradiction due to y(t) > 0.

Hence proof of the theorem is complete.

3. Examples

EXAMPLE 1. Consider the fifth order differential equation

(
y(t)+

1
2
y(t−π)

)(v)

+
(

1
2

+ e−t
)

y

(
t− π

2

)

− e−t
(

1+ sin2
(

t− π
2

)) y

(
t− π

2

)

1+ y2

(
t− π

2

) = 0, t � 4. (3.1)
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It is easy to verify that the hypothesis of Theorem 2 are satisfied. Thus, every solution
of (3.1) either oscillates or tends to zero as t → ∞ . Indeed, y(t) = sin t is such an
oscillatary solution of (3.1).

EXAMPLE 2. Consider the third order equation

(
e−

t
8

(
e

t
4

(
y(t)+

1
2eπ y(t−π)

)′)′)′
+

(
63
64

e
7t
8 + e−

5t
4

)
y7

(
t
4

)

− e−2t(1+ e−2t+π)
e

π
2

y

(
t− π

2

)

1+ y2

(
t− π

2

) = 0, t � 4. (3.2)

It is easy to verify that the conditions (H1),(H5),(H6),(H7) and (H9) are satisfied, so
equation (3.2) satisfies the hypothesis of Theorem 5. Thus, every solution of (3.2) either
oscillates or tends to zero as t → ∞ . Indeed, y(t) = e−t is such a solution of (3.2).

EXAMPLE 3. Consider the fifth order equation

(
y(t)− 1

2
y(t−2π)

)(v)

+
(

1
2

+ e−t
)

y

(
t− π

2

)

− e−t
(

1+ sin2
(

t− π
2

)) y

(
t− π

2

)

1+ y2

(
t− π

2

) = 0, t � 4. (3.3)

It is easy to verify that the conditions (H1),(H2),(H6) and (H7) are satisfied, so equa-
tion (3.3) satisfies the hypothesis of Theorem 6. Thus, every solution of (3.3) either
oscillates or tends to zero as t → ∞ . Indeed, y(t) = sin t is such an oscillatory solution
of (3.3).

EXAMPLE 4. Consider the third order differential equation

(
e−

t
8

(
e

t
4

(
y(t)− 1

2eπ y(t−π)
)′)′)′

+
(

21
64

e
7t
8 + e−

5t
4

)
y7

(
t
4

)

− e−2t(1+ e−2t+π)
e

π
2

y

(
t− π

2

)

1+ y2

(
t− π

2

) = 0, t � 4. (3.4)

It is easy to verify that the conditions (H1),(H5),(H6),(H7) and (H9) are satisfied, so
equation (3.4) satisfies the hypothesis of Theorem 9. Thus, every solution of (3.4) either
oscillates or tends to zero as t → ∞ . Indeed, y(t) = e−t is such a solution of (3.4).
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REMARK 1. It would be interesting to study the qualitative behavior of solutions
of (1.1) with n � 3, n is an odd integer for the ranges 1 � p(t) < ∞ and −∞ < p(t) �
−1 under the hypothesis (H2)− (H5) .
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