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EXISTENCE OF HOMOCLINIC SOLUTIONS FOR SECOND

ORDER HAMILTONIAN SYSTEMS UNDER LOCAL CONDITIONS
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(Communicated by Philip Korman)

Abstract. Under some local conditions on V(t,x) with respect to x , the existence of homoclinic
solutions is obtained for a class of the second order Hamiltonian systems ü(t) + ∇V(t,u(t)) =
f (t), ∀t ∈ R .

1. Introduction

Let us consider the second order Hamiltonian systems

ü(t)+ ∇V(t,u(t)) = f (t), ∀t ∈ R, (1.1)

where ∇V (t,x) = ∂V
∂x (t,x) . As usual, we say that u is a nontrivial homoclinic solution

(to 0) if u ∈ C2(R,RN),u �≡ 0 and u(t) → 0 as |t| → ∞ . In the following, (·, ·) :
R

N ×R
N �→ R denotes the standard inner product in R

N and | · | is the induced norm.
If V (t,x) = −(L(t)x,x)/2 +W(t,x), then (1.1) reduces to the following second

order Hamiltonian systems

ü(t)−L(t)u(t)+ ∇W(t,u(t)) = f (t), ∀t ∈ R, (1.2)

where L ∈C(R,RN2
) is a symmetric matrix-valued function and W ∈C1(R×R

N ,R) .
With the variational methods, the existence and multiplicity of homoclinic solu-

tions of problem (1.1) have been obtained by many papers (see [1–6, 9–20]), mainly
in the case that V satisfies some global assumptions for all t and x . For example,
Izydorek and Janczewska [4] established the following theorem.

THEOREM A. (see [4]) Assume that V and f satisfy the following conditions:

(H1) V (t,x) = −K(t,x)+W (t,x) , where V ∈C1(R×R
N ,R) is T−periodic with re-

spect to t,T > 0 ;

(H2 ) there are constants b1,b2 > 0 such that for all (t,x) ∈ R×R
N

b1|x|2 � K(t,x) � b2|x|2;
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(H3 ) K(t,x) � (∇K(t,x),x) � 2K(t,x) for all (t,x) ∈ R×R
N ;

(H4 ) ∇W (t,x) = o(|x|) as |x| → 0 uniformly with respect to t ;

(H5 ) there is a constant μ > 2 such that for all (t,x) ∈ R× (RN \ {0})

0 < μW (t,x) � (∇W (t,x),x);

(H6 ) f : R → R
N is a continuous and bounded function such that

(∫
R

| f (t)|2dt

)1/2

<
b1 −2M

2C∗ ,

where C∗ is a suitable positive constant and

M := sup{W (t,x)|t ∈ [0,T ],x ∈ R
N , |x| = 1}, b1 := min{1,2b1} > 2M.

Then problem (1.1) has a nontrivial homoclinic solution.

Later, Tang and Xiao [11] extended Theorem A by using more general conditions.

THEOREM B. (see [11]) Assume that V and f �≡ 0 satisfy (H1) , (H4) , (H5) and
the following conditions:

(H ′
2 ) there are constants b∗ > 0 and γ ∈ (1,2] such that for all (t,x) ∈ [0,T ]×R

N

K(t,0) = 0,K(t,x) � b∗|x|γ ;

(H ′
3 ) there is a constant ρ ∈ [2,μ) such that for all (t,x) ∈ [0,T ]×R

N

(∇K(t,x),x) � ρK(t,x);

(H ′
6 ) f : R → R

N is a continuous and bounded function such that

(∫
R

| f (t)|2dt

)1/2

<
√

2min{δ/2,b∗δ γ−1−Mδ μ−1},

where

M := sup{W (t,x)|t ∈ [0,T ],x ∈ R
N , |x| = 1}

and δ ∈ (0,1] such that

b∗δ γ−1 −Mδ μ−1 = max
x∈[0,1]

(b∗xγ−1 −Mxμ−1).

Then problem (1.1) has a nontrivial homoclinic solution.

Among other results, under some local conditions on W , Lv and Jiang [6] inves-
tigated the existence of homoclinic solutions of problem (1.2) as a limit of periodic
solutions of a certain sequence of boundary-value problems. They presented the fol-
lowing assumption on L :
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(L) L(t) is a positive symmetric matrix for all t ∈R and there exists an l ∈C(R,(0,∞))
such that for all (t,x) ∈ R×R

N

(L(t)x,x) � l(t)|x|2

and supt∈R |Li j(t)| < ∞ , where L(t) = (Li j(t))N×N .
As far as the authors know, there is no research concerning the existence and mul-

tiplicity of homoclinic solutions for the more general Hamiltonian system (1.1) under
local conditions. Motivated by the above facts, in this note, we will consider prob-
lem (1.1) where V (t,x) satisfies only some local conditions near the origin. The exact
assumptions are as follows.

THEOREM 1. Assume that V and f satisfy the following conditions:

(V1 ) V (t,0) = ∇V (t,0) = 0 and V ∈C1(R×R
N,R) uniformly in t ∈ R;

(V2 ) there exist constants ρ > 0 , a0 > 0 and an a ∈C(R,(−∞,−a0]) such that

V (t,x) � a(t)|x|2, for all t ∈ R and |x| �
√

2ρ ;

(F ) f �≡ 0 is a continuous and bounded function such that
∫
R
| f (t)|2dt < ∞ and

(∫
R

| f (t)|2dt

)1/2

< min{1/2,a0}ρ .

Then problem (1.1) has a nontrivial homoclinic solution.

REMARK 1. On one hand, (V2 ) in Theorem 1 can be deduced from conditions in
Theorem B. In fact, by (H1 ), (H ′

2 ) and (H5 ) we have

V (t,x) = −K(t,x)+W(t,x) � −b∗|x|γ + c|x|μ , for |x| � 1,

where c = supt∈[0,T ],|x|=1W (t,x) . Since γ ∈ (1,2] and μ > 2, there is a positive con-
stant ξ > 0 such that

V (t,x) � −b∗|x|2/2, for all t ∈ R and |x| � ξ .

On the other hand, there exist V and f that satisfy our conditions (V1 ), (V2 ) and (F )
but do not satisfy conditions in Theorem A and Theorem B. For example, let

V (t,x) = −
(

1
1+t2

+1
)
|x|3/2 for |x| � 1,

f (t) = 1

6
√

1+t2
with a0 = 1, a(t) = −1 and ρ =

√
2/2.

Since V (t,x) is not periodic with respect to t , the condition (H1 ) in Theorem A and
Theorem B is not satisfied.
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2. Proof of theorems

Consider the following boundary-value problem{
ü(t)+ ∇V(t,u(t)) = f (t), ∀t ∈ [−T,T ]
u(−T )−u(T) = u̇(−T )− u̇(T ) = 0,

(2.1)

for T ∈ R
+ .

Define

ET = W 1,2([−T,T ],RN)

=
{
u : [−T,T ] → R

N | u is absolutely continuous, u(−T) = u(T )

and u̇ ∈ L2([−T,T ],RN)
}
.

Then ET is a Hilbert space equipped with the following norm:

‖u‖ET =
[∫ T

−T
(|u̇|2 + |u|2)dt

]1/2

.

For u ∈ ET , let

IT (u) =
∫ T

−T

[
|u̇|2/2−V(t,u)+ ( f (t),u)

]
dt.

It is easy to see that IT ∈C1(ET ,R) is weakly lower semi-continuous as the sum of a
convex continuous function and of a weakly continuous one and

〈I′T (u),v〉 =
∫ T

−T
[(u̇, v̇)− (∇V(t,u),v)+ ( f (t),v)]dt

for all u,v ∈ ET . Moreover, it is well known that the critical points of IT in ET are
classical solutions of problem (2.1) . The following lemmas are important to our proofs.

LEMMA 1. (see [7]) Let X be a real reflexive Banach space and Ω ⊂ X be a
closed bounded convex subset of X . Suppose that ϕ : X → R is a weakly lower semi-
continuous functional. If there exists a point x0 ∈ Ω\ ∂Ω such that

ϕ(x) > ϕ(x0), ∀x ∈ ∂Ω.

Then there must be a x∗ ∈ Ω\ ∂Ω such that

ϕ(x∗) = inf
u∈Ω

ϕ(u).

LEMMA 2. (see [6]) Let u ∈ ET , then the following inequality holds

‖u‖L∞
[−T,T ]

�
√

2‖u‖ET .
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LEMMA 3. Under the conditions of Theorem 1, problem (2.1) possesses a solu-
tion uT ∈ ET such that

∫ T

−T
(|u̇T |2 + |uT |2)dt < ρ2, ∀T ∈ R

+. (2.2)

Proof. For any T ∈ R
+ , let

ΩT =
{

u ∈ ET |
∫ T

−T
(|u̇|2 + |u|2)dt � ρ2

}
,

where ρ is a constant given in condition (V2 ). Clearly, ΩT is a closed bounded convex
subset of ET .

For any u ∈ ∂ΩT , we have

∫ T

−T
(|u̇|2 + |u|2)dt = ρ2.

By (V1) , (V2) , (F) and Lemma 2, we get

IT (u) =
∫ T

−T
[|u̇|2/2−V(t,u)+ ( f (t),u)]dt

� (1/2)
∫ T

−T
|u̇|2dt +a0

∫ T

−T
|u|2dt−

(∫ T

−T
| f (t)|2dt

)1/2(∫ T

−T
|u|2dt

)1/2

� min{1/2,a0}ρ2−ρ
(∫ T

−T
| f (t)|2dt

)1/2

> 0 = IT (0)

for all u ∈ ∂ΩT . Then by Lemma 1, for any T ∈ R
+ , there exists a point

uT ∈ ΩT \ ∂ΩT =
{

u ∈ ET |
∫ T

−T
(|u̇|2 + |u|2)dt < ρ2

}

such that
IT (uT ) = inf

u∈ΩT
IT (u).

Now by Theorem 1.3 in [8] and the fact that ΩT \ ∂ΩT is an open subset of ET , we
have

I′T (uT ) = 0.

Since uT ∈ ΩT \ ∂ΩT , we have

∫ T

−T
(|u̇T |2 + |uT |2)dt < ρ2.

Therefore, (2.2) holds. The proof is complete. �



434 LI-LI WAN

Proof. [Proof of Theorem 1] Let {Tn}→ ∞ as n→ ∞ and consider problem (2.1)
on the interval [−Tn,Tn] . By Lemma 3, problem (2.1) has a solution un and ‖un‖ETn

is bounded uniformly in n . As in the proof of Theorem 2.1 in [5], by the fact that

|un(t1)−un(t2)| �
∫ t2

t1
|u̇n|dt �

√
t2− t1

(∫ t2

t1
|u̇n|2dt

)1/2

,

we claim that the sequence {un} is equicontinuous and uniformly bounded on every
interval [−Tn,Tn] and we can select a subsequence {unk} such that it converges uni-
formly on any bounded interval to a function u . Since ‖un‖ETn

is bounded uniformly
in n , we conclude that u ∈W 1,2(R,RN) and thus u(t) → 0 as t → ∞ .

Expressing ünk using (2.1) , we get that the sequence ünk , and then also u̇nk con-
verges uniformly on bounded intervals. Writing

unk(t) =
∫ t

0
(t− s)ünk(s)ds+ tu̇nk(0)+unk(0),

we have that u ∈C2(R,RN) and ünk → ü uniformly on bounded intervals. Now con-
sider problem (2.1) on interval [−m,m] for m ∈ N . Then by the diagonal process and
let m → ∞ , we can get that u satisfies problem (1.1) , that is, u is a classical solution
of problem (1.1) . By (V1) and (F) , we get ∇V (t,0) = 0 and f �≡ 0. Thus u is a
nontrivial homoclinic solution of problem (1.1) . The proof is complete. �
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