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EXISTENCE OF HOMOCLINIC SOLUTIONS FOR SECOND
ORDER HAMILTONIAN SYSTEMS UNDER LOCAL CONDITIONS

Li-L1 WAN

(Communicated by Philip Korman)

Abstract. Under some local conditions on V(#,x) with respect to x, the existence of homoclinic
solutions is obtained for a class of the second order Hamiltonian systems #i(7) + VV (¢,u(t)) =
f@), vVt eR.

1. Introduction
Let us consider the second order Hamiltonian systems
ii(t)+VV(t,u(t)) = f(t), VieR, (1.1)

where VV (z,x) = %—Z(t,x). As usual, we say that u is a nontrivial homoclinic solution
(to 0) if u € C2(R,RY),u # 0 and u(t) — 0 as |[t| — o. In the following, (-,-):
RN x RN i— R denotes the standard inner productin R" and |- | is the induced norm.

If V(¢,x) = —(L(t)x,x)/2+W(t,x), then (1.1) reduces to the following second
order Hamiltonian systems

i(t) —L(0u(t) + VW (t,u(t)) = f(t), VieR, (1.2)

where L € C(R,RY 2) is a symmetric matrix-valued function and W € C!(R x RV R).

With the variational methods, the existence and multiplicity of homoclinic solu-
tions of problem (1.1) have been obtained by many papers (see [1-6, 9-20]), mainly
in the case that V satisfies some global assumptions for all # and x. For example,
Izydorek and Janczewska [4] established the following theorem.

THEOREM A. (see [4]) Assume that V and f satisfy the following conditions:

(Hy) V(t,x) = —K(t,x) + W(t,x), where V € C'(R x RN R) is T—periodic with re-
spectto t,T >0;
(H,) there are constants by,by > 0 such that for all (t,x) € R x RV
bife* < K(1,x) < balal*;
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(H3) K(t,x) < (VK(t,x),x) < 2K(t,x) forall (t,x) ERx RN
(Hy) VW (t,x) = o(|x]) as |x| — O uniformly with respect to t;
(Hs) there is a constant |t > 2 such that for all (t,x) € R x (RV\ {0})

0 <uW(t,x) < (VW (t,x),x);

(Hg) f:R — RN is a continuous and bounded function such that

V2 by —om
2 1
([Liropar) <222,

where C* is a suitable positive constant and

M :=sup{W(t,x)|t € [0,T],x € RN, |x| = 1}, by := min{1,2b;} > 2M.
Then problem (1.1) has a nontrivial homoclinic solution.

Later, Tang and Xiao [ 1 1] extended Theorem A by using more general conditions.

THEOREM B. (see [11]) Assume that V and f # 0 satisfy (Hy), (Ha), (Hs) and
the following conditions:

(Hj) there are constants b* > 0 and y € (1,2] such that for all (t,x) € [0,T] x RY
K(1,0) =0,K(t,x) = b*|x|";
(H}) there is a constant p € [2,1t) such that for all (t,x) € [0,T] x RV
(VK(t,x),x) < pK(t,x);

(H{) [:R— RN is a continuous and bounded function such that

1/2
(/Rf(t)|2dt> <\/§min{5/2,b*5)’*l_M§u71},

where
M :=sup{W(t,x)|t € [0,T],x € RY |x| = 1}
and 6 € (0,1] such that

b*87 1 —MSH ! = max (b*x71 — MxH ).
x€[0,1]

Then problem (1.1) has a nontrivial homoclinic solution.

Among other results, under some local conditions on W, Lv and Jiang [6] inves-
tigated the existence of homoclinic solutions of problem (1.2) as a limit of periodic
solutions of a certain sequence of boundary-value problems. They presented the fol-
lowing assumption on L:
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(L) L(r) is a positive symmetric matrix for all 7 € R and there exists an [ € C(RR, (0,0))
such that for all (z,x) € R x RV

(L(t)x,x) = 1(1)|x]?
and sup,cp |Lij(1)| < oo, where L(t) = (L;;(t))nxnN-
As far as the authors know, there is no research concerning the existence and mul-
tiplicity of homoclinic solutions for the more general Hamiltonian system (1.1) under
local conditions. Motivated by the above facts, in this note, we will consider prob-

lem (1.1) where V(z,x) satisfies only some local conditions near the origin. The exact
assumptions are as follows.

THEOREM 1. Assume that V and f satisfy the following conditions:

(V1) V(t,0) =VV(t,0) =0 and V € C'(R x RN, R) uniformly int € R;
(V) there exist constants p >0, ap >0 and an a € C(R, (—ee, —ag|) such that

V(t,x) <a(t)|x]?, forallt € R and |x| < V2p;

(F) f #0 is a continuous and bounded function such that [ |f(¢)]>dt < o> and

1/2
([yora)  <ming1/2.anlp.
Then problem (1.1) has a nontrivial homoclinic solution.

REMARK 1. On one hand, (V,) in Theorem 1 can be deduced from conditions in
Theorem B. In fact, by (H, ), (H}) and (Hs) we have

V(t,x) = —K(t,x) +W(t,x) < —b*|x|" +c|x|*, for |x] < 1,

where ¢ = sup, (o 71 y—1 W(t,x). Since y € (1,2] and u > 2, there is a positive con-
stant £ > 0 such that

V(t,x) < —b*|x|*/2, forallr € R and |x| < €.

On the other hand, there exist V and f that satisfy our conditions (V7), (V») and (F)
but do not satisfy conditions in Theorem A and Theorem B. For example, let

V(t,x) = —(lﬁ + 1)\)43/2 for x| < 1,

f(t)= —+ = withag =1, a(t) = —1 and p = v/2/2.
64/ 1+£2

Since V(¢,x) is not periodic with respect to ¢, the condition (H;) in Theorem A and
Theorem B is not satisfied.
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2. Proof of theorems

Consider the following boundary-value problem

{(HVWH4»=<>w6[nﬂ o
u(=T)—u(T) = i(=T)—i(T) =0,
for T e RY.
Define
B =T 1R%
={u:[- — RN | u is absolutely continuous, u(—T) = u(T)

and i eL2([—T,T},RN)}.

Then E7 is a Hilbert space equipped with the following norm:

T 1/2
e = | [ a fyar]|

For u € Er, let

) = [ [P /2= Vi) + (r0.0]ar.

It is easy to see that Iy € C'(Er,R) is weakly lower semi-continuous as the sum of a
convex continuous function and of a weakly continuous one and

T
(I )v) = [ [(69) = (VW {t,),0) + (7))l

-7

for all u,v € Er. Moreover, it is well known that the critical points of I7 in Er are
classical solutions of problem (2.1). The following lemmas are important to our proofs.

LEMMA 1. (see [7]) Let X be a real reflexive Banach space and Q C X be a
closed bounded convex subset of X. Suppose that ¢ : X — R is a weakly lower semi-
continuous functional. If there exists a point xy € Q\ dQ such that

@(x) > ¢(xo), Vx € 0Q.

Then there must be a x* € Q\ dQ such that

o) = inf o(u).

LEMMA 2. (see [6]) Let u € Er, then the following inequality holds

lullz < V2 ullg-
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LEMMA 3. Under the conditions of Theorem 1, problem (2.1) possesses a solu-
tion ur € Ep such that

T
/T(m\2 + ur?)dt < p?, YT € RT. (2.2)

Proof. Forany T € R, let

T
Qr = {u cEr | /T(|M|2+ |M‘2)dl‘ < pz},

where p is a constant given in condition (V3 ). Clearly, Qr is a closed bounded convex
subset of E7.
For any u € dQr, we have

T
/ (i + e = p.

By (V1), (V2), (F) and Lemma 2, we get

T
1) = [ (/2= V(0 +(70).00)ds

> /) [ JaParva [ uPar - ( /. If(t)|2dt)1/2< /. u|2dz)l/2

1/2
>min{1/2,a0}p> —p (/_TT f(t)|2dt>
>0= IT(O)

for all u € dQr . Then by Lemma 1, for any T € R™, there exists a point

T
ur € Qr\ dQr = {u €Er| /T(|u|2+ |u|?)dr < p2}

such that

IT (MT) = uieIgT IT (u)

Now by Theorem 1.3 in [8] and the fact that Q7 \ dQr is an open subset of Er, we
have

I}(ur) =0.

Since ur € Qr \ dQr, we have

T
/T(|ur\2+\ur\2)dt <p?.

Therefore, (2.2) holds. The proof is complete. [J
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Proof. [Proof of Theorem 1] Let {7,,} — o as n — oo and consider problem (2.1)
on the interval [~T,,7,]. By Lemma 3, problem (2.1) has a solution u, and ||u,||g;,
is bounded uniformly in n. As in the proof of Theorem 2.1 in [5], by the fact that

%) %) 1/2
|un(t1)—un(t2)|</ |un|dt<\/—t2—t1</ |un2dt> ,
131 131

we claim that the sequence {u,} is equicontinuous and uniformly bounded on every
interval [—T7,,T,] and we can select a subsequence {uy } such that it converges uni-
formly on any bounded interval to a function u. Since ||u,||£;, is bounded uniformly
in n, we conclude that u € W'2(R,R") and thus u(t) — 0 as t — oo.

Expressing ii,, using (2.1), we get that the sequence iy, , and then also i,, con-
verges uniformly on bounded intervals. Writing

i (1) = /0 (1 = )i, ()5 + t1in, (0) + 1t (0),

we have that u € C>(R,R") and ii,, — ii uniformly on bounded intervals. Now con-
sider problem (2.1) on interval [—m,m] for m € N. Then by the diagonal process and
let m — oo, we can get that u satisfies problem (1.1), that is, u is a classical solution
of problem (1.1). By (V;) and (F), we get VV(¢,0) =0 and f #0. Thus u is a
nontrivial homoclinic solution of problem (1.1). The proof is complete. [
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