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POSITIVE SOLUTIONS FOR A SINGULAR
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(Communicated by Peter L. Simon)

Abstract. The existence of positive solutions is shown for the third order boundary value prob-
lem, u′′′ = f (x,u),0 < x < 1, u(0) = u(1) = u′′(1) = 0, where f (x,y) is singular at x = 0 ,
x = 1 , y = 0 , and may be singular at y = ∞. The method involves application of a fixed point
theorem for operators that are decreasing with respect to a cone.

1. Introduction

Singular boundary value problems for ordinary differential equations, often times
of the second order and involving semi-infinite intervals, for which there are positive
solutions are often used to model applications, such as, glacial advance and transport of
coal slurries down conveyor belts as examples of nonNewtonian fluid theory in studies
of pseudoplastic fluids [9], for problems involving draining flows [1, 5] and semiposi-
tone and positone problems [2], and as models in boundary layer applications, Emden-
Fowler boundary value problems, and reaction-diffusion applications [6, 7, 8, 18]. In
addition, there is a large literature for semi-linear boundary value problems for bounded
domains Ω in any space of dimension N > 1, for second order differential operators
(such as the Laplacian −Δ) with nonlinearities f (x,u) which are singular both in u
(when u goes to 0) and in x (when d(x) = d(x,Ω) goes to zero); see, for example [17]
and the references therein.

Moreover, much theoretical interest has been given to singular boundary value
problems for ordinary differential equations. For several of these studies, see [4, 14,
15, 21, 22, 23, 25, 26, 27]. In this paper, our methods involve applying a fixed point
theorem by Gatica, Oliker and Waltman [11] for operators that are decreasing with
respect to a cone. This method has been used to obtain positive solutions for other
singular boundary value problems by Eloe and Henderson [10], Henderson and Yin
[16], Maroun [19, 20] and Singh [24]. Fundamental to our obtaining positive solutions
of (1)-(2) is a positivity result by Graef and Yang [12, 13].
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In this paper, we establish the existence of positive solutions for the singular third
order boundary value problem,

u′′′ = f (x,u), 0 < x < 1, (1)

u(0) = u(1) = u′′(1) = 0, (2)

where f (x,y) is singular at x = 0,1, y = 0, and may be singular at y = ∞.
We assume the following conditions on f :

(H1) f (x,y) : (0,1)×(0,∞)→ (0,∞) is continuous, and f (x,y) is decreasing in y , for
every x.

(H2) limy→0+ f (x,y) = +∞ and limy→+∞ f (x,y) = 0 uniformly on compact subsets of
(0,1) .

We note that the function f (x,y) := 1
3
√

x(1−x)y
satisfies (H1) and (H2).

We will convert the problem (1)-(2) into an integral equation problem, from which
we define a sequence of decreasing integral operators associated with a sequence of
perturbed integral equations. Applications of a Gatica, Oliker and Waltman fixed point
theorem yield a sequence of fixed points of the integral operators. A solution of (1)-(2)
is then obtained from a subsequence of the fixed points.

2. Definitions, cone properties and the Gatica, Oliker and Waltman fixed point
theorem

In this section, we state some definitions and properties of Banach space cones,
and we state the fixed point theorem on which the paper’s main result depends.

Let (B, || · ||) be a real Banach space. A nonempty closed K ⊂ B is called a cone
if the following hold:

(i) αu+ βv∈ K , for all u,v ∈ K , and for all α,β ∈ [0,∞) .

(ii) K∩ (−K) = {0}.
Given a cone K , a partial order, � , is induced on B by x � y , for x,y ∈ B if, and
only if, y− x ∈ K . (We sometimes will write x � y (w.r.t.K ).) If x,y ∈ B with x � y ,
let 〈x,y〉 denote the closed order interval between x and y and be defined by, 〈x,y〉 :=
{z ∈ B | x � z � y}. A cone K is normal in B provided there exists a δ > 0 such that
||e1 + e2|| � δ , for all e1,e2 ∈ K with ||e1|| = ||e2|| = 1.

REMARK 1. If K is a normal cone in B , then closed order intervals are norm
bounded.

We now state the Gatica, Oliker and Waltman [11] fixed point theorem on which
the main result of this paper depends.
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THEOREM 1. Let B be a Banach space, K a normal cone, J a subset of K such
that, if x,y ∈ J, x � y, then 〈x,y〉 ⊆ J, and let T : J → K be a continuous decreasing
mapping which is compact on any closed order interval contained in J . Suppose there
exists x0 ∈ J such that T 2x0 is defined, and furthermore, Tx0 and T 2x0 are order
comparable to x0.

Then T has a fixed point in J provided that, either

(I) Tx0 � x0 and T 2x0 � x0 , or x0 � Tx0 and x0 � T 2x0, or

(II) The complete sequence of iterates {Tnx0}∞
n=0 is defined, and there exists y0 ∈ J

such that y0 � Tnx0, for every n.

3. Properties of positive solutions

In setting the stage for application of Theorem 1, we consider the Banach space
(B, || · ||) defined by

B := {u : [0,1] → R | u is continuous}, ||u|| := sup
0�x�1

|u(x)|.

Also, we define a cone K ⊂ B by

K := {u ∈ B | u(x) � 0 on [0,1]}.
We observe that, if y(x) is a solution of (1)-(2), then

y′′′(x) � 0, y(x) � 0 and y(x) is concave.

Next, we define g(x) : [0,1] → [0, 3
4 ] by

g(x) := min{1− x,3x},
and for θ > 0, we define

gθ (x) := θg(x).

Notice that

max
0�x�1

g(x) =
3
4

and max
0�x�1

gθ (x) =
3θ
4

.

We will assume hereafter:

(H3)
∫ 1
0 f (x,gθ (x))dx < ∞, for all θ > 0.

Now, we note that the function f (x,y) := 1
3
√

x(1−x)y
also satisfies (H3). In particular,

for each θ > 0,

∫ 1

0
f (x,gθ (x))dx =

1
3
√

θ

[∫ 1
4

0

1
3
√

3x2(1− x)
dx+

∫ 1

1
4

1
3
√

x(1− x)2
dx

]
< 4 3

√
3
θ

.

We shall make extensive application of the following theorem due to Graef and
Yang [12, 13].
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THEOREM 2. Let u(x) ∈ C(3)[0,1]. If u(x) satisfies the boundary conditions (2)
is such that u′′′ � 0 on [0,1] , then

u(x) � min{1− x,3x} sup
0�x�1

|u(x)|. (3)

So, from this theorem, for each positive solution u(x) of (1)-(2), there exists a θ > 0
such that

gθ (x) � u(x), 0 � x � 1.

In particular, with θ = sup0�x�1 |u(x)| , then

u(x) � min{1− x,3x}θ = gθ (x), 0 � x � 1.

Next, we let D ⊂ K be defined by

D := {v ∈ K | there exists θ (v) > 0 such that gθ (x) � v(x), 0 � x � 1}.
We observe that, for each v ∈ D and 1

8 � x � 5
8 ,

v(x) � gθ (x) = min{1− x,3x}θ � 3
8

θ , (4)

and for each positive solution u(x) of (1)-(2),

u(x) � g(x) sup
0�x�1

|u(x)| � 3
8

sup
0�x�1

|u(x)|, 1
8

� x � 5
8
. (5)

There is a Green’s function, G(x,s), for y′′′ = 0 satisfying (2) which will play the
role of a kernel for certain compact operators meeting the requirements of Theorem 1.
By direct computation,

G(x,s) =
1
2

⎧⎨
⎩

x(1− x)− x(1− s)2, 0 � x < s � 1,

x(1− x)− x(1− s)2 +(x− s)2, 0 � s � x � 1,

and properties to which we will appeal include

(i) G(x,s) > 0 on (0,1)× (0,1) and continuous on [0,1]× [0,1] .

(ii) G(0,s) = 0,0 < s � 1, and G(1,s) = ∂ 2

∂x2 G(1,s) = 0,0 � s < 1.

(iii) ∂ 2

∂x2 G(x,s) is continuous as a function of x on [0,s] and on [s,1].

(iv) ∂
∂xG(0,s) = s(2−s)

2 > 0 and ∂
∂xG(1,s) = − s2

2 < 0, for 0 < s < 1.

Now we define an integral operator T : D → K by

(Tu)(x) :=
∫ 1

0
G(x,s) f (s,u(s))ds, u ∈ D.
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We shall show that T is well-defined on D and decreasing and that T : D→D. First, let
v,u ∈ D be given, with v(x) � u(x). Then, there exists θ > 0 such that gθ (x) � v(x) .
By Assumptions (H1) and (H3), and (i) above,

0 �
∫ 1

0
G(x,s) f (x,u(x))dx �

∫ 1

0
G(x,s) f (x,v(x))dx �

∫ 1

0
G(x,s) f (x,gθ (x))dx < ∞.

Therefore, T is well-defined on D and T is a decreasing operator.
Next, for v ∈ D , let w(x) := (Tv)(x) =

∫ 1
0 G(x,s) f (s,v(s))ds � 0, 0 � x � 1.

From properties of Green’s functions , w′′′(x) = f (x,v(x)) > 0, 0 < x < 1, and w(0) =
w(1) = w′′(1) = 0, which imply w′′(x) � 0, or that w(x) is concave. Moreover, by
Theorem 2, w = Tv ∈ D. So, we also have T : D → D.

REMARK 2. It is well-known that Tu = u if, and only if, u is a solution of (1)-(2).
Therefore, we seek solutions of (1)-(2) that belong to D . It follows from (4) and (5), in
the context of our Banach space B , that for each positive solution u(x) of (1)-(2),

u(x) � g(x)||u|| � 3
8
||u||, 1

8
� x � 5

8
. (6)

4. A priori bounds on norms of solutions

In this section, we exhibit that solutions of (1)-(2) have positive a priori upper and
lower bounds on their norms.

LEMMA 1. If f satisfies (H1) - (H3), then there exists an S > 0 such that ||u||� S,
for any solution u of (1)-(2) in D.

Proof. Assume the conclusion is false. Then there exists a sequence {um}∞
m=1 of

solutions of (1)-(2) in D such that um(x) > 0, for all 0 < x < 1, and

||um|| � ||um+1|| and lim
m→∞

||um|| = ∞.

From (5) or (6),

um(x) � 3
8
||um||, 1

8
� x � 5

8
.

So,

lim
m→∞

um(x) = ∞ uniformly on

[
1
8
,
5
8

]
.

Next, let
M := max{G(x,s) | (x,s) ∈ [0,1]× [0,1]}.

From (H2), there exists m0 ∈ N such that, for each m � m0 and 1
8 � x � 5

8 ,

f (x,um(x)) � 2
M

.
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Let
θ := ||um0 ||.

Then, for m � m0 ,

um(x) � g||um||(x) � g||um0 ||(x) = gθ (x), 0 � x � 1.

So, for m � m0 and 0 � x � 1, we have

um(x) = Tum(x)

=
∫ 1

0
G(x,s) f (s,um(s))ds

=
∫ 1

8

0
G(x,s) f (s,um(s))ds+

∫ 1

5
8

G(x,s) f (s,um(s))ds

+
∫ 5

8

1
8

G(x,s) f (s,um(s))ds

�
∫ 1

8

0
G(x,s) f (s,um(s))ds+

∫ 1

5
8

G(x,s) f (s,um(s))ds+
∫ 5

8

1
8

M · 2
M

ds

�
∫ 1

8

0
G(x,s) f (s,gθ (s))ds+

∫ 1

5
8

G(x,s) f (s,gθ (s))ds+1

� M
∫ 1

0
f (s,gθ (s))ds+1,

which contradicts limm→∞ ||um||= ∞. Therefore, there exists an S > 0 such that ||u||�
S, for any solution u ∈ D of (1)-(2). �

Now, we turn our attention to exhibiting positive a priori lower bounds on the
solution norms.

LEMMA 2. If f satisfies (H1) - (H3), then there exists an R > 0 such that ||u|| �
R, for any solution u of (1)-(2) in D.

Proof. Again, we assume the conclusion to the lemma is false. Then, there exists
a sequence {um}∞

m=1 of solutions of (1)-(2) in D such that um(x) > 0, for 0 < x < 1,
and

||um|| � ||um+1|| and lim
m→∞

||um|| = 0.

In particular,
lim
m→∞

um(x) = 0 uniformly on [0,1].

Now, define

m := min

{
G(x,s) | (x,s) ∈

[
1
8
,
5
8

]
×

[
1
8
,
5
8

]}
> 0.
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From (H2), limy→0+ f (x,y) = ∞ uniformly on compact subsets of (0,1) , and so, there
exists a δ > 0 such that, for 1

8 � x � 5
8 and 0 < y < δ ,

f (x,y) >
2
m

.

Also, there exists m0 ∈ N such that, for m � m0 and 0 < x < 1,

0 < um(x) <
δ
2

.

So, for m � m0 and 1
8 � x � 5

8 , we have

um(x) = Tum(x)

=
∫ 1

0
G(x,s) f (s,um(s))ds

�
∫ 5

8

1
8

G(x,s) f (s,um(s))ds

� m
∫ 5

8

1
8

f (s,um(s))ds

� m
∫ 5

8

1
8

f (s,
δ
2

)ds

� m
∫ 5

8

1
8

2
m

ds

= 1.

This contradicts limm→∞ um(x) = 0 uniformly on [0,1] . Therefore, there exists an R >
0 such that R � ||u|| for any solution u ∈ D of (1)-(2). �

In summary, there exist 0 < R < S such that, for each solution u ∈ D of (1)-(2),
we have

R � ||u|| � S.

5. Existence of positive solutions

In this section, we will construct a sequence of operators, {Tm}∞
m=1 , each of which

is defined on all of K . We then proceed to show, via applications of Theorem 1, that
each Tm has a fixed point φm ∈ K, for every m . Then, we will extract a subsequence
from {φm}∞

m=1 that converges to a fixed point of T .

THEOREM 3. If f satisfies (H1) - (H3), then (1)-(2) has at least one positive
solution u ∈ D.

Proof. For each m ∈ N , let

um(x) := T (m) =
∫ 1

0
G(x,s) f (s,m)ds, 0 � x � 1.
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Since f is decreasing with respect to its second component, we have

0 < um+1(x) < um(x), for 0 < x < 1,

and by (H2), limm→∞ um(x) = 0 uniformly on [0,1].
Next, we define fm(x,y) : (0,1)× [0,∞)→ (0,∞) by

fm(x,y) := f (x,max{y,um(x)}).

Then, fm is continuous and fm does not have the singularity at y = 0 possessed by f .
In addition, for (x,y) ∈ (0,1)× (0,∞),

fm(x,y) � f (x,y) and fm(x,y) � f (x,um(x)).

Now, let us define a sequence of operators, Tm : K → K , for φ ∈ K and 0 � x � 1,
by

Tmφ(x) :=
∫ 1

0
G(x,s) fm(s,φ(s))ds.

The standard arguments yield that each Tm is a compact operator on K . Furthermore,

Tm(0) =
∫ 1

0
G(x,s) fm(s,0)ds

=
∫ 1

0
G(x,s) f (s,max{0,um(s)})ds

=
∫ 1

0
G(x,s) f (s,um(s))ds

� 0,

and

T 2
m(0) = Tm

(∫ 1

0
G(x,s) fm(s,0)ds

)
� 0.

By Theorem 1, with J = K and x0 = 0, Tm has a fixed point in K , for each m. That is,
for each m , there exists φm ∈ K such that

Tmφm(x) = φm(x), 0 � x � 1.

So, for each m � 1, φm satisfies the boundary conditions (2), and also,

Tmφm(x) =
∫ 1

0
G(x,s) fm(s,φm(s))ds

�
∫ 1

0
G(x,s) f (s,um(s))ds

= Tum(x).

That is, for each 0 � x � 1 and for each m , φm(x) = Tmφm(x) � Tum(x).
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By arguments along the lines of Lemmas 1 and 2, there exist R > 0 and S > 0
such that

R � ||φm|| � S, for every m.

Now, let θ := R. Since φm belongs to K and is a fixed point of Tm , the conditions
of Theorem 2 hold. So, for every m and 0 � x � 1,

φm(x) � g(x)||φm|| � g(x) ·R = gθ (x).

So, the sequence {φm}∞
m=1 is contained in the closed order interval 〈gθ ,S〉 , and there-

fore, the sequence is contained in D . Since T is a compact mapping, we may assume
limm→∞ Tφm exists; let us say that the limit is φ∗ .

To complete the proof, it suffices to show that

lim
m→∞

(Tφm(x)−φm(x)) = 0

uniformly on [0,1]. It will follow that φ∗ ∈ 〈gθ ,S〉.
To that end, let ε > 0 be given, and choose 0 < δ < 1

2 such that

∫ δ

0
f (s,gθ (s))ds+

∫ 1

1−δ
f (s,gθ (s))ds <

ε
2M

,

where as before M := {G(x,s) | (x,s) ∈ [0,1]× [0,1]}. Then, there exists m0 such that,
for m � m0 and for δ � x � 1− δ ,

um(x) � gθ (x) � φm(x).

So, for m � m0 and for δ � x � 1− δ ,

fm(x,φm(x)) = f (x,max{φm(x),um(x)}) = f (x,φm(x)).

We have, for m � m0 and 0 � x � 1,

|Tφm(x)−φm(x)| = |Tφm(x)−Tmφm(x)|
=

∣∣∣∣
∫ 1

0
G(x,s)[ f (s,φm(s))− fm(s,φm(s))]ds

∣∣∣∣
=

∣∣∣∣
∫ δ

0
G(x,s)[ f (s,φm(s))− fm(s,φm(s))]ds

+
∫ 1

1−δ
G(x,s)[ f (s,φm(s))− fm(s,φm(s))]ds

∣∣∣∣
� M

∫ δ

0
[ f (s,φm(s))+ fm(s,φm(s))]ds

+M
∫ 1

1−δ
[ f (s,φm(s))+ fm(s,φm(s))]ds

� M
∫ δ

0
[ f (s,φm(s))+ f (s,φm(s))]ds
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+M
∫ 1

1−δ
[ f (s,φm(s))+ f (s,φm(s))]ds

= 2M

[∫ δ

0
f (s,φm(s))ds+

∫ 1

1−δ
f (s,φm(s))ds

]

� 2M

[∫ δ

0
f (s,gθ (s))ds+

∫ 1

1−δ
f (s,gθ (s))ds

]

< 2M · ε
2M

= ε.

So, for m � m0,

||Tφm −φm|| < ε.

That is, limm→∞(Tφm(x)−φm(x)) = 0 uniformly on [0,1]. Hence, for 0 � x � 1,

Tφ∗(x) = T ( lim
m→∞

Tφm(x))

= T ( lim
m→∞

φm(x))

= lim
m→∞

Tφm(x)

= φ∗(x),

and φ∗ is a desired positive solution of (1)-(2) belonging to D . �
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